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Abstract

Disruption – the holy grail of the hi-tech industry – is actively sought by academic institutes, research funds and

governments wishing to promote science and monetize its fruits. Nonetheless, there is no methodological framework for

disrupting science. Studies seeking this framework focus on Scientific conduct without integrating the vast hi-tech

disruption methodologies and experience. To cross this barrier, we developed a new Disruption Index (DI), enabling

cross-analyses between hi-tech and science for the first time. The two fields show similar disruption patterns. However,

data show that while hi-tech quickly identifies and harnesses innovation advancements, science lags in both and is

highly affected by exogenous shifts. Decision-makers can leverage the framework suggested here to assimilate the hi-

tech disruption mindset in science.
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1. Introduction

Incremental Progression (InP) is the fundamental scientific methodology pushing humanity forward from one discovery

to the next. It guides the perception of scientists of all levels and disciplines to evolve step by step, ensures continuous

activity and gradual progress. This systematic mechanism is highly effective within a defined context, or paradigm, when

low-hanging fruits are discovered one after the other. Its effectiveness placed the InP in the scientific comfort zone.

However, InP also tunnels scientists to delve into niches where they become experts while narrowing their scope of

thinking. Higher-hanging fruits, such as complex phenomena exceeding one's specialty (e.g., climate change multi-effect),

became more challenging to study and explain. As a result, some scientific disciplines reached stagnation and scientific

research is much less effective (Collison and Nielsen, 2018; Park et al., 2023).

The hi-tech world, especially technological startups and venture-capital funds, understands the high alternative cost of

such stagnation – loss occurring by not trying other, less obvious, directions. They, therefore, proactively pursue

innovation that will shake existing knowledge and create new realities. This pursuit is expressed by investing in paths that

will hopefully lead to Disruptions (i.e., breakthroughs), jumpstarting the entire market, and initiating a swarm of

consecutive investments. Notable examples of technological disruptions are the Internet, smartphones, and most recently

Generative AI, which affect various aspects of our lives.

Many governments and funding agencies acknowledged scientific stagnation as a strategic threat to economic growth.

They invest in scientific research, despite its plummeting effectiveness (Bloom et al., 2020). These bodies understand the

importance of disruptive factors, and thus seek ways to increase innovation (Ip) and invest in high-risk, high-gain projects

(e.g., the European Research Council funding schemes, https://erc.europa.eu/). The investments highlight directions

believed to produce breakthroughs, or in other words, disrupt science. However, breakthroughs are only proven (or not) in

hindsight since disruptive thinking is yet to be structured and understood.

Our research hypothesis claims that while InP is ingrained in the modus operandi of most scientific and industrial

paradigms, disruptive thinking, which jumpstarts these fields from one phase to another, remains untaught, serendipitous,

and yet highly desirable. Previous studies aiming to define the dynamics of scientific breakthroughs analyzed the effect of

research team sizes, the numbers and impact of citations and patents, the depletion of low-hanging fruit and the de-focus

of scientific incentives, among other directions (Collison and Nielsen, 2018; Wu et al., 2019; Bhattacharya and Packalen,

2020; Bloom et al., 2020; Bhaskar, 2021; Bornmann et al., 2020a; Bornmann et al., 2020b; Min et al., 2021; Xu et al.,

2022; Park et al., 2023; Shepherd, 2023). Since these studies focus on scientific conduct, they do not enable a

comparison between hi-tech and science. To cross this barrier, we define a new Disruption Index (DI) and apply it to

both fields, while analyzing similarity in disruption patterns (see next section for explanations). The new index and

terminology will make disruptive thinking part of the scientific toolbox rather than a serendipitous surprise, thereby helping

to accelerate the progress of both science and hi-tech.
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2. Data and methods

2.1. Data sources

The hi-tech dataset was extracted from Crunchbase Data (data.crunchbase.com; Table 1). It refers to all types of funding

rounds of hi-tech companies between 1991-2020 in: Cloud Storage, Mobile Apps, Quantum Computing, Artificial

Intelligence, Big Data, Virtual Reality, Blockchain, Cryptocurrency, E-Learning, 3D Printing, Internet Of Things, SEO,

Social Media, InsurTech, and Mobile Advertising. The remote-science dataset was derived from the Web of Science

online databases (webofscience.com; Table 2). It includes the top 10,000 cited papers between 1984-2020 in

Geosciences, Economics, Psychology, Mathematics, and Statistics. The tech-science dataset was derived from Google

Scholar (scholar.google.com; Table 3). It represents the yearly number of peer-reviewed papers published between 1991-

2020 in the Quantum Computing and Artificial Intelligence research disciplines. Given their relatively young age, these

disciplines cannot be examined according to the number of citations for each paper, as we do with remote-science.

(a) Cloud Storage Mobile Apps Quantum computing

Year $M NI DI DP $M NI DI DP $M NI DI DP

1991 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0

1993 0 0 0 0 NA 1 0.01 0 0 0 0 0

1994 0 0 0 0 0 0 0 0 0 0 0 0

1995 0 0 0 0 0 0 0 0 0 0 0 0

1996 0 0 0 0 10 1 0.01 0 0 0 0 0

1997 0 0 0 0 NA 2 0.02 0 0 0 0 0

1998 0 0 0 0 0.1 1 0.01 0 0 0 0 0

1999 11.8 1 0.25 0.23 38.1 4 0.04 0 0 0 0 0

2000 63.1 8 1.98 0.46 220.6 19 0.20 0.12 0 0 0 0

2001 45.4 3 0.74 0.68 135.1 13 0.14 0.25 0 0 0 0

2002 18 3 0.74 0.91 117.4 16 0.17 0.37 NA 2 1.00 0.21

2003 21.9 4 0.99 1.14 83.8 14 0.15 0.50 0 0 0 0.41

2004 33.8 5 1.23 1.37 168.3 20 0.21 0.62 0.025 1 0.50 0.62

2005 33.5 2 0.49 1.60 191.8 36 0.38 0.75 0 0 0 0.83

2006 37.5 6 1.48 1.82 266.7 35 0.37 0.87 14 1 0.50 1.04

2007 20 1 0.25 2.05 241.9 48 0.50 1.00 0 0 0 1.24

2008 88.3 15 3.70 2.28 349.3 65 0.68 1.12 18 2 1.00 1.45

2009 58.9 10 2.47 2.51 244.1 96 1.00 1.25 0.9 1 0.50 1.66

2010 95.3 11 2.72 2.74 343.2 135 1.41 1.37 2.3 2 1.00 1.87

2011 167.6 12 2.96 2.96 1289 241 2.52 3.29 20 2 1.00 2.07

Table 1. Hi-tech dataset and calculations: $M – investments in millions of dollars, NI – BP

as Number of Investments, DI – Disruption Index, DP – Disruption Pattern.
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2012 153 21 5.19 5.09 819.5 332 3.47 5.21 31.2 2 1.00 2.28

2013 123 25 6.17 7.21 2008.4 482 5.05 7.13 29.8 5 2.49 2.49

2014 122.4 32 7.90 9.33 7782.7 766 8.02 9.05 112.4 17 8.46 8.46

2015 160.5 33 8.15 11.46 14138.6 1063 11.13 10.97 64.2 15 7.46 7.46

2016 513.5 55 13.58 13.58 15185.3 1235 12.93 12.88 79.2 8 3.98 3.98

2017 440.9 56 13.83 13.83 18426.9 1234 12.92 13.19 247.7 20 9.95 9.83

2018 401.3 39 9.63 10.25 12639 1294 13.54 13.50 149.4 33 16.42 15.67

2019 143 27 6.67 6.67 12861.3 1234 12.92 12.84 179.5 35 17.41 21.52

2020 593.9 36 8.89 8.89 11555.2 1167 12.21 12.17 534.7 55 27.36 27.36

 
            

(b) Artificial Intelligence Big Data Virtual Reality

Year $M NI DI DP $M NI DI DP $M NI DI DP

1991 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0

1993 NA 1 0.00 0 0 0 0 0 0 0 0 0

1994 0 0 0 0 0 0 0 0 0 0 0 0

1995 NA 1 0.00 0 0 0 0 0 0 0 0 0

1996 7.8 3 0.01 0 0.4 2 0.02 0 0 0 0 0

1997 8.1 3 0.01 0 0 0 0 0 0.4 1 0.04 0.13

1998 20.7 6 0.03 0 1.9 1 0.01 0 1.68 1 0.04 0.27

1999 49.5 7 0.03 0 85.2 8 0.08 0.11 0.38 3 0.11 0.40

2000 312.4 33 0.14 0.09 206.4 15 0.15 0.21 26.46 5 0.18 0.53

2001 191.6 24 0.10 0.18 92.3 9 0.09 0.32 84.05 7 0.25 0.67

2002 101.2 18 0.08 0.27 163.4 17 0.17 0.42 51.08 3 0.11 0.80

2003 123.1 28 0.12 0.37 76 14 0.14 0.53 9.86 4 0.14 0.93

2004 169.5 29 0.12 0.46 131.7 24 0.24 0.63 28.30 11 0.39 1.07

2005 168.8 35 0.15 0.55 303.5 44 0.44 0.74 61.04 10 0.35 1.20

2006 284.8 43 0.18 0.64 403.9 60 0.60 0.84 74.99 10 0.35 1.33

2007 446.7 66 0.28 0.73 597.7 62 0.62 0.95 372.44 12 0.42 1.47

2008 386.3 97 0.41 0.82 479.7 106 1.06 1.05 113.76 20 0.71 1.60

2009 325 104 0.44 0.92 457 172 1.72 2.64 286.99 13 0.46 1.73

2010 560 174 0.74 1.01 784.3 289 2.90 4.23 115.88 22 0.78 1.87

2011 911.4 267 1.13 1.10 1315.7 240 2.40 5.82 1634.69 31 1.10 2.00

2012 1412 486 2.05 3.39 1441.6 469 4.70 7.41 83.61 49 1.73 2.13

2013 2546 820 3.46 5.68 3288.3 705 7.06 9.00 244.26 64 2.27 2.27

2014 5966 1242 5.25 7.98 4641.3 1011 10.13 10.59 297.582 160 5.66 9.79

2015 9201 1859 7.85 10.27 6079.7 1217 12.19 12.18 721.076 275 9.73 17.32

2016 16295 2639 11.15 12.56 4878.1 1176 11.78 12.02 4208.5 702 24.85 24.85

2017 26497 3460 14.62 14.86 6605.6 1220 12.22 11.86 1509.9 435 15.40 20.96

2018 30021 4066 17.18 17.15 7647.3 1168 11.70 11.69 1238.6 399 14.12 17.08

2019 33304 4149 17.53 17.03 8063.9 1024 10.26 10.49 1434.7 325 11.50 13.19
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2019 33304 4149 17.53 17.03 8063.9 1024 10.26 10.49 1434.7 325 11.50 13.19

2020 31245 4008 16.93 16.90 9514.4 927 9.29 9.28 1072.7 263 9.31 9.31

 
            

(c) Blockchain Cryptocurrency E-Learning

Year $M NI DI DP $M NI DI DP $M NI DI DP

1991 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0

1993 0 0 0 0 0 0 0 0 0 0 0 0

1994 0 0 0 0 0 0 0 0 0 0 0 0

1995 0 0 0 0 0 0 0 0 0 0 0 0

1996 0 0 0 0 0 0 0 0 0 0 0 0

1997 0 0 0 0 0 0 0 0 0 0 0 0

1998 0 0 0 0 0 0 0 0 3.2 2 0.06 0.10

1999 2.4 1 0.02 0.03 0 0 0 0 78.2 4 0.11 0.19

2000 0 1 0.02 0.05 0 0 0 0 340.7 17 0.47 0.29

2001 0 0 0 0.08 0 0 0 0 103 12 0.33 0.38

2002 0 0 0 0.11 0 0 0 0 31.8 7 0.19 0.48

2003 8 2 0.05 0.14 0 0 0 0 28.5 2 0.06 0.57

2004 0 1 0.02 0.16 0 0 0 0 184.2 7 0.19 0.67

2005 10 1 0.02 0.19 5.6 1 0.04 0.05 9.5 5 0.14 0.76

2006 10 2 0.05 0.22 0 1 0.04 0.11 30.3 12 0.33 0.86

2007 29 2 0.05 0.24 0 1 0.04 0.16 245.3 21 0.58 0.96

2008 0 0 0 0.27 0 0 0 0.22 122 24 0.66 1.05

2009 10.5 5 0.12 0.30 3.9 5 0.22 0.27 85.8 31 0.86 1.15

2010 41.9 6 0.14 0.33 23.3 4 0.17 0.32 177.7 45 1.24 1.24

2011 46 15 0.36 0.35 67.6 6 0.26 0.38 80.1 63 1.74 3.01

2012 53.7 16 0.38 0.38 6.7 10 0.43 0.43 419.7 147 4.06 4.78

2013 108 47 1.12 1.92 116.3 37 1.59 2.41 504.738 195 5.39 6.55

2014 645.6 146 3.47 3.47 271.2 102 4.39 4.39 1014.7 269 7.43 8.31

2015 357.2 156 3.70 3.70 469.3 109 4.69 4.87 1851.3 378 10.44 10.08

2016 597.3 275 6.53 7.08 516.4 124 5.34 5.34 2091.7 429 11.85 11.85

2017 1293 546 12.97 10.46 997 284 12.23 9.83 1665.8 431 11.91 12.93

2018 3472 1165 27.67 13.84 3215.7 595 25.62 14.32 4346.5 507 14.01 14.01

2019 2901 957 22.73 17.21 2341.9 502 21.62 18.81 2819.8 480 13.26 14.35

2020 2295 867 20.59 20.59 3959.4 541 23.30 23.30 10521.5 532 14.70 14.70

 
            

(d) 3D Printing Internet of Things SEO

Year $M NI DI DP $M NI DI DP $M NI DI DP

1991 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0

1993 0 0 0 0 0 0 0 0 0 0 0 0

Qeios, CC-BY 4.0   ·   Article, June 7, 2023

Qeios ID: KY5Y9L.2   ·   https://doi.org/10.32388/KY5Y9L.2 5/18



1993 0 0 0 0 0 0 0 0 0 0 0 0

1994 0 0 0 0 0 0 0 0 0 0 0 0

1995 0 0 0 0 0.6 2 0.03 0.09 0 0 0 0

1996 0 0 0 0 17.3 5 0.07 0.18 0 0 0 0

1997 0 0 0 0 22.6 5 0.07 0.26 0 0 0 0

1998 0 0 0 0 18.3 2 0.03 0.35 0 0 0 0

1999 0 0 0 0 82.4 15 0.20 0.44 0.02 1 0.16 0.13

2000 0 0 0 0 479.3 39 0.53 0.53 40 4 0.65 0.27

2001 0 0 0 0 175.2 15 0.20 0.61 2.5 2 0.32 0.40

2002 0 0 0 0 80.2 13 0.18 0.70 0.3 2 0.32 0.54

2003 8.8 2 0.19 0.08 80.7 9 0.12 0.79 2.25 2 0.32 0.67

2004 4.3 2 0.19 0.16 82.5 12 0.16 0.88 19.75 5 0.81 0.81

2005 29.9 6 0.56 0.25 306.7 23 0.31 0.97 32.14 13 2.10 1.98

2006 21.5 4 0.37 0.33 149.2 19 0.26 1.05 55.10 17 2.75 3.15

2007 44.4 7 0.65 0.41 363.8 40 0.54 1.14 252.74 23 3.72 4.31

2008 4.4 4 0.37 0.49 254 42 0.57 1.23 114.01 22 3.56 5.48

2009 12.1 4 0.37 0.58 201.3 49 0.66 1.32 45.97 24 3.88 6.65

2010 15.7 9 0.83 0.66 272.8 86 1.17 1.40 51.13 49 7.93 7.82

2011 9.3 8 0.74 0.74 333.6 110 1.49 1.49 61.11 41 6.63 8.99

2012 33.7 25 2.32 4.20 626.6 179 2.43 3.96 159.59 55 8.90 10.16

2013 123.6 63 5.84 7.65 767.5 331 4.49 6.43 183.88 70 11.33 11.33

2014 130.2 128 11.87 11.11 1505 602 8.17 8.89 73.23 57 9.22 9.59

2015 405.8 157 14.56 14.56 1978.3 875 11.87 11.36 130.72 49 7.93 7.85

2016 369.5 125 11.60 14.29 2160.4 1019 13.82 13.82 101 43 6.96 6.11

2017 694.5 133 12.34 14.01 3348.2 1054 14.30 14.36 38.55 27 4.37 4.37

2018 632.1 149 13.82 13.73 5133.8 1098 14.90 14.90 75.87 36 5.83 4.96

2019 1139 145 13.45 13.45 3623.7 939 12.74 12.79 173.87 38 6.15 5.56

2020 474.4 107 9.93 9.93 4917.2 788 10.69 10.69 83.79 38 6.15 6.15

 
            

(e) Social Media InsurTech Mobile Advertising

Year $M NI DI DP $M NI DI DP $M NI DI DP

1991 0 0 0 0 0 0 0 0 0 0 0 0

1992 0 0 0 0 0 0 0 0 0 0 0 0

1993 0 0 0 0 0 0 0 0 0 0 0 0

1994 1 1 0.01 0.11 0 0 0 0 0 0 0 0

1995 15.3 4 0.04 0.22 0 0 0 0 0 0 0 0

1996 4 4 0.04 0.34 0 0 0 0 0 0 0 0

1997 16.5 3 0.03 0.45 0 0 0 0 0 0 0 0

1998 5 1 0.01 0.56 0 0 0 0 0 0 0 0

1999 225.9 20 0.22 0.67 0 0 0 0 0 0 0 0

2000 331.9 36 0.40 0.79 1.6 2 0.12 0 13 4 0.42 0
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2000 331.9 36 0.40 0.79 1.6 2 0.12 0 13 4 0.42 0

2001 33.6 13 0.14 0.90 11.1 1 0.06 0 0 0 0 0

2002 28.4 9 0.10 1.01 0 0 0 0 0 0 0 0

2003 72.6 16 0.18 1.12 0 0 0 0 0 0 0 0

2004 83.8 26 0.29 1.23 0.025 1 0.06 0 1.68 3 0.31 0.44

2005 181.4 56 0.62 1.35 0 0 0 0 41.46 5 0.52 0.87

2006 662.3 132 1.46 1.46 0 0 0 0 15.7 8 0.84 1.31

2007 1289 267 2.95 2.81 33.55 4 0.24 0.40 64.54 12 1.26 1.74

2008 1456 304 3.36 4.16 34.55 4 0.24 0.79 89.98 16 1.67 2.18

2009 932.9 292 3.23 5.51 0.1 1 0.06 1.19 71.55 25 2.62 2.62

2010 1048 458 5.06 6.87 16.2 7 0.42 1.59 122.16 37 3.87 5.10

2011 5258 702 7.76 8.22 20.08 9 0.54 1.98 287.69 53 5.54 7.59

2012 1711 894 9.88 9.57 115.04 19 1.14 2.38 157.58 60 6.28 10.08

2013 2416 1011 11.17 10.92 161.90 38 2.28 2.78 257.88 87 9.10 12.57

2014 3607 1111 12.27 12.27 233.84 53 3.18 3.18 341.66 144 15.06 15.06

2015 3829 925 10.22 11.08 645.07 96 5.75 7.13 1640.01 127 13.28 13.28

2016 4221 680 7.51 9.89 1108.70 163 9.77 11.08 578.72 113 11.82 11.44

2017 4978 567 6.26 8.70 855.17 258 15.46 15.04 1664.38 85 8.89 9.60

2018 5693 577 6.37 7.50 2111.69 317 18.99 18.99 655.87 84 8.79 7.76

2019 3071 479 5.29 6.31 3413.6 326 19.53 19.53 2100.33 54 5.65 5.92

2020 4070 463 5.12 5.12 4105 370 22.17 22.17 308.26 39 4.08 4.08

Table 2. Remote-science dataset and calculations: NC – BP as annual Number of Citations (out of top

10,000 cited papers), DI – Disruption Index, DP – Disruption Pattern.
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Geophysics Economics Psychology Mathematics Statistics

Year NC DI DP NC DI DP NC DI DP NC DI DP NC DI DP

1983 0 0 0 0 0 0 0 0 0 0 0  0 0 0

1984 56501 1.64 1.64 68609 1.39 1.39 133932 1.61 1.61 103087 2.63 0.00 65207 1.51 1.51

1985 44891 1.30 1.68 88480 1.80 1.58 169989 2.04 1.76 109353 2.79 0.00 59888 1.39 1.54

1986 59684 1.73 1.71 113929 2.31 1.76 218396 2.62 1.91 122387 3.12 0.00 92021 2.13 1.58

1987 55701 1.62 1.75 89363 1.81 1.94 178236 2.14 2.06 158775 4.05 0.00 98744 2.29 1.61

1988 56782 1.65 1.79 107223 2.18 2.13 223153 2.68 2.22 102338 2.61 0.00 100781 2.33 1.65

1989 63176 1.83 1.82 107848 2.19 2.31 179613 2.16 2.37 113004 2.88 0.00 83866 1.94 1.69

1990 64015 1.86 1.86 134305 2.73 2.49 227950 2.74 2.52 104284 2.66 0.00 74304 1.72 1.72

1991 57513 1.67 1.90 140111 2.85 2.68 283251 3.40 2.67 94976 2.42 2.42 79333 1.84 1.76

1992 54241 1.57 1.94 147895 3.00 2.86 236421 2.84 2.83 140463 3.58 2.56 90935 2.10 1.79

1993 56442 1.64 1.97 138006 2.80 3.05 211271 2.54 2.98 104555 2.67 2.69 78930 1.83 1.83

1994 69230 2.01 2.01 133639 2.71 3.23 236321 2.84 3.13 108317 2.76 2.83 112085 2.59 2.14

1995 71481 2.07 2.26 169738 3.45 3.41 264028 3.17 3.28 116305 2.97 2.97 173198 4.01 2.45

1996 82100 2.38 2.52 157487 3.20 3.60 259574 3.12 3.44 136777 3.49 3.47 116131 2.69 2.75

1997 71582 2.08 2.78 171403 3.48 3.78 303652 3.65 3.59 135555 3.46 3.98 92579 2.14 3.06

1998 107409 3.12 3.03 191891 3.90 3.96 311523 3.74 3.74 157149 4.01 4.48 129379 2.99 3.37

1999 105321 3.06 3.29 200677 4.08 4.15 281170 3.38 4.72 195631 4.99 4.99 127415 2.95 3.68

2000 138803 4.03 3.54 208998 4.24 4.33 474497 5.70 5.70 160584 4.10 4.75 149329 3.46 3.99

2001 132024 3.83 3.80 222252 4.51 4.51 414257 4.97 5.40 155206 3.96 4.50 185877 4.30 4.30

2002 147422 4.28 4.05 218640 4.44 4.53 376938 4.53 5.11 146006 3.72 4.26 161106 3.73 4.38

2003 140699 4.08 4.31 231556 4.70 4.55 431470 5.18 4.81 161520 4.12 4.02 164439 3.81 4.45

2004 157287 4.56 4.56 197369 4.01 4.56 376043 4.51 4.52 143296 3.66 3.77 166596 3.86 4.53

2005 157355 4.57 4.56 225431 4.58 4.58 307391 3.69 4.23 137769 3.51 3.53 191510 4.43 4.61

2006 157311 4.56 4.55 179899 3.65 4.29 323287 3.88 3.93 143345 3.66 3.28 167355 3.87 4.68

2007 158110 4.59 4.55 195325 3.97 4.00 368246 4.42 3.64 139307 3.55 3.04 183710 4.25 4.76

2008 158367 4.60 4.54 190637 3.87 3.71 283121 3.40 3.34 111112 2.83 2.80 150811 3.49 4.83

2009 146080 4.24 4.54 180928 3.67 3.42 255809 3.07 3.05 137174 3.50 2.55 212140 4.91 4.91

2010 156218 4.53 4.53 150149 3.05 3.13 253722 3.05 2.75 104091 2.66 2.31 203344 4.71 4.48

2011 139427 4.05 4.14 134420 2.73 2.84 194775 2.34 2.46 92555 2.36 2.06 165523 3.83 4.05

2012 129643 3.76 3.74 108446 2.20 2.55 138333 1.66 2.17 65988 1.68 1.82 139101 3.22 3.62

2013 118833 3.45 3.35 83253 1.69 2.26 123898 1.49 1.87 56324 1.44 1.58 88941 2.06 3.19

2014 100262 2.91 2.95 65339 1.33 1.98 104344 1.25 1.58 46917 1.20 1.33 138181 3.20 2.76

2015 71853 2.09 2.55 60250 1.22 1.69 63875 0.77 1.28 41738 1.06 1.09 116035 2.69 2.34

2016 61249 1.78 2.16 39524 0.80 1.40 38610 0.46 0.99 21961 0.56 0.85 46493 1.08 1.91

2017 35370 1.03 1.76 26710 0.54 1.11 40541 0.49 0.69 19735 0.50 0.60 49527 1.15 1.48

2018 27666 0.80 1.37 20404 0.41 0.82 18838 0.23 0.40 14024 0.36 0.36 38908 0.90 1.05

2019 16144 0.47 0.97 12141 0.25 0.53 8848 0.11 0.11 6639 0.17 0.17 18981 0.44 0.62

2020 19859 0.58 0.58 11836 0.24 0.24 14368 0.17 0.17 11767 0.30 -0.02 8262 0.19 0.19
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Quantum
Computing

Artificial Intelligence

Year NP DInp DIht NP DInp DIht

1991 0 0.0% 0.0% 622 0.7% 0.0%

1992 1 0.0% 0.0% 650 0.7% 0.0%

1993 2 0.0% 0.0% 618 0.7% 0.0%

1994 0 0.0% 0.0% 598 0.6% 0.0%

1995 9 0.2% 0.0% 626 0.7% 0.0%

1996 8 0.2% 0.0% 656 0.7% 0.0%

1997 12 0.3% 0.0% 619 0.7% 0.0%

1998 25 0.6% 0.0% 691 0.7% 0.0%

1999 33 0.8% 0.0% 786 0.9% 0.0%

2000 42 1.0% 0.0% 840 0.9% 0.1%

2001 65 1.6% 0.0% 983 1.1% 0.1%

2002 60 1.4% 1.0% 1170 1.3% 0.1%

2003 78 1.9% 0.0% 1220 1.3% 0.1%

2004 90 2.2% 0.5% 1300 1.4% 0.1%

2005 103 2.5% 0.0% 1640 1.8% 0.1%

2006 105 2.5% 0.5% 1530 1.7% 0.2%

2007 107 2.6% 0.0% 1720 1.9% 0.3%

2008 129 3.1% 1.0% 1830 2.0% 0.4%

2009 128 3.1% 0.5% 2070 2.2% 0.4%

2010 128 3.1% 1.0% 2230 2.4% 0.7%

2011 132 3.2% 1.0% 2600 2.8% 1.1%

2012 159 3.8% 1.0% 2730 3.0% 2.1%

2013 175 4.2% 2.5% 3170 3.4% 3.5%

2014 183 4.4% 8.5% 3550 3.8% 5.2%

2015 209 5.0% 7.5% 3960 4.3% 7.9%

2016 235 5.7% 4.0% 4380 4.7% 11.2%

2017 307 7.4% 10.0% 5720 6.2% 14.6%

2018 384 9.2% 16.4% 8330 9.0% 17.2%

2019 530 12.7% 17.4% 12400 13.4% 17.5%

2020 718 17.3% 27.4% 23200 25.1% 16.9%

Table 3. Tech-science dataset and calculations:

NP – BP as annual Number of Peer review papers

published, DInp – Disruption Index based on NP

as Base Parameter, DIht – Disruption Index

calculated as hi-tech DI (BP is number of

investments).

2.2. Calculation of the Disruption Index
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Previous studies proposed disruption indices that use scientific citations as proxy for influence. As a result, their approach

could not be directly applied to hi-tech, as it lacks citations. Moreover, their approach is partially subjective, as it relies on

the decisions of the writers that add references to their papers. To avoid these pitfalls, our new Disruption Index (DI) is

behavioral in nature, and calculates the relative activity in each time period as proxy for disruption:

DIfi =  

BPi

∑p
j=1BPj

DIfi= Disruption Index for field f (within hi-tech or science) in year i

BPi= Base Parameter (e.g., number of investments) in year i

p = Number of years in this period

The Base Parameter (BP) can vary between fields, as long as it represents the underlying behavior, and is not too

susceptible to outliers. The Base Parameter for the hi-tech DI is the number of investments within each of the fields

listed above, regardless of their dollar size. We chose this BP since very large investments mask the actual market

behavior. For example, 100 investments of $2M each in a certain year are not equal, in terms of behavior, to a single

investment of $200M, although the total dollar amount is the same.

Science traditionally evaluates applications according to their citations. We find this parameter problematic for evaluating

the progress of science since it highlights "stars" (equivalent to huge investments). We address science development as

an ecosystem of research and disciplines rather than a series of individual ingenious publications. Therefore, we took the

BP for the science fields as either the number of articles that were published within a discipline every year (for tech-

science) or only the 10,000 most cited publications in the discplines, distributed again by years (for remote-science). After

choosing the right BP, a DI can be easily calculated for all fields, thereby allowing a seamless comparison between the hi-

tech and science fields and their internal categories.

2.3. Calculation of the Disruption Pattern

Results of the calculated DI show a four-stage pattern in hi-tech and science. It includes the (1) Exploration, (2)

Exploitation, (3) Plateau, and (4) Exhaustion stages. To quantify this pattern, we built a Disruption Pattern) DP) for each

field, which simplifies the DI by representing each of the four stages as straight lines:

DPf
i = DPf

i−1 +

DIfp( period (i) ) − DIfp( period (i−1) )

p(period(i)) − p(period(i − 1)) + 1

DPf
i= DP for field f in year i. for year 1, DP=DI.

p(period(i)) = The last year of the period (1-4) to which year i is related

DIfp(period (i ) )= DI (as defined above) for field f in the last year of the period to which year i is related.
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Stage 1 starts when the data begins. Its transition into stage 2 marks the disruption year, when Exploration abruptly shifts

to Exploitation. This transition is set by maximizing the correlation between DI and DP:

DYf =  argmaxf
y {ρ DIf, DPf }

DYf= Disruption Year for field f

ρ DIf, DPf = Correlation between DI and DP in field f

argmaxf
y= Year y that maximizes the value of the given function, for field f

The transition between stages 2 and 3 (Exploitation to Plateau) occurs at the DI maxima value, whereas the transition to

stage 4 (Plateau to Exhaustion) begins when the DI value drops by 5% or more. Not all fields show all four stages – some

may still be in an earlier stage.

3. Results

Data from hi-tech and science show a similar four-stage pattern with some variations: The hi-tech dataset is based on the

number of investments in 15 startup categories between 1991-2020 (Fig. 1): Cloud Storage, Mobile Apps, Quantum

Computing, Artificial Intelligence, Big Data, Virtual Reality, Blockchain, Cryptocurrency, E-Learning, 3d Printing, Internet of

Things, SEO, Social Media, Insurtech, And Mobile Advertising. The categories were chosen to show a wide range of

behaviors. While the Dollar amount of investments is an obvious proxy for the activity in each category, it is highly affected

by outliers (i.e., substantial investment), inflation, and the inflow rate of funds to the market. On the other hand, the

number of investments, regardless of size, can serve as a proxy for market-wide activity, and a tool for identifying

disruption. Therefore, the new DI was based on the number of investments normalized by their total number for the

analyzed period.

In the first 8-12 years, the hi-tech DI slowly increases (i.e., Exploration stage) until a particular year when values begin to

grow exponentially over1-5 years (Fig. 1; Exploitation stage). This trend change marks a disruption. The growth

culminates into a 1-3 year of relatively constant DI values (Plateau stage), followed by a sharp decrease (Exhaustion

stage). This four-stage pattern appears in three groups (Fig. 1). Disruption of the light blue group (2009) predates the

brown one (2012) and decreases faster. Both groups show the same DI maxima. In the gray group, disruption occurred

during 2013-2014, followed by a sharp DI climb to almost doubling the values of the other groups.

( )

( )
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Figure 1. Disruption Index (DI) of 15 Hi-tech categories vs. time (data in Table 1).

The science DI represents two fields. DI of the technological-related science (tech-science; light blue in Fig. 2) is

calculated based on the number of publications in Quantum Computing and Artificial Intelligence between 1991-2020.

This DI behaves similarly to the hi-tech Exploration and Exploitation stages – it gradually increased between the late

1990s and early 2010s, and sharply steepened in 2017-2018. These young disciplines have not yet reached a Plateau.
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Figure 2. DI of remote-science (brown, left axis) and tech-science (light blue, right axis) disciplines (data in Tables 2, 3, respectively).

DI of less the technological disciplines (remote-science; light brown in Fig. 2) is calculated based on the 10,000 most cited

peer-reviewed papers between 1984-2020 in Geosciences, Economics, Psychology, Mathematics, and Statistics. This DI

citation percentage expresses the assimilation level of research insights (a common measure of academic impact) and

the financial investment in research and education (e.g., infrastructure and training of graduate students). The DI shows a

four-stage pattern, similar to those described above (Figs. 1, 2), despite the weak relations between its five disciplines.

The citation percentage gradually increased from the 1980s to the mid-1990s (i.e., Exploration), then grew faster over ~5-

year (i.e., Exploitation). The Plateau lasted between 2000-2010, followed by a DI decline to values lower than the initial

ones (i.e., Exhaustion). Correlations between the DI of the five disciplines yield values of 67%-97% (Table 4). All 20

categories examined show high correlations between their respective DI and the four-stage Disruption Pattern. The

average DI-DP correlation is 0.98 for the hi-tech categories and 0.96 for remote-science.

Table 4. Correlations between indices of relative citations, 1984-2020.
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 Geosciences Economics Psychology Statistics Mathematics

Geosciences 1.00 0.91 0.78 0.92 0.66

Economics 0.91 1.00 0.95 0.97 0.87

Psychology 0.78 0.95 1.00 0.92 0.94

Statistics 0.92 0.97 0.92 1.00 0.85

Mathematics 0.66 0.87 0.94 0.85 1.00

4. Discussion

Despite the differences between the various fields examined, the data show their behavior to be similar. The four-stage

pattern identified here appears in both hi-tech and science, with variations in the duration and intensity of modifications

(Fig. 3). During the Exploration stage the steady and moderate growth in hi-tech and tech-science DI (Figs. 1, 2)

indicates the market cautiously seeks disruption without drastic deviations. Once disruption occurs, both fields quickly

identify and evaluate its potential while bursting into action. The shorter Exploration stage and sharper Exploitation ascend

in the gray hi-tech group show that disruption identification and evaluation improved over time. However, the more Deep-

Tech the discipline is, the faster tech giants exploit its disruption once it occurs, and attract much of the activity. This

drastically decreases the number of investments, leading to the Plateau stage. The tech-science gains directly and

indirectly from the increasing number of investments and becomes more productive. Based on the four-stage pattern

identified here, Artificial Intelligence, Quantum Computing, and other tech-science disciplines are expected to reach their

Plateau stage in 2-5 years (Fig. 3).

Figure 3.Hi-tech and science develop through ongoing InP with occasional Disruptive leaps.  Schematic illustration of conduct during (a) one

four-stage pattern cycle, and (b) its expected progression over time. InP - Incremental progression, LHF - Low-Hanging Fruits. Warm and cold colors

represent the market/science activity level.

Qeios, CC-BY 4.0   ·   Article, June 7, 2023

Qeios ID: KY5Y9L.2   ·   https://doi.org/10.32388/KY5Y9L.2 14/18



All remote-science disciplines show similar behavior in both the duration of the stages and their intensity, which is

peculiar (Fig. 2). Why would the distant disciplines of Geosciences, Economics, Psychology, Mathematics, and Statistics

show a synchronized behavior when each undergoes substantial modifications over the years? A possible explanation is

that they all are equally more sensitive to exogenous processes than endogenous ones. During the exploration stage,

citations are influenced by many intradisciplinary directions and trends, but at a certain point, the citations percentage

sharply steepens in all disciplines. Similar to the hi-tech domain, the high citation percentage during exploitation

represents a sudden expansion of directions opened by disruptive event or events. The Plateau begins when citations

reach a Status Quo, i.e., certain studies are repeatedly cited as the pioneering of the discipline. This behavior is

equivalent to the takeover by tech giants. The newer cited studies form finer variation superimposed on the Plateau (Fig.

2). When the pioneering studies become less relevant, the Plateau ends and the Exhaustion stage begins while the

disciplines await new Internal breakthroughs. Nonetheless, the highly synchronized behavior of the distant disciplines

suggests they represent the state of science in general. While universities and funding sources acknowledge that science

has reached stagnation and encourages potential breakthroughs from within the discipline, our data suggest that the

eagerly awaited disruption will most likely arrive from exogenous events.

The main driver for this systemic behavior is probably technology. In the late 1990s, the Internet became a major force

that changed research activity. Scientists moved from citing printed papers (from libraries, photocopies, and pre-prints

sent by snail mail) to searching them online. This may have shifted the remote-science disciplines from Exploration to

Exploitation (Figs. 2, 3). However, after about five years, science reached another plateau, and it could be argued that

accessibility promoted by the Internet only shifted science from one plateau to another while it remained stagnant.

The end of the Plateau (2008-2010) may represent the immersion stage in which publications build their influence. Their

delayed influence further stresses how InP inhibits the citation of disruptive papers. However, the Exhaustion stage began

almost simultaneously in all disciplines, pointing at exogenous circumstances. We attribute this shift to improvements in

computing power which allowed better data acquisition and stronger analytical tools able to crunch considerably larger

datasets. These exogenous technological advancements made the frequently cited pioneering studies obsolete. Science

entered a new exploration stage where the analytical tools created new low-hanging fruits to be harvested. Scientists rely

more on data and quantitative models, and less on established theories and conceptual ideas. This 10-15 years trend

questions the effectiveness of the citation system widely used for evaluating studies for funding and promotions. Today,

the sweeping introduction of Artificial Intelligence and Machine Learning tools will likely create another systemic change

across all scientific disciplines. Again – an exogenous influence.

4.1. Why did the prevailing InP methodology lose its effectiveness?

The InP methodology is most effective during the Exploration and Plateau stages, when basic knowledge is being built.

For example, when mapping and describing terra incognita in any discipline and understanding the relations between its

dominant processes. InP is effective in these cases since knowledge maps are still underdeveloped, and there are many

low-hanging fruits to discover. Nevertheless, when the low-hanging fruits become scarcer, and the discipline moves to an
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Exhaustion stage, InP becomes less productive.

In InP, processes transforming status A to B are described using catalysts and inhibitors. Such Causal Logic, coupling a

cause with an outcome, underlies most studies and the training of future scientists. For example, the influence of a

compound on a biological process or a chain reaction induced by an underwater earthquake. However, as scientists

specialize in their discipline (i.e., dig deeper into an InP process), they realize that Causal Logic can only provide a partial

explanation, and that deduction by elimination does not necessarily lead to an acceptable solution. To bridge over the gap

in understanding, studies simplify the cases by neglecting components or reducing dimensions. These simplifications fit

the InP specialization, not the phenomenon under investigation. We suggest that most case studies examined in science

are derived from a larger multi-complement, multi-dimensional complex system of interweaving processes that dynamically

affect each other. However, the InP and traditional Causal Logic only work in “Silos” (i.e., confined to the InP universe)

and cannot deal with several components simultaneously.

Here are some examples. The climate crisis brought Geosciences to the limelight but caught the scientists and discipline

unprepared. Most Geoscientists focus on subdisciplines, yet a concept defining Earth as a Complex System is only

starting to form (Siegenfeld and Bar-Yam, 2020; Author et al., 2023). Yet, there are currently no suitable quantitative tools

for analyzing the data of a Complex System. While data collection increases over time, predictive models based on this

data are not calibrated to the growing occurrence of extreme events (e.g., mega-floods, storms, droughts). Hence, current

models are still far from providing accurate predictions of the climate change pace, and they struggle to integrate extreme

events and evaluate the variability of relevant parameters.

The thought framework for Micro-economic Theory has been mostly stagnant for several decades. The basis for

consumer decision-making in Microeconomics has not shifted far from its origins in Tversky and Kahneman’s studies

dating 40-50 years ago, as evidenced by the following. According to Google Scholar, out of a total of 191,000 articles

mentioning or written by Tversky and Kahneman, 8.8% (16,800) appeared in the last three years (2020-2022).

InP promotes a non-disruptive and less-exploratory science, which relies on the availability of low-hanging fruits (Fig. 3).

Its ineffectiveness leads to one of the greatest crises in all scientific disciplines today. Institutes and funding agencies that

understand the crisis and encourage cross- and multi-disciplinary studies on the individual scientist level (yet, these

scientists are products of the InP specialization process). They also began to cautiously question the fixated and archaic

disciplinary division (yet, at the same time, reject projects that jump too many steps ahead). Walls between disciplinary

teaching programs begin to (slowly) break. This positive approach is insufficient to prevent science from slowing down,

since most scientists still follow the InP methodology, which hinders disruptive conceptual leaps.

On top of that, although universities primarily promote scientific findings, they await to monetize innovations and

inventions. Therefore, they implement a supportive innovation strategy to drive research into business-related areas.

While this approach may catalyze economic gains, it merely invests in gradually improving existing research that follows

InP and Causal Logic methodologies. It does not provide a Disruption mindset or infrastructure to researchers.

4.2. Can science develop endogenous disruptive seeds?
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The progress of science can therefore be described as an interplay between Disruptive scientific leaps on top of an

ongoing InP (Fig. 3). InP bursts science into Exploitation when low-hanging fruits are abundant, but when they become

scarce InP reacts with Exhaustion. InP does not form disruption itself. Still, only InP efforts have developed into a well-

established research process that includes funding resources, publication infrastructure and collaboration frameworks. On

the other corner, Disruptive research remains anecdotal and is only beginning to be recognized as a crucial force that

pulls science forward. The dizzying pace at which the high-tech industry is advancing and creating Disruption is

unmatched by universities and research institutions. Despite their efforts to promote innovation and entrepreneurship,

universities do not produce considerable breakthroughs. Their main discoveries are made in relatively new areas where

little research has been done so far, or data has not been collected in large quantities to date.

Substantial breakthroughs require the challenging of traditional conventions. In hi-tech, this disruptive approach creates

breakthroughs, e.g., a new market category that profoundly shifts the daily routine to a new and unpredictable path. The

Internet also exemplifies a phase transition (Fig. 1). Its intervention was not merely a technology as described in its early

days. The Internet diverted the progress of an immense amount of systems and scientific disciplines to a path that was

impossible to predict with pre-Internet knowledge. Science is cautious and its progress relies on knowledge that gradually

builds. However, as extensive as pre-transition knowledge may be, it cannot reliably predict post-transition behavior since

current “siloed” logic will likely break down, and new apparent causality will emerge.

Today there is no established methodology for creating Disruption in hi-tech (this could be an oxymoron). Nevertheless,

the hi-tech industry developed a practical and powerful toolbox that only partially entered universities, mainly through the

monetization of research. Decision makers in universities, funding agencies, and research institutes should adopt a

venture capital approach to boosting new disciplines, and allowing research pivots (i.e., unexpected turns), based on the

understanding of disruption activity and patterns, as manifested in the DI and DP measures. They need to encourage

endogenous disruption by promoting a “startup mindset”; endorse exogenous disruption; support non-InP exploration

directions; improve the identification of exploration-to-exploitation shifts and rapidly respond to disruption points as hi-tech

does; implement a more holistic, Complex-Systems approach to research; improve the incentive to go beyond InP into

Disruption; and reduce the heavy reliance on citations as indicators of research disruption potential. All these will help to

accelerate scientific disruption, alongside the traditional InP and Causal Logic.
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