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Abstract:

Quantum decision theory is introduced here, and a new basis for this

theory is proposed. It is first based upon the author’s general arguments for

the Hilbert space formalism in quantum theory, and next on arguments for the

Born rule, which is the basis for calculating quantum probabilities. A basic

notion behind the quantum theory foundation is that of theoretical variables,

that are divided into accessible and inaccessible ones. This is here specialized

to decision variables. It is assumed that each accessible variable can be seen as

a function of a specific inaccessible variable. Another assumption is that there

exist two maximal accessible decision processes in the given situation. Two

basic assumptions behind the Born rule are 1) the likelihood principle, and 2)

the actor in question has motivations that can be modeled by a hypothetical

perfectly rational higher being. The theory is illustrated by a medical example.
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Introduction

The notion of ‘decision’ is fundamental to all sciences. The notion is analysed in

psychological articles and books, but it also lies in the foundation of much economic

theory and statistical theory, where optimal decisions often are coupled to expected

utility. Of course, in addition, the notion has its daily life implications.

Decisions can be made on the basis of knowledge, on the basis of beliefs, or both.

They are always made in a concrete context. Single persons can make decisions, and

joint decisions can be made by a group of communicating persons.

Political decisions are important, and may have large consequences. In an

autocratic country, political decisions are made by sovereign leaders, who have gained

their positions through power exchanges. In democratic countries, at least in principle

people may control their leaders’ decisions.

In this article, we will concentrate on decisions made by single persons. From a

psychological point of view, such decisions have been thoroughly reviewed by Newell et

al. (2015). The book emphasizes the relationship between learning and decisions,

arguing that the best way to understand how and why decisions are made is in the

context of learning and knowledge acquisition that precedes them, and the feedback that

follows. Some of the discussions in op. cit. are also relevant for the developments in the

present article.

Knowledge acquisition is fundamental to the process of making judgements, which

precedes any mature decision. According to Newell et al. (2015), knowledge acquisition

can be divided into 3 steps: 1) Discovering information; 2) Receiving and searching

through information; 3) Combining information. The first step is particularly important,

and is modelled through Brunswik’s lens model: Variables in the real world go through

‘lenses of cues’ before they are perceived by our minds. In a simplified way we can say
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that we discover information by asking questions to nature, and receive answers. The

different questions may be coupled.

A person always has his history, and through his history, he learns how to handle

decisions. Hence learning is important. In standard economic theory and statistical

theory, the problem of optimizing behaviour is reduced to optimizing expected reward or

utility. I will claim that this does not quite correspond to the way people act during a

decision process. This statement can be supported by a number of empirical

investigations; see for instance the review articles mentioned below in connection to

quantum decision theory.

Admittedly, the decision foundation based upon optimizing expected utility has had

and has still strong theoretical support. There are several axiom systems that can

motivate such a basis, and the mathematics behind such axioms can be traced back to

Bernoulli and Pascal. Newell et al. (2015) discuss one such axiom, the sure thing

principle: If a person prefers option A to option B under the condition X, and he also

prefers A to B under the opposite condition not-X, then he always prefers A to B.

One difficulty with the sure thing principle, is that one can find examples where

rational people do not seem to follow this principle. Two such examples are given by

Allais (1953) and Ellsberg (1961).

A rather primitive form of learning is reinforcement learning, learning governed by

rewards or punishments. In Friston et al. (2009) the notion of active inference was

introduced as an alternative to reinforcement learning in connection to decision-making.

This is important, since the way people learn in connection to decisions obviously is

more active than what can be described as reinforcement learning. In op cit. a theory of

active inference is formalized in terms of a free-energy formulation of perception,

quantizised in terms of entropy or average surprise associated with a probability
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distribution on an agent’s state space and his environment.

In Kahneman et al. (2021) decisions are discussed in terms of their noise and

skewness. Both are problematic sides of human decisions. Skewness denotes systematic

errors made in relation to some defined goal. Noise denotes variability: Imagine two

medical doctors in the same city giving different diagnoses to identical patients. Imagine

two judges assigning different punishments for the same crimes. Or imagine the same

medical doctor or the same judge getting different results depending upon whether it is

before or after lunch, or Monday instead of Friday. According to op. cit. our decisions,

also decisions made by so-called experts, have larger random variation than we usually

think of. Means for reducing noise are discussed in the book.

Theories of decisions can take many points of departure. In this article, we will

describe a new foundation of a comparatively recent theory: Quantum decision theory.

This theory is completely based on quantum mechanics, whose foundation is discussed in

the book Helland (2021) and in some newer articles Helland (2022a,b, 2023a,b).

Pioneering articles on quantum decision theory are Aerts (2009) and Yukalov and

Sornette (2014); see also the book by Busemeyer and Bruza (2012). More recent review

articles are Ashtiani and Azgomi (2015) and Pothos and Busemeyer (2022). Our

approach will be independent of this literature; a completely new entrance to the theory

will be aimed at.

The plan of this article is as follows: I first review briefly a new approach to the

foundation of quantum theory, and then I use this to derive and motivate a new

foundation of quantum decision theory, taking as a basis a simple model of a person’s

decisions. First, the Hilbert space formalism of decision variables is derived. Then the

Born formula, the basis for computing quantum probabilities, is argued for under weak

assumptions, and this is specialized to a decision setting. An example of applications is
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then given, and used to illustrate some of the peculiarities of quantum probabilities.

Then the interpretation is briefly discussed before I give some concluding remarks.

A new foundation of quantum decision theory

On the foundation of quantum theory in general

A completely new approach towards quantum foundations is proposed in Helland

(2021, 2022a,b, 2023a,b,c,d). The basis of this approach is an observer who is in some

physical situation. In this situation there are theoretical variables, and certain of these

variables, say θ, λ, η, ... are related to the observer C. Some of the variables are accessible

to him, meaning roughly that it is, in some future, in principle possible to obtain as

accurate values as he wishes on the relevant variable. Others are inaccessible. Examples

of the latter are the vector (position, momentum) of a particle at some time, or the full

spin vector of a spin particle, an imagined vector whose discretized projection in the

direction a is the spin component in that direction. The terms ‘accessible’ and

‘inaccessible’ are primitive notions of the theory.

The main assumption of my theory is then as follows: Related to an observer C

there is an inaccessible variable ϕ such that all accessible variables can be seen as

functions of ϕ. In the two examples above one can take ϕ = (position, momentum) and

ϕ = full spin vector. In the last example, in the spin 1/2 case, one can model the discrete

spin component θa in direction a as sign(cos(a, ϕ)). Giving ϕ a reasonable distribution

here, results in a correct distribution of each θa. Here these variables are theoretical

variables coupled to some physical situation. Following Zwirn (2016, 2020), every

description of reality must be seen from the point of view of some observer. Hence, we

can assume that the variables also exist relative to C.

But observers may communicate. The mathematical model developed in the articles
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above is equally valid relative to a group of people who can communicate about physics

and the various theoretical variables. This gives a new version of the theory, a version

where all theoretical variables are defined jointly for such a group. The only difference

here is that, for the variables to function during the communication, it must always be

possible to define them in words.

In the above two examples, there are also maximal accessible variables: In the first

example either position or momentum, in the second example the spin component θa in

some direction a. In general, an accessible variable θ is maximal if there is no other

accessible variable λ such that θ = f(λ) for some non-invertible function f .

Two different accessible variables θ and η are said to be related if there is a

transformation k in ϕ-space and a function f such that θ = f(ϕ) and η = f(kϕ). In

Helland (2023b) it is shown that if both θ and η are maximal and take r values, then ϕ

can be constructed in a natural way, there is an accessible variable λ that is in one-to-one

correspondence with θ, all this such that λ and η are related according to this definition.

In this sense, one can always think of some relation between θ and η when they are

different maximal accessible variables. Such variables are called - following Niels Bohr -

for complementary.

In many cases, in particular in the two examples above, λ and θ are identical, so

that θ and η are directly related. Two spin components θa and θb are related, and

position and momentum are related theoretical variables. In the first case, ϕ-space can

be taken as the plane spanned by the directions a and b, and k can be taken as a 180o

rotation around the midline between a and b. In the last case, k is constructed by a

Fourier transform.

In the present paper, we will concentrate on accessible variables that take a finite

number of values, say r. Then the following first theorem is proved in the above papers:
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Given a situation with two different maximal accessible variables θ and η, there

corresponds to every accessible variable a self-adjoint operator in some complex Hilbert

space H. With ‘different’ I here mean really different, not two maximal variables that

are one-to-one functions of each other. And a ‘self-adjoint operator’ is just a complex

r × r matrix with real eigenvalues. In particular then, there is such an operator Aθ

corresponding to θ and an operator Aη corresponding to η.

This theorem is the first step in a new proposed foundation of quantum theory.

The second step is to show the following: If k is the transformation connecting two

related variables θ and η, then there is a unitary matrix W (k) such that

Aη =W (k)−1AθW (k). (A matrix W is unitary if W−1 =W †, where the last matrix is

obtained from W by transposing it and taking the complex conjugate of all its elements.)

Given these results, a rich theory follows. The set of eigenvalues of the operator Aθ

is identical to the set of possible values of θ. The variable θ is maximal if and only if all

eigenvalues are simple. In general, the eigenspaces of Aθ are in one-to-one

correspondence with questions ‘What is θ’/ ‘What will θ be if we measure it?’ together

with sharp answers θ = u.

If θ is maximal as an accessible variable, the eigenvectors of Aθ have a similar

interpretation. In my opinion, such eigenvectors, where θ is some meaningful variable,

should be taken as the only possible state vectors. These have straightforward

interpretations, and from this version of the theory also a number of so-called ‘quantum

paradoxes’ can be illuminated, see Helland (2022b,d).

This not only points at a new foundation of quantum theory, and it also suggests a

general epistemic interpretation of the theory: Quantum theory is not directly a theory

about the world, but a theory about an actor’s knowledge of the world. Versions of such

an interpretation already exist, and it is one of the very many suggested interpretations



8

of quantum mechanics.

Below, I will need some mathematical notations from standard finite-dimensional

quantum mechanics, notations mainly due to Dirac:

A Hilbert space H can be taken as an r-dimensional complex vector space.

Operators on this space are then r × r matrices. An operator A is said to be self-adjoint

if A† = A, where A† is formed from A by transposing it and taking complex conjugates

of all elements. Self-adjoint operators have real-valued eigenvalues.

A ket vector |ψ⟩, a state vector, can be seen as a unit column vector in H. I will

concentrate on state vectors of the form |ψ⟩ = |b; j⟩, an eigenvector of an operator Ab, in

my language, equivalent to a particular answer to a question of the form ‘What is θb?’,

where θb is an accessible theoretical variable.

To any ket vector |a; k⟩ there corresponds a bra vector ⟨a; k|, the corresponding

complex conjugate row vector. Scalar products between two state vectors can then be

written ⟨a; k|b; j⟩. I will also need scalar products of the form ⟨a; k|A|a; k⟩, where A is an

operator.

The projection operator Πb
j = |b; j⟩⟨b; j| projects onto the state vector |b; j⟩. In

general, a projection operator ΠB projects onto the plane B.

A simple model of a person’s decisions

Consider a person C in some decision situation. Say that he has the choice between

a finite set of actions a1, ..., ar. Relative to this situation we can define a finite-valued

decision variable θ, taking the different values 1, ..., r, such that θ = i corresponds to the

action ai (i = 1, ..., r). If C really is able to make a decision here and carry out the

actions, we say that θ is an accessible variable. In analogy with the situation in the

previous subsection, the variable θ is in correspondence with a person C, in fact, here θ
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belongs to the mind of C.

We all go through life making decision after decision. Some of these are simple, but

some can be really demanding. For the different decisions that C is about to make at

some time t, there correspond decision variables θ, η, λ, .... Some of these may be

accessible to C, but some may be inaccessible: In the given situation, C is simply not

able to make up his mind. Consider a fixed time t and let C be in some concrete

situation at time t. Assume that he at time t is faced with two different maximal

decision problems, both corresponding to r different actions.

This must be made precise. A decision problem is said to be maximal if C is just

able to make up his mind with respect to this decision; if the problem is made slightly

more complicated, he is not able to make a decision. Let two different maximal decision

variables be θ and η, where θ = i corresponds to the action ai (i = 1, ..., r), and η = j

corresponds to the action bj (j = 1, ..., r). Then, by the theory of the previous

subsection, we can model the situation by using quantum theory.

Note that this simple model does not cover all situations. Sometimes we have a

choice between an infinite number of possibilities, and sometimes the outer context

changes during the decision process. Nevertheless, the simple model is a good starting

point.

The Hilbert space formalism for decisions

It is well known that our minds may be limited, for instance when faced with

difficult decisions. We will first mention a side result in this direction from the present

development.

In Helland (2022c), Theorem 2 says essentially: Imagine a person C which in some

context has two related maximal accessible variables θ and η in his mind. Impose a
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specific symmetry assumption. Then C cannot simultaneously have in mind any other

maximal accessible variable which is related to θ, but not related to η. It was claimed by

Helland (2022c) that the violation of a famous inequality by practical Bell experiments

can be understood on the basis of this theorem. See also Helland (2023c).

Note that this result has the qualification ‘at the same time’, and indicates a specific

restriction to two maximal variables. But the human mind is very flexible. Taking time

into account, we can think of very many variables, even ones that are not related.

For the present article, however, the direct results from Helland (2022b, 2023b) are

more important. Consider again a decision situation, and assume the simple model of

the previous Subsection. In particular, let C at the same time be confronted with at

least two different maximal related decision processes. Then the following hold:

- Each decision variable θ is associated with a self-adjoint operator Aθ, whose

eigenvalues are that possible values of θ.

- The decision process is maximal if and only if each eigenvalue of the corresponding

operator is single.

- In the maximal case, the eigenvectors of the operator can be given interpretation:

They are coupled to one particular decision process and a specific choice in this decision

process: In concrete terms, the eigenvectors v are in one-to-one correspondence with 1)

some maximal accessible decision variable θ, and 2) a specific value u of θ. In other

words, the possible eigenvectors are in one-to-one correspondence with 1) the question

‘Which decision process?’ and 2) ‘Which action did this decision process lead to?’.

- In the general case, the eigenspaces of the operator have a similar interpretation.

This can be taken as a starting point of quantum decision theory, but to develop this

theory further, we need to be able to calculate the probabilities of the various decisions.
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The Born rule; general arguments

Born’s formula is the basis for all probability calculations in quantum mechanics. In

textbooks, it is usually stated as a separate axiom, but it has also been argued for by

using various sets of assumptions; see Campanella et al. (2020) for some references. In

fact, the first argument for the Born formula, assuming that there is an affine mapping

from a set of density functions to the corresponding probability functions, is due to von

Neumann (1927). Here we will try to use assumptions that are as weak as possible, and

assumptions that can be related to notions both from statistical theory and quantum

theory. We start with assuming the likelihood principle: The experimental evidence from

any experiment must be based upon the likelihood l, which is probability density or the

point probability of observations, seen as a function of the full parameter.

The likelihood concept is then generalized to a quantum setting; After an

experiment is done, and given some context τ , all evidence on the maximal parameter θb

is contained in the likelihood p(zb|τ, θb), where zb is the data relevant for inference on θb,

also assumed discrete. This is summarized in the likelihood effect :

F b(ub; zb, τ) =
∑
j

p(zb|τ, θb = ubj)|b; j⟩⟨b; j|, (1)

where the pure state |b; j⟩ corresponds to the event θb = ubj , and where ub = (ub1, ..., u
b
r)

is a vector of actual values of the parameter θb.

The interpretation of the likelihood effect F b(zb, τ) can be formulated as follows:

(1) We have posed some inference questions on the accessible conceptual variable θb. (2)

We have specified the relevant likelihood for the data. The question itself and the

likelihood for all possible answers to the question, formulated in terms of state vectors,

can be recovered from the likelihood effect.



12

The likelihood effect is closely connected to the concept of an operator-valued

measure; see a discussion in Helland (2021). Since the focused question assumes discrete

data, each likelihood is in the range 0 ≤ p ≤ 1. In the quantum mechanical literature, an

effect is any operator with eigenvalues in the range [0, 1].

I will base the discussion upon the following assumption and theorem from Helland

(2021), where a further discussion is given.

Assumption 1 Consider in the context τ an epistemic setting where the likelihood

principle from statistics is satisfied, and the whole situation is observed by an

experimentalist C whose decisions can be modelled to be influenced by a superior being

D. Assume that D’s probabilities for the situation are q, and that D can be seen to be

perfectly rational in agreement with the Dutch Book Principle.

The Dutch Book Principle says as follows: No choice of payoffs in a series of bets

shall lead to a sure loss for the bettor.

A situation where Assumption 1 holds will be called a rational epistemic setting. It

will be seen to imply essential aspects of quantum mechanics. Below we will discuss

whether or not it also can be coupled to certain macroscopic situations, in particular

decision situations.

In Helland (2021), a generalized likelihood principle is proved from the ordinary

likelihood principle: Given some experiment, or more generally, some context τ

connected to an experiment, any experimental evidence will under weak assumptions be

a function of the likelihood effect F . In particular, the probability q is a function of F :

q(F |τ).

Theorem 1 Assume a rational epistemic setting, and assume a fixed context τ . Let

F1 and F2 be two likelihood effects in this setting, and assume that F1 + F2 also is an
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effect. Then the experimental evidence, taken as the epistemic probabilities related to the

data of the performed experiments, satisfy

q(F1 + F2|τ) = q(F1|τ) + q(F2|τ).

Corollary 1 Assume a rational epistemic setting in the context τ . Let F1, F2, . . . be

likelihood effects in this setting, and assume that F1 + F2 + . . . also is an effect. Then

q(F1 + F2 + . . . |τ) = q(F1|τ) + q(F2|τ) + . . . .

The further derivations rely on a very elegant recent theorem by Busch (2003): Let

in general H be any separable Hilbert space. Recall that an effect F is any operator on

the Hilbert space with eigenvalues in the range [0, 1]. A generalized probability measure

µ is a function of the effects with the properties

(1) 0 ≤ µ(F ) ≤ 1 for all F,

(2) µ(I) = 1,

(3) µ(F1 + F2 + . . .) = µ(F1) + µ(F2) + . . . whenever F1 + F2 + . . . ≤ I.

Theorem 2 (Busch, 2003) Any generalized probability measure µ is of the form

µ(F ) = trace(ρF ) for some density operator ρ.

It is now easy to see that q(F |τ) on the likelihood effects of the previous Section is a

generalized probability measure if Assumption 1 holds: (1) follows since q is a

probability; (2) since F = I implies that the likelihood is 1 for all values of the

e-variable; finally (3) is a consequence of the corollary of Theorem 1. Hence there is a

density operator ρ = ρ(τ) such that p(z|τ) = trace(ρ(τ)F ) for all ideal likelihood effects
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F = F (z). This is a result that is valid for all experiments, and can be seen as a first

general version of Born’s formula.

The problem of defining a generalized probability on the set of effects is also

discussed in Busch et al. (2016).

Define now a perfect experiment as one where the measurement uncertainty can be

disregarded. The quantum mechanical literature operates very much with perfect

experiments that result in well-defined states |j⟩. From the point of view of statistics, if,

say the 99% confidence or credibility region of θb is the single point ubj , we can infer

approximately that a perfect experiment has given the result θb = ubj .

In our epistemic setting then: We have asked the question: ‘What is the value of

the accessible e-variable θb?’, and are interested in finding the probability of the answer

θb = ubj though a perfect experiment. If ubj is a non-degenerate eigenvalue of the operator

corresponding to θb, this is the probability of a well-defined state |b; j⟩. Assume now that

this probability is sought in a setting defined as follows: We have previous knowledge of

the answer θa = uak of another maximal question: ‘What is the value of θa?’ That is, we

know the state |a; k⟩. (uak is non-degenerate.)

These two experiments, the one leading to |a; k⟩ and the one leading to |b; j⟩, are

assumed to be performed in equivalent contexts τ .

Theorem 3 [Born’s formula, simple version] Assume a rational epistemic setting.

In the above situation, we have:

P (θb = ubj |θa = uak) = |⟨a; k|b; j⟩|2. (2)

An advantage of using the version of Gleason’s theorem due to Busch (Theorem 2)

in the derivation of Born’s formula, is that this version is valid also in dimension 2.

Other derivations using the same point of departure, are Caves et al. (2004) and Wright
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and Weigert (2019). In Wright and Weigert (2021) the class of general probabilistic

theories which also admits Gleason-type theorems is identified. But for instance,

Auffeves and Granger (2019) derive the Born formula from other postulates.

A survey of quantum probabilities

Here are three easy consequences of Born’s formula:

1) If the context of the system is given by the state |a; k⟩, and Ab is the operator

corresponding to the e-variable θb, then the expected value of a perfect measurement

of θb is ⟨a; k|Ab|a; k⟩.

2) If the context is given by a density operator ρ, and A is the operator corresponding to

the e-variable θ, then the expected value of a perfect measurement of θ is trace(ρA).

3) In the same situation the expected value of a perfect measurement of f(θ) is

trace(ρf(A)).

These results give an extended interpretation of the operator A = Aθ: There is a

simple formula for all expectations in terms of the operator. On the other hand, the set

of such expectations determines the state of the system. Also on the other hand: If A is

specialized to the operator of an indicator function, we get back Born’s formula, so the

consequences are equivalent to this formula.

A consequence of 3) above is that θ = θb does not need to be maximal in order that

a Born formula should be valid. Version 2) of Born’s formula is also valid when the basic

variable θa behind the density operator ρ is not maximal, under a certain assumption:

Assume that θa = f(λa), where λa is maximal and the conditional probability

distribution of λa, given θa is uniform.

Measurements of empirical variables are discussed in Helland (2021), but here we
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will look at the simpler case of a perfect measurement. Assume that we know the state

|ψ⟩ of a system and that we want to measure a new e-variable θb. This can be discussed

by means of the projection operators Πb
j = |b; j⟩⟨b; j|. First, observe that by a simple

calculation from Born’s formula

P (θb = ubj |ψ) = ∥Πb
j |ψ⟩∥2. (3)

This formula is also valid when Πb
j is a multidimensional projection.

It is interesting that Shrapnel et al. (2017) recently simultaneously derived both the

Born rule and the well-known collapse rule from a knowledge-based perspective. The

collapse rule is further discussed in Helland (2021), but in this article, we will just

assume this derivation as given. Then, after a perfect measurement θb = ubj has been

obtained, the state changes to

|b; j⟩ =
Πb

j |ψ⟩
∥Πb

j |ψ⟩∥
.

Successive measurements are often of interest. We find

P (θb = ubj and then θc = uci |ψ) = P (θc = uci |θb = ubj)P (θ
b = ubj |ψ)

= ∥Πc
i

Πb
j |ψ⟩

∥Πb
j |ψ⟩∥

∥2∥Πb
j |ψ⟩∥2 = ∥Πc

iΠ
b
j |ψ⟩∥2.

In the case with multiple eigenvalues, the formulae above are still valid, but the

projectors above must be replaced by projectors upon eigenspaces.

Born’s rule in a decision setting

Go back to the person C who is facing at least two related maximal decisions, with

corresponding decision variables θ and η. Each of these decisions may be composed of

several partial decisions; then the decision variables may be thought of as vectors.

However, we will make the simplifying assumption that each partial decision has a finite



17

number of outcomes; then the total decision also has a finite number of outcomes, and

without loss of generality, we can order these outcomes, say η, as 1, 2, ..., r.

According to Kahnemam (2011), some of our decisions are slow, and sometimes, in

fact, in very many cases, we have to make fast decisions, relying on earlier experience,

perhaps in a subconscious way, relying on some abstract ideals that we have in our

minds. This is consistent with the model assumptions that we have made above in

connection to Born’s rule. And the fact that such fast decisions may be modelled by

quantum probabilities, is consistent with a lot of empirical findings, see Pothos and

Busemeyer (2022).

Focus again on the person C and his fast decisions. Depending upon the situation

that he is in, he may just have made several irrelevant decisions, collected in the variable

η, but at the same moment, he is trying to focus on the problem that he really is

interested in, and the corresponding (maximal) variable is called θ. There is not much

lack of generality in assuming that these two decision processes have the same number of

outcomes r; we can only add some abstract irrelevant outcomes to one of the decision

variables.

According to my interpretation of quantum theory and of decision-making, each of

the two decision variables has an operator connected to it, and the eigenspaces of such

an operator correspond to a concrete outcome of the decision process. The probabilities

are calculated as in (3). The application of these theoretical considerations is best

studied by an example.

Quantum decision theory in practice; an example

Consider a situation with one doctor and one patient. The doctor has the choice

between two mutually exclusive medicines A and B.
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The doctor starts by asking a number of questions, and he obtains answers. Result:

A state |ψ⟩ for the patient. This is the starting point of our model of what is going on in

the mind of the doctor during the decision process. The state is modelled by some vector

in an underlying Hilbert space, connected to the mind of the doctor.

The doctor is interested in several epistemic probabilities:

P (A helps), P (B helps),

P (A helps and B helps given that he knows that A helps).

The simplest case is where these two medicines work completely independently:

P (A helps and also B helps) = P (B helps and also A helps)

= P (A helps)P (B helps).

This can also in principle be modelled in quantum language by using the tensor

product HA ⊗HB. But such a model will in this situation be unnecessarily complicated.

However, from our point of view, the most interesting case is where there is some

coupling between the two medicines. The doctor must make fast decisions. In his mind,

he may have a lot of other decisions that he has made or is going to make. As a model,

these may be collected in a decision variable η. But now he focuses on the actual patient.

The decisions that he is going to make on this patient, are modelled, and collected in the

decision variable θ. In the doctor’s mind at the moment in question, is also all the

information that he possesses about the medicines A and B. As a doctor, he has ideals

learned through many years of education and experience; these ideals can be modelled in

terms of some abstract perfectly rational being D.

We will propose a quantum model with Hilbert space H. The projector upon the

subspace indicating that A helps is denoted by ΠA.
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From Born’s rule, we get:

P (A helps) = ∥ΠA|ψ⟩∥2 = ⟨ψ|ΠA|ψ⟩.

The new state after the doctor knows that A helps is now:

|ψA⟩ =
ΠA|ψ⟩
∥ΠA|ψ⟩∥

.

To continue the model, consider two orthogonal spaces in H: VB: Indicating that B

helps. The projector in this space is ΠB. And V
perp
B : Indicating that B does not help.

The projector upon this space is ΓB = I −ΠB.

This gives

P (A helps and also B helps) =

P (A helps)P (B helps|A helps) =

∥ΠAψ∥2∥ΠBψA∥2 = ∥ΠBΠA|ψ⟩∥2.

Some consequences

The marginal probability that B helps is P (B helps) = ∥ΠB|ψ⟩∥2. Then by a

geometric argument it can be seen that there exist situations where

P (A helps and also B helps) > P (B helps), i.e.,

∥ΠBΠA|ψ⟩∥ > ∥ΠB|ψ⟩∥.

For a tentative illustration, see Figure 1.

Also, the law of total probability does not hold. There is additivity in the

probability amplitudes:

ΠA|ψ⟩ = ΠBΠA|ψ⟩+ ΓBΠA|ψ⟩ = a+ b,
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Figure 1.

Geometry of two spaces.

so that

P (A helps) = ∥ΠA|ψ⟩∥2 = |a|2 + |b|2 + a∗b+ ab∗.

But

P (A helps and also B helps) + P (A helps but B does not help)

= |a|2 + |b|2.

As a special case of the violation of the law of total probability: The sure thing

principle does not hold in quantum decision theory.

Finally, note that one may have

P (A helps and also B helps) ̸= P (B helps and also A helps).

In general, events do not necessarily commute in relation to the calculation of

quantum probabilities.
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Interpretations

All these probabilities may be thought of as describing what is going on in the mind

of the doctor before he makes a decision. Similar qualitative conducts of probabilities in

the minds of people have been observed empirically in many investigations; see references

in Pothos and Busemeyer (2013). It is interesting in itself that quantum probabilities

may be connected to our minds.

In epistemic processes (processes to try to achieve new knowledge) quantum theory

is also connected to the variables in the mind of an observer, or variables shared by a

group of observers. This is related to our interpretation of the state vectors. But of

course, this interpretation - as any interpretation - may be controversial.

Concluding remarks

Quantum decision theory seems to be applicable in many cases where decisions are

to be made, primarily but not only in the cases that Kahneman (2011) calls decisions of

type 1, fast decisions. When a prior is available, an alternative is a Bayesian decision

theory. This theory will follow the Kolmogorov rules, and apart from the existence of a

prior, the theory does not require any special assumptions.

In this article, I have concentrated on decisions made by a single person. However,

the theory can be extended to joint decisions made by a group of communicating

persons. Then these persons must have common ideals, as modelled by a perfectly

rational higher being D. The ideals must be common in the setting determined by the

relevant decision variables.

It is important that the rules of quantum probabilities are different from the usual

Kolmogorov probability rules. The law of total probability does not hold, and the

probabilities related to two events may depend on the order in time of the events.
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As a basis for quantum decision theory as discussed here, lies the idea of two

complementary decision variables at the same time in the mind of some person or in the

joint minds of a group of communicating persons. I repeat that two different variables

are complementary if they are maximal as accessible variables. Another essential

assumption is the existence of ideals that are perceived as perfectly rational, modelled by

a hypothetical ‘ideal higher being’.

The quantum probabilities may be thought of as relative to this ‘ideal higher being’,

hence they must be looked upon as absolute probabilities, not conditioned in any way.

This is confirmed by empirical findings in the quantum decision literature.

There are cases where powerful political leaders may be roughly modelled as such

‘ideal higher beings’, relative to the influence they have on other people and their

decisions. A fundamental requirement should then be that the leaders obey certain basic

humanitarian conditions, including respect for other people’s lives. Unfortunately, this

goal is not always satisfied in practice.

Examples where the above two assumptions hold, may be found within the mind of

any person, but also between persons and between groups of persons.

The assumptions may in certain situations be satisfied by many different pairs of

decision variables, leading to mental difficulties in the first case and to partly

complementary world views in the last two cases. Then in these cases, it might imply

deep conflicts between those persons or groups if some necessary conditions are there.

We can see many examples of this phenomenon in the world today.
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