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In this article, I propose a model that gives a ‘Not really’ answer to the question in the title: At any
epoch of the universe, to an arbitrary local observer living well below the scale of Hubble horizon, the
observational universe appears to be accelerated expanding. In other words, the anthropic principle
might be unnecessary for the dark energy universe ‘coincidence’. In this article, the negative pressure
energy density results from the variance of relative acceleration of the patches of the observational
universe, thus the not perfectly uniform flow of time. I will show how such a story is qualitatively
compatible with the CMB and low-redshift observations on the expansion history of our universe,
while providing intriguing implications to be tested against the recently puzzling high-redshift AGNs
and galaxies observations.

I. INTRODUCTION

When asked why we happen to be living in an epoch
of the universe where the negative pressure dark energy
is taking the majority, ∼ 70% of the cosmic fluid, the
answer is usually the anthropic principle [1], i.e. a civi-
lized observer needs to be born in an environment where
the dense structure of the universe is diluted by dark en-
ergy. However, many find this explanation not satisfying
enough, for its arbitrariness and lack of further implica-
tions. In this article, I will provide an alternative solution
to this question, which appears to be less human-centric,
and point to observational implications that can be used
to test this proposal.

The article is organized as follows. In section II, I will
reexplain Einstein equation as a conservation law of the
4D spacetime volume, in which case naturally incorpo-
rates a positive cosmological ‘constant’ term. In section
III, I try to connect the obtained negative pressure term
to the observational dark energy in cosmology. In section
IV, I will point out some intriguing implications of the
theory that can be tested against high-redshift observa-
tions that are collecting surging input data right now.

I will use (−+++) signature in this article.

II. EINSTEIN EQUATION WITH POSITIVE
COSMOLOGICAL CONSTANT

In the original Einstein’s equation Λ was an extra term
added with no good explanation within classical general
relativity and thus has no prediction on its value 1. Here
I try to give an alternative explanation of the Einstein
equation that naturally suggests the presence of such a
negative pressure term and being always positive energy.

∗ Email: anqi.chen@ipmu.jp
1 QFT vacuum energy provides a prediction, though it is off by ∼
100 orders of magnitudes.

An overview of the story is as follows: I will show how
Einstein equation can be explained as a differential ver-
sion of the 4D spacetime volume conservation law. Such
conservation law is applied to the flow along a family
of time-like curves, namely a congruence, on a subman-
ifold that we are concerned about, for example, a patch
of the observational universe. The time-like congruence
we consider here is not necessarily an affine parametrized
geodesics, and it is the general case in the physical world.
Relatively accelerated motions between patches of the
universe naturally exist, for example, galaxies or clusters
of galaxies colliding on each other, and the congruence
formed by 4D locally hyperbolic time-like curves is not
exotic to discuss . The rescaling of time is not always
available globally on a hypersurface in the cosmology
scenario, where we have an equal-time slice of the uni-
verse that accommodates many relatively acceleratedly
moving patches/groups of masses. As we have learned
from the standard general relativity, the non-vanishing
relative acceleration between two observers leads to the
non-uniform flow speed of their proper time. When com-
bined with the 4D volume conservation condition as men-
tioned at the beginning, such macroscopic non-uniform
flow speed of time between patches on a hypersurface re-
sults in a negative pressure term present in the Einstein’s
equation.
One important but somewhat implicit proposition in

the proposed theory in this article is that I gave spacetime
manifold physical entity, that it is a continuum medium
with fluxes and conserved volume of dimension-4. I illus-
trate a time-like congruence of 4D spacetime with com-
pactified dimension in figure 1.
Let the spacetime manifold be M and U ⊂ M be

open. Through each point p ∈ U there passes precisely
one time-like curve 2, and such a family of curves I call a

2 I am not considering the black hole defects on U here, and assume
their effect is subdominant given the abundance of the black
holes. PBH as DM is another story that could be discussed in
another work.
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FIG. 1. An illustration of time-like congruence. A 4D cylinder
confined by red and blue hyperfurfaces λ away from each other
has volume U = V λ, and the discussion in section II is focused
on how the evolution along a congruence vary this 4D volume
δU = V δλ+ λδV .

congruence in U . Let the normalized tangent vector field
of the congruence in U be ξa.
Consider a bounded U by two hypersurfaces λ away

from each other along the time-like curves and 2D bound-
aries on hypersurfaces, thus I have a finite 4D volume U
cylinder. I can decompose the 4-D volume into the 3-D
volume of the hypersurface orthogonal to ξa, V , times
the range of U along the congruence, λ, i.e. U = V λ.
Such orthogonal choice of hypersurface is not a con-

dition with physical significance, only for the simplicity
of calculating 4D volume variance. Frobenius’ theorem
gives the sufficient and necessary condition allowing this
choice, which I will mention in the following derivation.
The metric on U is still an undetermined variable, and
Einstein’s equation is to be derived from here.

Denote the variation from the motion along the con-
gruence as δ. The 4-D volume variation of U is thus

δU = λδV + V δλ. (1)

Proposition: Let us enforce the conservation of
4-D spacetime volume along time-like congruence
by:

δU + δQ = 0, (2)

where δQ is the in/out-flow of the 4-D volume current
along the congruence:

δQ = T abξaξbV λδτ (3)

I have not made any statement of Tab at this point, just
noting that such tensor expression of flows in a continuum
fluid is in general legal. The anatomy of the first term of
equation (2) lies in the core of the derivation of Einstein’s
equation with cosmological constant.

I can denote the normalized basis vector fields on the
hypersurface Σ orthogonal to ξa as ηa. As they can be

chosen to form a set of coordinate vectors of U , they
commute in derivatives:

ηa∇aξb = ξa∇aηb (4)

ξb∇b is exactly the variation along the time-like congru-
ence δ

δτ that I concern about in the problem.
Thus the tensor Bab = ∇aξb describes the failure of ηb

and ξa being parallelly transported along the congruence.
In a addition, the failure of ξa’s trivial transportation
should not be ignored like one conventionally does, for
the following reason.
In the case that ξa does get trivially transported along

the congruence, we have ξa∇aξb = 0, namely the time-
like congruence is generated by geodesics. We learned in
the textbook that such geodesics congruence is the only
type that we need to study because ξa∇aξb = αξb can
always be regulated to ξa∇aξb = 0 by reparametrizing τ .
It is a mathematically correct but often disobeyed state-
ment in the physical world. Astrophysical objects’ mo-
tion often deviates from background geodesics 3, because
of the accelerations from non-gravitational forces and/or
initial conditions. The recalibration of proper time is not
always possible when we consider two relatively acceler-
atedly moving groups in a problem, where we can only
choose one time-flow to be the benchmark. For all of
those reasons, it is reasonable, if not, by no means mis-
taken to study the more general case of ξa∇aξb = αξb,
where α = 0 is always a special case.
I decompose Bab into time-like, spacial-trace, spacial-

traceless symmetric and antisymmetric parts:

Bab = −αξaξb +
1

3
θhab + σab + ωab (5)

where hab = gab+ξaξb is the spacial metric, characterized
by habξa = 0 for time-like normalized ξa.
According to Frobenius’s theorem[2], the antisymmet-

ric term ωab = 0 is the necessary and sufficient condition
of ξa being hypersurface orthogonal, so let this term van-
ish.

Let us look into the evolution of Bab along the congru-
ence [2].

ξc∇cBab = ξc∇c∇aξb (6)

= ξc∇a∇cξb +Rcab
dξcξd (7)

= ∇a(ξ
c∇cξb)− (∇aξ

c)(∇cξb) +Rcab
dξcξd

(8)

= ξb∇aα+ αBab −Ba
cBcb +Rcab

dξcξd (9)

3 In some literature geodesics is referred to curves with tangent
vectors obeying ξa∇aξb = αξb. Here to make them distin-
guished we refer geodesics, affine-parametrized curves, only to
those ξa∇aξb = 0.



3

Contracting equation (6, 9) with hab, I can get the
famous Raychaudhuri’s equation:

ξa∇aθ = αθ − 1

3
θ2 − σabσab −Rabξ

aξb +Rcabdξ
cξdξaξb

(10)
Because Rcabd has antisymmetry, the last term goes to
zero.

Contracting equation (6) with ξaξb,

ξaξbξc∇c∇aξb = −ξaξc(∇cξ
b)(∇aξb) = −ξaξcBc

bBab

(11)

which cancels the B2 term in equation (9), thus

ξaξbξb∇aα = −αBabξ
aξb (12)

ξa∇aα = −α2 (13)

Equation (10) and (13) are purely geometrical iden-
tities, and they give us information on δV = δθV and
δλ = δαλ that I can substitute back to equation (2).

δα = −α2δτ is easy to see from equation (13]) For δθ,
the first term on the right-hand side of equation (10) gives
an exponentially diverging or decaying mode. Dropping
the second-order terms, I get:

δθ = −Rabξ
aξbδτ (14)

Substituting those back to equation (2), I get:

−λV Rabξ
aξbδτ − λV α2δτ + T abξaξbV λδτ = 0 (15)

Noting −1 = gabξaξb, for arbitrary ξa that is time-like
but not necessarily geodesic, I have

T ab = Rab − α2gab (16)

It looks like the Einstein equation that we are famil-
iar with, but not exactly. I have made no statement
about the spacetime medium current tensor T ab by far,
and it needs a little bit of dressing to be connected to
the energy-momentum tensor. According to the Bianchi
identity, T ab is not conserved on U :

∇aT
a
b = ∇aR

a
b − 2α∇bα (17)

= ∇bR− 2α∇bα (18)

define T̃ ab = T ab − 1
2Tg

ab, I get

Rab − 1

2
Rgab + α2gab = T̃ ab (19)

Now it seems that T̃ ab is the conserved energy-
momentum tensor that we are familiar with to describe
our cosmic fluid excluding dark energy. Its dual T ab =
T̃ ab− 1

2 T̃ g
ab is the spacetime volume current tensor that

I introduced before.
The derivation here is much motivated by the thermo-

dynamics explanation of the Einstein’s equation by Ted
Jacobson [3]. Instead of looking into the black hole case

where one of the space dimensions is highly compressed,
here the subjects are the less-special, well-behaved 4D
spacetime submanifolds, and the conservation of energy
dQ = TdS in [3] is substituted by the conservation of
4D volume proposition dU + dQ = 0. The fundamental
arguments are quite the same, that the Einstein’s equa-
tion is describing how the spacetime distortion is driven
by the flow of thermal energy/4D volume current tensor,
under the constraint of energy/volume being a conserva-
tion law.
Back to equation (19), the first desirable feature we

can see is that the cosmological ‘constant’ Λ = α(τ)2

is always positive. In the theory here, negative pressure
dark energy comes from the patch-wise non-uniform time
flow.
The integral of equation (13) tells us α ∼ 1

τ , namely
after long-enough time the congruence saturates to
geodesics one in any case. On the other hand, if we regard
the integrated τ as the lifetime of a patch of observational
universe, the above relationship suggests

√
Λ = |α| ∼ 1

τ
always holds, just like what we have found out about our
own observational universe.

III. COSMOLOGICAL EFFECT

Now that I have Einstein’s equation with a positive
cosmological constant, I want to see if I can connect it
with the observational ‘dark energy’.
In the observational cosmology field, dark energy has

been a placeholder for the unexplained fact that we see
the universe accelerated expanding around us. The as-
trophysical objects at distances far enough to be in the
‘Hubble flow’ run away from us with increasing velocity.
Such accelerated expansion reality is fairly homogeneous,
and the negative pressure portion of the energy density
of the cosmic fluid has an equation of state very close to
w ≡ p

ρ ∼ −1 [4–6]. Those are about the uncontroversial

part of what we know of the observational dark energy
so far.
Dark energy has no observed perturbative effects so

far, most of the time it is only discussed on the back-
ground level, in Friedmann equations. I will focus on the
background cosmology in this article.
Let us denote the average over position in the celestial

as x̄ and the expectation value over the full phase space
as ⟨x⟩. The two Friedmann’s equations are the time and
space components of

Rab − 1

2
Rgab + ⟨ᾱ2⟩gab = ⟨ ¯̃T ⟩ab (20)

⟨ᾱ⟩’s calibration to zero is hidden in the intuitive pres-
sumption that our whole observational universe is ‘free-
falling’, namely evolving in shortest path along the time
direction that we choose as an observer. Hence the cos-
mological constant that we observe in the astrophysical
surveys is the variance of time-flow in the whole obser-
vational volume, σ2(ᾱ).
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Now the mystery is the incredibly stable scaling of
σ2(ᾱ) with the scale factor a and its homogeneity. Here
I do not serve an ultimate solution to the homogeneous
principle of the universe, but qualitatively provide an ar-
gument attaching those feature of the dark energy density
to the matter density.

The argument is that since the time-flow non-
uniformity is caused by relative acceleration motion,
and the forces are mainly caused by matter in the re-
cently matter-dominated universe, I deduce σ2(α) ∼ ρm,
namely, the variance of time-flow non-uniformity is the
same order of magnitude as matter density in a matter
dominated universe.

This assumption gives the right units and respects
the linear order approximation I adopted earlier in Ray-
chaudhuri’s equation. Denoting the order one propor-
tional parameter as dF , we have

Λ = σ2(α) ≈ dF ρm (21)

In our local universe with ΩΛ = 0.7, dF ≈ 2.4. The
dimension analysis in natural unit suggests such a lin-
ear relationship and that dF is dimensionless, and the
dF notation is taken from the fractal dimension of the
Poission-like distribution of the matter in our universe
[7], which has a measured value of 2.4. However, failing
to come up with a detailed argument justifying the frac-
tal dimension being THE dimensionless parameter here,
I will not conclude it to be just a number game or an
implication of a deeper connection 4.
In either case, given equation (21), we have the rela-

tionship between matter density and the variance of the
timeflow on a causally connected patch. Matter distribu-
tion beyond Hubble horizon does not act any forces on a
group, so when considering the homogeneous isotropic
universe beyond Hubble horizon, local matter density
alone does not provide the whole story.

As shown in figure 2, on the shell of χ(a) away from
us, there are number of N = Vshell/VHubble patches that
follow the same distribution of α in their local Hubble
volume, given the homogeneous distribution of the mat-
ter field. Hence the variance σ2(ᾱ) is suppressed by 1/N .
In the regime of χ(a) >> 1/H(a) where the above ap-
proximations applies, we have:

Λ(a) ≡ σ2(ᾱ) ≈ σ2(α)

N
(22)

≈ dF ρm(a)

Vshell(χ(a))/VHubble(a)
(23)

=
dF ρ

0
ma−3

4πχ2λH/(4π/3λ3
H)

(24)

=
dF ρ

0
ma−3

3χ2/λ2
H

(25)

4 An even more intriguing number game could be that the fraction
Ωb : Ωm : ΩΛ is well captured by 1 : d2F : d3F .

FIG. 2. All the currently observable galaxies around certain
redshift, say z ∼ 6, reside on a shell χ away from us. The
Hubble horizon λH = 1/H at that epoch (in our chronicle) is
much smaller than us, thus such a shell accommodates many
Hubble bubbles.

We can solve for the evolution of dark energy density
by taking derivative of the integral equation (25) up to
N = χ/λH = 10, corresponding to a = 0.2 thus redshift z

= 4 in a universe with ΩΛ = 0.7. DenotingX(a) = ΩΛ(a)
ΩΛ

,

from equation (25) we get

X ′(a) = 2
√
3
X3/2(a)

a1/2
− 3

X(a)

a
− 2E′(a)E−1(a)X(a)

(26)

where E(a) = H(a)/H0 =
√

ΩΛ(a) + Ωma−3, and we

used the relationships χ =
∫ 1

a
1

a′2H(a)da
′ and λH = 1/H.

On the other hand, in the regime χ(a) << λH , roughly
z < 0.1, Λ(a) in our Hubble volume is expected to
saturate as in equation (21). The intermediate regime
0.1 < z < 4.0 needs more dedicated modeling, which we
leave for future work.
Figure 3 shows the density of dark energy evolution

in the far field z > 4 by solving the ordinary differential
equation (26). Reassuringly, it is not scaling up as a−3

with the matter density, instead decreasing to a smaller
platform, thus agreeing with the observation that the
dark energy was subdominant in the early universe. The
decreasing rate varies with the initial guess of Λ(ap), but
the trend stays stable with reasonable trial values that
confine X(ap) between 0 and 1. In a sentence, it seems
regardless of the initial/boundary fraction of dark energy
at far-field redshift ap, a general case is that the 1/N sup-
pression dominates thus diluting dark energy out when
we look out toward smaller scale factor a.
Although for convenience, I have been using the terms

dark energy and σ2(ᾱ) inter-changeably, but α2gab term
in equation (19) is not an energy-momentum tensor and
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FIG. 3. Dark energy density, or the variance of time-flow
σ2(ᾱ) as a function of scale factor a. In the regime where
far-field approximation holds, χ >> λH , dark energy density
is suppressed by 1/N factor towards high redshift, as required
by the CMB observation.

might not be able to be investigated by the currently
available Boltzmann codes, especially on perturbative
level, if it ever proves relevant in the future. There are
two straightforward reasons. First, this tensor does not
conserve. ∇a⟨ᾱ2⟩ = 2⟨ᾱ∇aᾱ⟩ only effectively vanishes
when ⟨ᾱ⟩ = 0, calibration of time-flow is chosen for cer-
tain hypersurface. Secondly, when regarding ⟨ᾱ2⟩gab as
an energy-momentum tensor, it always has an equation
of state −1, even though ⟨ᾱ⟩ could vary when course-
grained on different scales. The theory and the corre-
sponding derivation suggests that α only enters Einstein’s
equation as a coefficient in front of the metric gab, thus
only affecting the spacetime in the way of scaling the
whole metric instead of distorting the spacetime with
Weyl or Newtonian potential.

IV. DISCUSSIONS

One counter-intuitive but very intriguing implication
of σ2(ᾱ) as dark energy is that, our observational uni-
verse that is acceleratedly expanding is not special. An-
thropic principle is not needed in this picture, because
at any redshift, an observer living well below the Hub-
ble horizon scale would see an acceleratedly expanding
universe around them. Inside a smaller (to us) Hubble
horizon bubble at higher redshift, always resides another
acceleratedly expanding universe, and when the residents
in that Hubble bubble look outwards in a universe cen-
tered on themselves, they would see a similar expansion
history of the universe as us. An absolute chronicle of the
universe since ‘The Big Bang’ loses its meaning in this
picture, when looking far enough every observer reaches
their own ‘Big Bangs’, the scale factor is in the place of
time for any local (below Hubble size) observer. Namely,
forward-time might be a concept as trivial as downward-
direction of the universe, and the whole universe could be

seen as a series of indefinitely unfolding self-similar struc-
tures at hierarchical scales, pivot at the observer’s scale
when a chronicle story needs to be told. Our chronicle of
the universe is only one among many observer-dependent
ones.

An important consequence is that the lifetime of the
observational universe for a civilization living in a galaxy
at, say z = 6, could be longer than 1Gyr as calculated
from our origin of the time, when calculated in an ac-
celeratedly expanding universe around them. The differ-
ence in the universe histories viewed by different redshift
observers echoes a fact that we already knew since the
birth of general relativity, that the history of our universe
may not exactly be what we try to construct by tracing
back to higher redshift galaxies. Those high-z observ-
able patches are light-like connected to us, not time-like,
thus strictly speaking none of those high-redshift galax-
ies and black holes we can see at this moment will evolve
into the local objects seen around us, on the (roughly,
cosmology-scale) same equal-time space-hypersurface, a
more formal expression of the phrase ‘in our epoch’.

A longer proper universe lifetime gives longer accretion
time for those high-redshift supermassive black holes,
whose overabundance and overweight have been a con-
cerning confusion in recent high redshift observations
[8]. The discovery of many > 109M⊙ supermassive
black holes (SMBH) above redshift z > 6 forcing astro-
physicists to look for exotic mechanisms to allow super-
Eddington accretion of the black holes, where Eddington
limit is the accretion rate at which the radiation pressure
force cancels the gravity. Even with a relatively heavy
black hole seed ∼ 100M⊙, the Eddington limit accretion
needs at least ∼ 0.8 Gyr to form a SMBH ∼ 109M⊙, and
the universe lifetime at redshift 6 based on Big Bang
theory is just about enough. Many cosmological ap-
proaches to the problem rearrange the expansion history
of ΛCDM; However, in the picture proposed by this arti-
cle, an observer-dependent origin thus the lifetime of the
universe could be an alternative cure. With the presence
of effective ‘dark energy’ in a Hubble volume bubble, the
proper universe lifetime to a high-redshift observer is al-
ways dragged longer, and the same effect applies to any
localized physical processes.

In the same logic, astrophysicists might find some of
the high redshift galaxies behave older than theory pre-
dictions. In recent and upcoming high-redshift astro-
physical surveys like JWST [9, 10], those kinds of puz-
zling early-universe but highly-evolved galaxies have al-
ready been found, with arguably indecisive detection ev-
idences. Although now still troubled by systematics and
selection effects, those high-redshift galaxy properties, es-
pecially the charts on their ages, will be crucial to test
the implications pointed out in this article.
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