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Abstract

Compliance of processes in enterprises to internal policies and external regulations could be critical because failing to

follow them could result in great losses, but manual compliance auditing is difficult and prone to errors and oversight. In

this paper, we present a method for formally verifying the properties of Integrated Change Control processes using

temporal logic. We express the process in terms of states, and then we formulate some of its key properties, such as

prerequisites, reachability, definiteness, and cycles, using a temporal logic called Computation Tree Logic. The

properties to verify in the case study we present are taken from actual change control process auditing practice in a

large business in the food industry. We formally verify those properties using a model-checking tool. We end up with a

formally verified Integrated Change Control process and more robust assurance of its correctness than can be reached

for its informal counterpart. To the best of our knowledge, this has not been done before.
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1. Introduction

Project management (PM) is a widely studied area (Project Management Institute, 2017), mostly from the point of view of

methodological guidelines. In particular, in this paper we focus on the “Integrated Change Control” process (ICC)

described in the Project Management Institute (PMI) Project Management Body of Knowledge (PMBOK). ICC is key for

"controlling changes and recommending corrective or preventive action in anticipation of possible problems" [PMI, 17]

during the progress of a project. Depending on the project area, the change control process should be tailored for

complexity, contract requirements, and the context in which the project is controlled [PMI, 17]. Effective processes are

supposed to have some desirable properties, such as reachability, liveness, compliance with prerequisites, and so on; but

whether these properties are ensured by the workflow is something that can be extremely difficult to prove for large

projects typical of big companies.

Methodology guides such as the PMBOK [PMI, 17] are generally composed of criteria and processes explained in plain

English. While this is perfectly good for most design purposes, there are some scenarios in which we need a more precise

–even mathematical– expression of the process such that we can verify if its key properties are guaranteed. The costlier

are errors and mistakes, the more interest there is in achieving a high level of correctness assurance: “[erroneously]

designed workflow models can result in failed workflow processes, execution errors, and disgruntled customers and

employees” [Bi, 04].

According to Awad [Awad, 08], compliance rules have different origins, and change through time, and they include: a)

Business processes, like the order of execution of activities, or the inclusion of certain control or supervision activities; b)

Policies that produce either a competitive advantage or to protect the business from failures; c) Quality standards like ISO

9000; d) External mandatory regulations and laws, like the 2002 Sarbanes-Oxley Act. As Awad states, the consequences

of failing to follow the policies could not only decrease quality or competitiveness, but also to lead to penalties and

reputation loss.

To ensure the compliance to regulations mentioned above, experts perform manual audits of key business process

models. This involves carrying out process and procedure walkthroughs, as well as the design of the corresponding check
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tests. This consumes considerable time and human effort, and even worse, is not guaranteed to detect every mistake or

unwanted condition, because in practice it is very difficult to manually consider all the consequences of both the internal or

external normativity and the procedures.

One of the authors of this paper oversees Information Technology (IT) Governance, Risk and Compliance in one of the

largest alimentary industry in Mexico. He is responsible for supervising the technological IT platform, applications, IT

processes and information systems, to ensure that the IT area supports in an effective way the business processes and

corporate goals. His responsibilities about compliance with IT policies and regulations, as well as the design of adequate

check and control mechanisms so that risks associated with IT processes are minimized, were one of the motivations to

try a formal and automated way of proving properties, with methods like the ones we present in this papers.

The goal of this work was to develop a methodology that could leverage formal verification techniques to check the design

of change processes, and to pinpoint errors when they exist, and to give a guarantee when there is none. This, of course,

would raise the level of certainty that IT processes comply with regulations. The challenge for building such a

methodology is that we must translate informal best practices and criteria, such as the rules a human expert is currently

analyzing, into formal and even automated procedures and notation. Procedures must comply with certain properties such

as: every change should have an authorization prior to its processing, duplicate changes should be avoided, identify

changes that make the project inviable, changes should have successful tests and the acceptance of the involved parties,

and so on. The detailed properties to be checked will be presented in sections 3 and 4.

In the context of ICC, a process designer or auditor should be interested in validating that the process under consideration

has or does not have some key properties, and so it can be concluded confidently that the change control process is

correctly designed. This was the motivation for using Formal Methods (FM) [Groefsema, 13] to reach mathematical-level

property assurance. The use of formal methods in informal disciplines has the potential benefit of establishing with

certainty that a process has (or not) key properties it is supposed to have, which translates in the correctness and integrity

assurance. The use of FM for correctness assurance could be seen a form of “mathematical auditing” of the proposed ICC

process. Obviously, a verified formal assurance would give an additional authority to a proposed ICC process. In the

cases where the ICC process under study does not pass the mathematical validation, a “formal debugging” phase must

ensue to correct the defects, and this debugging process is indeed one of the benefits of using formal methods for

validation, as it allows a process designer to avoid the following risks associated with a poorly designed change control

process: not tracking changes, developing changes (including unauthorized changes) impacting project plans (and project

deliverables) with unforeseen effects, lack of priorities in change management, processing duplicate changes, developing

changes that may turn the project unfeasible, etc.

We are interested in developing a mathematical formalization of both the ICC process and the properties it is supposed to

hold in order to verify that the former actually exhibit the latter. We do so by using a temporal logic formalism, the

“Computation Tree Logic” (CTL) [Bérard, 01] [Lamport, 83], and we run experiments using a model-based implementation

of CTL named NuSMV [Cimatti, 00]. While other papers have previously used CTL and model checking for business

process verification [Groefsema, 13], our proposal is specific for ICC processes.
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In short, the contribution of this paper is a method for formally analyzing a change control process by applying temporal

logic (in particular CTL) in a way that allows verification of the process’s key properties. We do not make contributions

regarding the elements that ought to be part of a change control process.

The structure of the rest of the paper is as follows. In section 2 we present some background and related work. In section

3 we present the methodology for applying CTL to ICC. In section 4 our verification experiments are presented, and in

section 5 we present the conclusions.

2. Background

In this section, we present previous work which gives the context and prerequisites for the application of our change

process formal verification method.

2.1. PMI and Integrated Change Control

The ICC process consists of reviewing change requests, approving change requests, and updating the integrated plan for

the project, the subsidiary plans, the product specifications, and the baselines of time, cost, and project quality [PMI, 17].

Every change request must be approved or rejected by some authority belonging to the project management team or an

external organization [Kerzner, 05] [Stackpole, 09]. The approval of a change may require revision of activity sequences,

cost estimates, scheduled dates, or resource requirements, as well as analysis of alternatives in response to the risks

associated with the project. These changes can prompt adjustments to the entire project management plan [Phillips, 11]

[Schwalbe, 09] [Lewis, 05] [Larson, 11]. We notice that the PMI PMBOK does not provide specific workflows for ICC, thus

it is necessary to incorporate workflows from other sources, like ITIL [Rance, 11] in order to develop specific ICC

workflows. Figure 1 shows the processes that have information relationships as inputs and outputs to PMI's ICC process.

2.2. Formal Methods and Specifications

System design (as in our ICC case) can generate or save big costs because errors propagate across stages in a system,

and if they are detected in the last stages, error correction could imply reworking all the way from the error source. In

software development this situation has been addressed by several studies [Anderson, 98] [Kelly, 95].
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Figure 1. ICC process relationships with other processes of PM according to PMI

Indeed, we can learn valuable lessons on specification and modeling from the case of software. One approach for taming

software errors is to rely on mathematical precision and tools, that is, the use of FM [Almeida, 11] [Bjørner, 14] [Burstall,

69] [Clarke, 96] [Monin, 03]. Formal methods consist of a set of techniques and tools based on mathematical modeling

and formal logic used to specify and verify requirements and designs for software and computer systems. They can

predict the logical properties of a system based on a mathematical model of the system using logic calculations, and can

make it possible to find out whether a certain description of a system is internally consistent, to verify if certain properties

are consequences of proposed requirements, and to check if the requirements have been interpreted correctly in the

system design. In this work, we are primarily involved in the formal modeling of the Integrated Change Control process

and the proof of this model’s properties. This excludes many other applications of formal models, such as the refinement

of specifications, the generation of actual code, the proof of correctness of an implementation, and many others.

A formal specification is a “concise description of the behavior and properties of a system written in a mathematically-

based language, specifying what a system is supposed to do as abstractly as possible, thereby eliminating distracting

detail and providing a general description resistant to future system modifications” [Kelly, 95]. Formal specifications are a

translation of a non-mathematical description of the high-level behavior and properties of a system (diagrams, tables,

natural language) into a formal specification language, which gives a concise and precise description [Kelly, 95]. Formal

specifications describe a system and its desired properties, which may include functional behavior, timing behavior,

performance characteristics, or internal structure [Clarke, 96]. The language used for the specification must have a well-

defined semantics based on mathematics in order to support deductions.
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2.3. Discrete Processes and Temporal Logic

Most processes in organizations fall in the category of discrete event systems [Cassandras, 09], in which processes are

characterized by a start event, a duration and a termination event. Of course, the start of a process goes before the end.

This is called a dependency. There are also more complex dependencies, like for instance that one process goes

altogether after another one, so the finish time for the latter goes before the start time for the former. Time dependencies

have been studied in much detail in many forms of temporal logic [Fisher, 11] [Lamport, 83] [Rozier, 10]. Temporal logic is

related to Modal Logic [Chellas, 80] and is specifically used to describe the temporal ordering of events.

Discrete event systems have discrete states, and a sequence between these states. Understanding this sequence is

critical for process design and audit and can lead to critical questions. For instance, if we have been in a state of the

system, is it possible to fall in that state again? Are there states from which it is not possible to exit? These execution

properties are of great interest for process auditing purposes because they could imply that a given process is or is not

correct. Expressing states and sequences in a way that helps us answer these questions is possible with a temporal logic

called Computation Tree Logic (CTL).

2.4. CTL

We are going to consider one particular form of temporal logic which we found suited to change control specification,

namely, Computation Tree Logic (CTL). CTL has been very well studied and there are computer implementations of it that

allow experiments and verifications. We will take advantage of these implementations in this work. In CTL, each moment

in time can be divided into several possible futures. Essentially, “this logic sees the structure of time as a tree, rooted in

the present time, with a series of branching paths at each node of the tree” [Rozier, 10].

Regardless of the original form of the considered process, eventually it should be translated into a state transition system

[Harel, 98]. A state transition system can be visualized as a graph, called an automaton or Kripke structure (Figure 2) that

represents the behavior of a system [Rozier, 10], by means of a collection of states linked by arrows that represent the

changes from one state to another.

The Kripke structure is a tuple M = (S, I, R, L), where S is a finite set of states, I ⊆ S is a set of initial states, and R ⊆ S  S

is the transition relation from one state to the next [Cimatti, 00]. Additionally, there is a labeling function L that attaches

properties to each state. The properties take logical values that can be true or false.

CTL is a mathematical language for declaring properties about the Kripke structure [Fisher, 11]. The declared properties

refer not to the automaton itself, but to the possible executions (sequences of transitions) that could happen in the

automaton. CTL makes it possible to extract a static mathematical entity from the dynamics of the automaton. In CTL, the

computation tree is this static entity. Consider, for instance, the automaton in Figure 2 [Rozier, 10], which includes p, q and

r conditions attached to states s0, s1 and s2. Taking s0 as the initial state, it is possible to transition to s1 or s2; this is

represented in the computation tree in Figure 3 [Cimatti, 00] as a tree with root s0, and branches to s1 and s2. As the

execution continues, there will be branches extending and eventually dividing. In many cases, branches could have
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infinite length.

Figure 2. Kripke structure (based on [Cimatti, 00])

For the computation tree in fig 2b, we could consider the following property: “whenever the condition r is established, it is

never lost.” This property could be true or false (in this particular case it is false, as can be shown by starting in s0, moving

left to s1 and then left again to s0); of course this example is a simple automaton that we can visually verify, but there

could be much more complex automata and properties (imagine you are dealing with an automaton with hundreds of

conditions and states), so specialized languages and methods have been proposed, one of which is CTL.
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Figure 3. Computation tree (based on [Cimatti, 00])

The CTL language uses two combined special quantifiers: the first one may take value A (property should hold along All

paths) or E (there Exists at least one path where it holds), while the second one may take value F (at some particular point

in the Future), G (Globally, standing from the present all the way to the future), X (in the neXt state) or U (Until a condition

is met). So, the combined possible quantifiers are AG, AF, AX, AU, EG, EF, EX, EU, and they could be nested in formulas.

For instance, the statement “whenever the property r is established, it is never lost” could be represented by the CTL

formula: AG (r ⇒ AG r). A counterexample, showing that this formula is false for the considered Kripke structure, would

take s1 as the present state, and go from s1 to s0, which contradicts the property, because in s0 property r does not hold.

Consult a CTL introduction for additional details [Fisher, 11].

The specific CTL “dialect” we are going to use is NuSMV [Cimatti, 00] (see below).

3. Modeling and Verification Method

In this section, we present our proposed formal verification method for CCI processes in project management. The

method we propose is composed of the following 5 steps:

1. Start with a detailed change control process suited for a specific context.

2. Express the change control process as a state transition system, in the notation of a Kripke structure.

3. Translate the Kripke structure to a program in the NuSMV language.

4. Express the key properties we are interested in validating as CTL formulas in the NuSMV language.

5. Test the properties in the NuSMV tool.

Now we explain how we apply each step, following the case study of the ICC process. The ICC process considered is

based on the integration of criteria from the PMI and other organizations, as mentioned before.

3.1. Start with a detailed change control process

As commented before, the general ICC process from PMI does not consider the specific activities that are involved in

change management. In the case study, we consider activities proposed by the Construction Industry Institute (CII) [Ibbs,

01]. By combining concepts about information flows from the Integrated Change Control process (according to PMI) [PMI,

17] and the subprocesses and control activities defined by the CII, we can define a process that contains sufficient detail

for simulation and analysis.

Figure 4 shows a flowchart fragment associated with the proposed Integrated Change Control process. This flowchart

shows analysis activities that apply to any change request. Figure 4 considers the activities indicated by the process

proposed by Ibbs [Ibbs, 01] and adds other activities inspired in ITIL [Rance, 11]. The first activities are associated with
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identifying the need for a change, followed by those that have to do with registering and analyzing the corresponding

change request. If the change does not have urgent priority, time is taken to check whether the information registered in

the change request is complete, if the request is duplicated, or if the change can be postponed. This process finally shows

the treatment given to a change request that is detected as duplicated. The process must be detailed and appropriate for

the context. To begin understanding the process as a state transition system, states in the process must be identified.

Black dots show key states in the detailed Integrated Change Control process.

Figure 4. Flowchart for initial steps associated with the analysis of a change request

3.2. Express the change control process as a state transition system

Figure 5 shows the state transition system obtained from the flowchart shown in Figure 4. The transformation from regular

flowchart to the corresponding state transition system is treated by [Bjørner, 70], as every flowchart can be represented in

a state transition system [29]. The six black dots in Figure 4 have become the six highlighted ovals in Figure 5.
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Figure 5. Partial state transition system obtained from flowchart in Figure 4.

A complete state transition system that models the ICC process is defined by exhaustively considering all possible states

and transitions. It consists of 20 states and 35 transitions, represented visually as a Kripke structure (automaton) in Figure

6 and Figure 7. Figures 6 and 7 are constructed the same way as Figure 5, but they include the entire state transition

system. Figures 6 and 7 illustrate the states of the ICC process and the state variables that trigger transitions from one

state to another. The figures ought to be interpreted starting in Figure 6 at state #1: “IdentifiedNeedForChange”. Figure 6

connects to Figure 7 via state #7: “AuthorizedChange”. Altogether, Figures 6 and 7 are simply an exhaustive state

transition system of the ICC process.

The sub-sequence in Figure 8 shows one possible path of states and transitions for a particular change. The change

begins in state #1: “IdentifiedNeedForChange”. Once a need for change has been identified, the change request is

registered and analyzed by the Change Control Board (state #2: “ChangeRegisteredAndAnalyzed”). In this particular

scenario, the Board identifies that the change is possibly a duplicate change, and the change passes to state #3:

“PossiblyDuplicateChange”. This state represents activities that check if the request is indeed a duplicate. If the change is

not confirmed as a duplicate it returns to state #2: “ChangeRegisteredAndAnalyzed”. If the change is confirmed as a

duplicate, it is declared a duplicate and enters the terminal state #15: “ClosedChangeDueToDuplication”.
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Figure 6. State transition system for the ICC process (part 1)

Figure 7. State transition system for the ICC process (part 2)
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Figure 8. Example of state transitions. Sequence for duplicate change.

Figures 6 and 7are the state transition system visualized as a Kripke structure. Without altering the state transition system

of the ICC process, we can “unweave” it using CTL, and this will facilitate declaring its desired properties in temporal logic.

In CTL there exists the idea of multiple possible futures. Multiple possible futures are the different possible states

realizable from a current state, which branch from the present time. For instance, suppose the change process is at the

present time in state #2 in Figure 8. From there, there are 7 different transitions, all of which could be taken; so the next

state from state #2 could be state #3, #4, #5, #6, #7 or #12. These alternatives can be represented as branches from state

#2 to these other states. Then, from state #3 there are two different possibilities, either to go back to state #2 or go to

state #15, so two branches are going out from state #3, and so on. Figure 9 shows the computation tree that is obtained

by unfolding the sequence of state transitions associated with the case of the duplicate change in Figure 8.

The properties stated using the CTL language refer to the unfolded computation tree, rather than the original Kripke

structure. There is a labeling function that attaches properties to states. We have introduced a collection of auxiliary

variables that will be useful for dealing with the formulation of properties.

A group of auxiliary variables refers to declarations concerning past states. Keeping track of past states is fundamental in

the practice of change control. For example: “Whenever a change is assigned (state #8), previously it has been registered

and analyzed (state # 2).” CTL by construction, however, solely permits users to define properties concerning present or

future events. For example: “In all possible executions from the present state, at some future point the property X will be

true.” So auxiliary variables are introduced to keep track of history. In this case the variable “RegisteredChangeRequest”

keeps track of passing through state #2. Other auxiliary variables remember global situations that we need to track, like

for instance “PostponedChange” or “InvalidChange”. Table 1 shows the relationship between the state variables and the

values they have in each of the states of the ICC process.

3.3. Express the ICC state transition system in the computational platform

Moving the ICC process from a state transition system to a coded model requires declaring the states with their variables

and transitions. Table 1 shows the entire ICC process with states in the rows and state variables in the columns.
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Figure 9. Computation tree for duplicate change shown in Fig 5.

The computational platform we used for implementing our CTL models is called NuSMV. NuSMV [Cimatti, 00] is a model-

checking tool for verifying CTL properties over automata. To do so, NuSMV explores systematically and exhaustively all

relevant execution paths in order to determine with certainty if a property is true or false. Even if some paths in the

execution tree are infinite, model checking is guaranteed to terminate. When a property is found not to hold, a

counterexample is presented as evidence. NuSMV provides ways for representing the Kripke structure using a

programming language, testing it interactively, and checking properties written in CTL and other temporal logic variants.

Thus, change control processes in project management can be formally modelled by starting with a visualization such as a

Kripke structure, creating a computation tree using CTL, and verifying the model with a tool such as NuSMV.

We used a global state variable that represents the current state in the automaton as a way to make direct references to
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states when validating model properties (see section 4). This variable is called “State” and takes the value of each state of

the model according to the following statement expressed in the specification language of NuSMV tool.

Table 1. States vs. state variables in the Integrated Change Control model

The declaration of the transitions shown in Figure 8 is done using an operator “next” as follows; the initial state is specified

with the operator “init”:
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The statement above is only part of the automaton. It represents the sequences of transitions associated with the case of

a duplicate change. The declaration of the entire automaton should consider all possible transitions from one state to all

next states that are considered in the model. In order to obtain a complete declaration, it is necessary to inspect each

state and declare all its possible transitions. Thus the change control process has been codified in programming

language.

We notice in the last line of the example code that expressions in NuSMV do not necessarily evaluate to a unique value

as a result. In general, the terms take a value in a non-deterministic way from a set of possible values.

The values adopted by state variables in each state can be expressed in the NuSMV tool. From the information about

states and state variables presented in Table 1, it is easy to declare the updating rules for state variables. A ‘1’ at the

intersection of a state and state variable in Table 1 is coded as ‘TRUE’ in NuSMV. So, for example, in the case of the

variable “AuthorizationForProcessingChange”, the specification that governs its value based on the current state is

declared as follows:

The NuSMV tool can randomly generate samples containing execution traces of submitted changes, simulating many

changes within the programmed model. These sample changes follow the programmed model as the written code allows.
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We simulated 120 changes to confirm that the programmed change control process model follows the behavior seen in

the state transition system. One-hundred twenty random changes were generated for the test, 112 of which reached one

of the final states within the maximum of 20 state transitions that we imposed; the other 8 changes would have required

more than 20 state transitions to reach a final state and therefore were truncated. On manual inspection, in all cases, the

sequences of the state transitions behaved following the ICC process state transition system (including the 8 cases that

required more than 20 state transitions, until truncation).

Of course, a finite number of runs does not give absolute surety of the correctness of the change control process, and this

is indeed one of the main reasons to carry formal proofs, rather than solely simulations, in the first place. Nevertheless, we

actually detected some flaws in the model by using this simulated checking. When we simulated changes based on an

earlier version of the ICC state transition model, we identified a case with an execution sequence of states including 6-7-

12 (see Figure 10). Now, it makes no sense that a pending change (state #6), receives authorization (state #7) and

subsequently the corresponding change request is rejected (state #12).

Figure 10. Invalid transition from state #7 to state #12 - before model correction.
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Not only did we find an error in the computer-programmed model, but we realized a deficiency in the state transition

model: there was not transition from state #6: “PendingChange” to state #12: “RejectedChangeRequest”. We determined

that the model should be adjusted so that the pending change (state #6) could receive additional information (and

transitioning to state #2), or be authorized (transitioning to state #7), or be rejected (transitioning state #12). So, we fixed

the coded model by eliminating the transition from state #7 to state #12, and we improved the state transition system by

adding the transition from state #6 to #12 associated to the activation of the variable “InvalidChange”, which was then also

reflected in the computer model. This is shown in Figure 11.

In the following section, we are going to present the two last steps in our method: expressing key properties in CTL using

the NuSMV language and finally validating those key properties or disproving them.

Figure 11. Model corrected by adding transition from state #6 to state #12 and removing transition from state #7 to state #12.

4. Results: Specification and experimental verification of key properties

After coding the change control process, we arrive at the point where we can declare the key properties that the process

must satisfy. In our experience, CTL temporal logic proved to be very adequate for representing and testing the kind of

properties that we wanted the process to have. In the NuSMV tool [Cimatti, 00], properties are declared using the

keyword “SPEC” followed by a CTL formula, as we will see in the examples in this section.
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4.1. Reachability properties

A property that is checked in many systems is the reachability of final states. This is important because if a final state is

not reachable from the initial or other states through transitions in the automaton, the final state becomes irrelevant. In our

model, we seek to validate that, from the initial state, we could arrive to a state where improvements have been approved

and the ticket is closed. Taking our model with the states listed in Table 1, one final state is state #20:

“ClosedChangeReleasedWithProcessImprovements”. We must ensure that it is indeed possible to get to state #20 from

the initial state and possibly from other states as well. The following specification declares the possibility of getting to final

state #20 from the initial state:

That is, if we are currently in state #1, then there is a path that in the future leads to state #20. Indeed, this property was

successfully verified in NuSMV. Needless to say, in our small model this could be verified by hand, but in a model with

thousands of states the task is far from trivial.

4.2. Prerequisite properties

One set of properties that we are going to verify refers to prerequisites that are supposed to have been fulfilled when we

arrive at a certain point in the process. We are now trying to validate that, in all possible configurations, every change

assigned for implementation should previously be registered and authorized. In terms of our states, this means that we

want to be sure that whenever we arrive at state #8, we have already been in states #1, #2 and #7, and possibly state #6

as well.

One difficulty for specifying a property like this, as we have commented before, is that CTL can state properties of present

and future states in the system, not past states. We solved this problem by introducing some “history markers,” logical

variables that are set to true when the event we want to remember happens. When a state we want to remember is

reached, we set a corresponding variable to true, for instance the variable “ItHasGoneThroughState2”. As the process

evolves through the transitions, we keep track of the corresponding changes in the history marker variables, using both

“init” and “next” operators in the NuSMV tool.

Take for instance the property: “All change requests should always be recorded and previously authorized in order to be

allocated for implementation.” To verify this property, we first translate it to the corresponding states and history markers.

Taking state #8: “AssignedChange” as the current state, we can see this state is a future state from prerequisite states

such as #1, #2, #6 and #7. Thus, the possible state transitions to reach state #8, are the following: 1-2-7 and 1-2-6-7. The

specification requiring state #8 to have these possible prerequisites is coded as follows, and has been proven true by the
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NuSMV tool.

4.3. Definitiveness properties

Another set of properties establishes that negative resolutions are definitive, for instance in the case that “Invalid change”

has been decided. Whenever a request for an optional change turns the project unfeasible, the Change Control Board

should reject the change request and not assign it for processing. In other words, an optional change request cannot be

assigned if it turns the project unfeasible, and therefore the change request should be rejected. We want to declare that

after an optional change is judged invalid because it turns the project unfeasible, there is no way in the process that the

declaration of “Invalid change” could be overturned.

This property can be expressed by means of the state variable “MandatoryChange” (if the state variable

“MandatoryChange” is false, then the change is optional) and the state variable “UnfeasibilityOfProject” (if this variable is

true, then the change turns the project unfeasible. In the combination of an optional change and an unfeasible project the

change request is considered invalid (the variable “InvalidChange” is set true) and it is not possible to set true the other

state variables “AuthorizationForProcessingChange” and “AllocationOfResponsibilities_SchedulingActivities”. The coded

specification states that under these circumstances, it is only possible to reach the state #12: “RejectedChangeRequest”,

and impossible to reach state #8: “AssignedChange”. Since these actions must always be carried out when the situation

described occurs, the CTL AG operator is used.

The specification of this property is then stated as follows:

An important remark about the expression of a property like this is that the “informal” formulation could be ambiguous.

“Negative resolutions are definitive” can be interpreted differently according to one’s tolerance for negativity and level of

authority. On the contrary, once the specification formula is stated in a formal model, its meaning is precise and

completely unambiguous.

4.4. Mutual exclusion
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Another interesting property is mutual exclusivity. Figure 12 shows three mutually exclusive paths that can follow from

state #11: “VerifiedChange”. Only one of the following three situations may occur (mutually exclusive):

The Change Control Board accepts the change for release and updates subsidiary plans, the comprehensive plan, or

associate baselines (state #14 “ReleasedChange”).

The Change Control Board identifies failures in release tests and the change moves to state #10:

“FailedTestsOfChange”.

The Change Control Board refuses to release the implementation of the change and decides to reject it and close the

case (state #13: “RejectedChangeImplementation”).

This property can be represented by two equivalent specifications expressed in CTL:

One solution uses the variables associated with the model states: the current state is “State_11_VerifiedChange” and

immediately the next state may be “State_14_ReleasedChange”, “State_10_FailedTestsOfChange”, or

“State_13_RejectedChangeImplementation”.

Figure 12. Example of mutually exclusive states and transitions.

The other solution uses the state variables associated with the possible paths that lead from the initial state
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(State_1_IdentifiedNeedForChange) to the current state (State_11_VerifiedChange).

In both cases, a mutually exclusive relationship exists between states immediately following the current state

(State_11_VerifiedChange); this is expressed using the AX operator, which gives the idea of a mandatory situation.

This specification is stated as follows; it has been proved true by the NuSMV tool:

4.5. Cycles

Yet another set of properties refers to the case of cyclic sequences of state transitions. For instance, it should be true for

all situations where a test fails, that a correcting cycle leads to new tests and eventually to approval. In the state model,

we have the cycles involving states #9 and #10 as shown in Figure 13.
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Figure 13. Example of property associated to cyclic paths

The example shows the case of transitions between state #9: “ImplementedChange” and state #10:

“FailedTestsOfChange”. When testing failures occur (TestFailures), a transition from state #9 to #10 is triggered, and once

the adjustments for the change implementation are performed and no test failures occur (!TestFailures), the change being

processed returns to state #9. In this case, the variable "TestFailures" changes from true to false indefinitely. This can be

graphically observed by unfolding the cycle between state #9 and state #10 in a computation tree as shown in Figure 14.
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Figure 14. Computation tree for a cyclic path (states #9 and #10)

The specification of this property is then stated as follows:

This formula states that there is a way, after leaving state #9 for state #10, to go back to state #9 in the following step. As

a result of a NuSMV run, this property has been proven true.

4.6. False properties and counterexamples

The NuSMV model checking tool is able to navigate the model in its entirety and check for compliance with all of our

desired specifications. During verification of the model, the automated tool will indicate whether each property is true, or it

will generate a counterexample for each property that did not comply.
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The following example will show how NuSMV generates counterexamples to show the violation of a desired property, and

how this allows the process to be corrected. It will be shown that counterexamples identify root causes of these problems

and therefore help process designers correct their processes.

Consider a process designer writing a specification for the mutually exclusive paths that follow state #11:

“VerifiedChange”. State #11 is associated with a set of state variables. This set of variables is listed in row 11 of Table 1.

Five variables are TRUE in state #11: “RegisteredChangeRequest”, “AuthorizationForProcessingChange”,

“AllocationOfResponsibilities_SchedulingActivities”, “CompletedActivities”, and “SuccessfulTests”. The process designer

writes a specification using these variables from state #11, such that when this profile of variables is satisfied, one of three

mutually exclusive states must follow: state #13, #14, or #10.

Next the process designer adds the CTL operator AG to the beginning of the specification. Using AG requires that in

every instance when the five specified variables are satisfied, the process must continue to one of the three states #10,

#13, or #14. When running the NuSMV tool with this new specification, the following results are obtained:
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Adding the AG operator creates an error. The reason is that the same set of five true variables used to identify state #11

is also associated with other states, but the outcome of state #11 is not an appropriate outcome for these other states.

Specifically, the counterexample shows the states #14 and #20. Reviewing the state variables considered in the

specification, it is clear that each variable with value true in state #11 is also true in state #14. The specification, as it is

written above, confuses state #14 for state #11 and requires that a change move from state #14 to either state #10, #13,

or #14, but these are not viable transitions from state #14, and therefore the NuSMV tool produces state #14 as a

counterexample to the above specification. A similar error happens in state #20. To correct the specification, we must be

able to distinguish state #11 from #14. A variable that makes the difference between states #11 and #14 has not been

considered. The variable “FinalAcceptanceOfChange” in state #11 has the value false, while in state #14 it has the value
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true. Hence, the specification should be corrected by including the variable “FinalAcceptanceOfChange” with value false

as indicated in state #11. The specification is corrected as follows:

The corrected expression was successfully verified by the NuSMV tool. With this example it has been shown that when

finding counterexamples (which means that the coded model does not comply with the desired properties), it is possible to

identify the root causes of problems and to proceed to correct erroneous specifications in the model. These erroneous

specifications in the model may reflect errors in the change control process, and thereby the formal model verification

process can verify if a project management change control process is well designed.

5. Discussion and conclusions

This paper presents a methodology for formally verifying properties of a change control process. Starting from a process

diagram, following the PMI’s ICC guidelines, we express it as a state transition diagram, which is then encoded with CTL

in the NuSMV formal modelling tool. Then, key properties of the ICC process should be expressed with CTL in the

NuSMV tool. When verified with the NuSMV tool, the properties were either declared correct with complete assurance or

counterexamples were presented. Thus, once proved, we can be confident that the programmed specifications hold the

properties that the process is desired to have, avoiding the risks of getting a process with errors or failures. We consider

that the results of automated tests done in NuSMV demonstrate a way to verify crucial properties in IT processes, at least

according to the experience of one of the authors at the IT normativity office that he holds.

The contribution of this paper is the proposal of a methodology that applies temporal logic, and more specifically CTL and

NuSMV to make a formal verification of a change control process, represented as a state automaton model. To the best of

our knowledge, this has not been done before. Further, this model was programmed in the NuSMV to automatically verify

desirable properties of effective process, such as reachability, liveness, compliance with prerequisites, among others.

The process tested here is based on the framework of the Project Management Institute’s Project Management Body of

Knowledge [PMI, 17]. In the review of literature sources, no similar works were found applying this technique to process

change models based on the PMI or a related framework. We conclude that formal modeling of change control processes

makes it possible to prove if a change control process has or does not have some desired properties. The Integrated

Change Control model considered in this paper is a simple one that expresses a change control process for projects

according to the PMI’s PMBOK concepts, and it is complemented by the activities considered by the Construction Industry

Institute. This is a limited model as it does not handle simultaneous changes or non-independent changes. Therefore, the

model would not be able to identify possible relationships or dependencies between simultaneous changes. Another

Qeios, CC-BY 4.0   ·   Article, August 16, 2023

Qeios ID: KD99XX   ·   https://doi.org/10.32388/KD99XX 26/28



limitation is that the model does not include bounds on repetitive sequence cycles (e.g. cycles between state #9:

“ImplementedChange” and state #10: “FailedTestsOfChange”), so the model would not be adequate for handling cases

that exceed a reasonable number of cycle repetitions. Further, the model proposed in this paper does not consider

changes with varying levels of urgency.

5.1. Future Work

Improvements or additions to be considered in future work would tend to overcome the limitations described above. Also,

concerning the actual deployment of the presented method in actual businesses, we think it is not just a matter of getting

permission; indeed, the change control process modeled here should be implemented in software, which is, of course, a

major endeavor. As presented, this work is just a proof-of-concept, and in order to be widely applicable, we would have to

adapt the method to a wide range of applications, as well as develop software for providing automated support for the

method application.
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