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Abstract

The trials in the classical N -player gamblers’ problem are repeated independently until
one or more players get bankrupt. In this research, we present a game that is stopped when
the number of trials first reaches the minimum of the initial budget set by the players. We
executed this game for N players and determined the probability distribution of the fortune
for both symmetric and asymmetric games. The exact expressions for the expected fortune
and variance of the distribution are derived.
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1 Introduction

A classical N -player game is a fundamental problem in the history of probability theory. It is a
sequence of independent trials and in each trial, a winner player Ai, who starts with an initial
budget ai (ai ∈ N) dollars, receives one dollar with probability pi from each of other N − 1 players.
The main concern lies in the anticipation of the ruined time to complete this game until one or
more players go bankrupt.

It is well known for the 2-player gambler’s ruin problem as:

E(T ) = a1a2,

when p1 = p2 = 1/2, and

E(T ) =

(
1

p1 − p2

)(
a2 − (a1 + a2)

( 1− (p1/p2)
a2

1− (p1/p2)a1+a2

))
,

when p1 6= p2, see, for example, Feller [7].
In the early 1960s, the expected ruin time for more than two players was claimed to be an

unsolved problem by Ogilvy [10]. After almost three decades, Sandell [14] broke this stalemate and
offered the following expression for a 3-player game through martingale and Optional Stopping
theorem.

E(T ) =
a1a2a3

a1 + a2 + a3 − 2
.
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The above formula is valid for a symmetric game only, and for the asymmetric game, the result is
still waiting to be solved, but recently Hussain et al. [8] suggested an approximation to solve it in
the following way:

E(T ) ≈ 1 +
λ1

λ1 − λ2 − 2λ3
,

where,

λ1 = (a1 + 2)(a2 − 1)(a3 − 1)p1 + (a1 − 1)(a2 + 2)(a3 − 1)p2 + (a1 − 1)(a2 − 1)(a3 + 2)p3,

λ2 = (a1 + 4)(a2 − 2)(a3 − 2)p21 + (a1 − 2)(a2 + 4)(a3 − 2)p22 + (a1 − 2)(a2 − 2)(a3 + 4)p23,

and,

λ3 = (a1 + 1)(a2 + 1)(a3 − 2)p1p2 + (a1 + 1)(a2 − 2)(a3 + 1)p1p3 + (a1 − 2)(a2 + 1)(a3 + 1)p2p3.

There are several variants available in the literature about 3-player game. Engel [6] devised the
three-tower problem, a popular modification to the 3-player game. In the adjacent past, Hussain [9]
proposed a variant for the classical 3-player game by involving the interest only in a specific player,
who is playing against the other two adversaries. He derived the expressions for ruin probability
and expected time to ruin for both symmetric and asymmetric games. Recently, Diaconis and
Ethier [5] suggested another variant for the game of three players. In their variant, two players are
chosen at random for each round and one dollar is transferred from loser to winner based on their
probabilities. Eventually, one of the players is eliminated, and the game still continues as a simple
2-player game. For a heavy total budget, they have discussed six different approaches to solve this
game, i.e. exact computation by using the Markov chain, arbitrarily precise computation by using
Jacobi iteration, linear interpolation from exact probabilities, the Monte Carlo approach, regression
on an independent chip model (ICM), and approximation by Brownian motion.

The literature about gamblers’ ruin problem for N > 3 is even more limited. Chang [2] used the
same idea as Sandell [14] and solved the 4-player game by using two different expressions. However,
his expressions are not in closed form. In a similar vein, Cho [3] derived an expected ruin time for
a 5-player game but his expression is also restricted by the same issue. Finally, Rocha and Stern
[12, 13] proposed generalizations of N -player game with an equal initial budget.

In contrast with the classical gambler’s ruin problem, this research creates a new direction for
the game. It is a pure stochastic version but stops the game when its trials reaches the minimum
initial budget involved by players. A similar study but with a different perspective was conducted
for the gambler’s problem, where the game continues as usual until the number of trials reaches a
given magnitude called cover time by Chong et al. [4]. Recently, Perotto et al. [11] suggested a
decision-based gambling process, where a player can quit the game at any round and the game
should be stopped there. A player can quit the game before ruining with suggesting an optimal
strategy to stop the game was studied by Ankomah et al. [1].

In the rest of the article, we demonstrate the theoretical foundation of the newly devised game
with the main results in Section 2. In the next Section 3, we valuate the proposed strategy by
using numerical findings when three and ten players are involved in the game. In the last Section 4,
we provide a summary of the study.
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2 Theoretical foundations

2.1 Problem formulation

Consider a contest with N players, denoted Ai, i = 1, 2, · · · , N , each with their own initial budget,
a1, a2, · · · , aN , respectively. In each trial, the player Ai is chosen as the winner with the probability
pi, where

∑N
i=1 pi = 1, and get a dollar from each of the remaining N − 1 gamblers. Furthermore,

we assume that the game is over when the trials reach a minimum of ai, say, ai = α. To conduct the
analysis for this game plan, we divide the players into two groups: G1, which consists of the players
with the smallest initial budget, i.e. α, and all other players with an initial budget greater than α,
should be in the group G2, which is also the complement of the group G1. In other words, G1 is a
set of one, two, or up to N players based on their initial budget α, e.g. G1 = {Ai}, whereas G2 is a
set of N − 1 players excluding player Ai. Another example of groups is G1 = {A1, A2, · · · , AN} if
they all start with the same budget, i.e. α, whereas G2 = φ. Also, let the initial budget of a player
Ai, who belongs to group G2, be β. Our goals in this game plan are to determine the expected
fortune and variance of a player Ai who belongs to group G1 or G2. To solve it, we examine the
game from two perspectives: the player Ai from group G1 or the player Ai from group G2, each
with his/her own initial budget and winning probability.

2.2 The distribution of the fortune

Let ω = (x1, x2, · · · , xα) be the sequence of α independent trials, where xl, ∀ l ∈ {1, 2, · · · , α},
follows as the following indicator variable:

Xl =

{
N − 1; pi

−1; 1− pi.

For a given α, the sample space consists of all 2α such sequences. Another way to define it as a
stochastic process {Θα}, we set

Θα = α +X1 +X2 + · · ·+Xα,

where, X0 = α. In this case, the fortune distribution is binomial, so no success in α trials by a
player Ai with a probability of (1− pi)α, one success means the player will finish the game with a
probability of pi(1− pi)α−1, and so on.

Proposition 1 Let {Θα} be a simple random walk that terminates after a fixed number of trials,
i.e. α. Let y represents the number of successes, such that y ∈ {0, 1, · · · , α}. The expected fortune
for a player Ai in group G1 is then:

E(Ai) =

y=α∑
y=0

Ny

(
α

y

)
pyi (1− pi)α−y, (1)

and the variance of the fortune as:

V(Ai) =

y=α∑
y=0

(
Ny − E(Ai)

)2(
α

y

)
pyi (1− pi)α−y. (2)

where, N is the number of players involved in the game.
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Corollary 1.1 For a symmetric game, the expected fortune equals the initial budget of the player
Ai, who belongs to the group G1. We have

E(Ai) = α.

Corollary 1.2 For a symmetric game, the variance of the fortune is equal to the (N-1) times of α.
We have

V(Ai) = (N − 1)α.

Proposition 2 Let {Θα} be a simple random walk that stops after a fixed number of trials, i.e.
α. Let z be the number of successes, such that z ∈ {0, 1, · · · , α}. Then the expected fortune for a
player Ai in group G2 is:

E(Ai) =
z=α∑
z=0

(
(β − α) +Nz

)(
α

z

)
pzi (1− pi)α−z, (3)

and the variance of the fortune as:

V(Ai) =
z=α∑
z=0

(
(β − α) +Nz − E(Ai)

)2(
α

z

)
pzi (1− pi)α−z, (4)

where, β is the initial budget by a player Ai, who belongs to group G2.

Corollary 2.1 In a symmetric game, the expected fortune equals the player’s initial budget (for a
player who belongs to the group G2). We have

E(Ai) = β.

Corollary 2.2 In a symmetric game, the variance of a player’s fortune equals (N-1) times α. We
have

V(Ai) = (N − 1)α.

3 Numerical investigation

Using the respective expressions, proposed in the preceding section, we examine the numerical
findings for the newly devised approach to the N -player game in this section. Table 1 comprehends
the expected fortune and variance of fortune for a 3-player game with any arbitrary initial budget
set by the players. We present the results for both cases, i.e. symmetric and asymmetric games.
For a symmetric game, someone can verify the results with propositions. In a similar vein, we
extend our results for a 10-player game for both cases (symmetric and asymmetric) in Table 2 with
providing any arbitrary initial budget by the respective players. One may also appreciate that the
findings in Table 2 also agree with our propositions. Based on these numerical investigations, any
contender can easily find his/her expected fortune and variability against it before entering the
game.
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4 Summary

This research contributes to a new direction in the classical N -player gamblers’ problem. In the
devised game plan, the trials are fixed in advance up to the minimum of the initial budget, say
α, involved by the players. By solving the game, we divide the players into two groups. The first
group contains all those players who have α budget and the remaining players are in the second
group. Then we’re interested in calculating the expected fortune and variance of any player Ai
(either from the first or second group). As per our knowledge, this type of game (i.e. to stop the
game at minimum of initial fortune by players) has not been viewed in the literature of gamblers’
problem. The legitimacy of the proposed structure of the game is established mathematically and
numerically as well.
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Table 1: Expected fortune for 3-player game with symmetric (pi = 1/3, i = 1, 2, 3) and asymmetric
(p1 = 0.4, p2 = 0.35, p3 = 0.25) games.

Symmetric Asymmetric
a1 a2 a3 E(A1) E(A2) E(A3) V(A1) V(A2) V(A3) E(A1) E(A2) E(A3) V(A1) V(A2) V(A3)
5 5 8 5 5 8 10 10 10 6 5.25 6.75 10.8 10.2 8.4
5 7 9 5 7 9 10 10 10 6 7.25 7.75 10.8 10.2 8.4
8 7 10 8 7 10 14 14 14 9.4 7.35 8.25 15.1 14.3 11.8
10 10 10 10 10 10 20 20 20 12 10.5 7.5 21.6 20.5 16.9
10 12 10 10 12 10 20 20 20 12 12.5 7.5 21.6 20.5 16.9
15 14 12 15 14 12 24 24 24 17.4 14.6 9 25.9 24.6 20.3

Table 2: Expected fortune for 10-player game with symmetric (pi = 1/10, i = 1, 2, · · · , 10) and
asymmetric (p1 = 0.04, p2 = 0.05, p3 = 0.06, p4 = 0.08, p5 = 0.09, p6 = 0.10, p7 = 0.12, p8 =
0.13, p9 = 0.15, p10 = 0.18) games.

E(A1) E(A2) E(A3) E(A4) E(A5) E(A6) E(A7) E(A8) E(A9) E(A10)
V(A1) V(A2) V(A3) V(A4) V(A5) V(A6) V(A7) V(A8) V(A9) V(A10)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 Symmetric
5 5 5 7 7 8 10 10 12 15 5 5 5 7 7 8 10 10 12 15

45 45 45 45 45 45 45 45 45 45

7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16
63 63 63 63 63 63 63 63 63 63

10 9 11 9 12 13 14 9 10 12 10 9 11 9 12 13 14 9 10 12
81 81 81 81 81 81 81 81 81 81

Asymmetric
5 5 5 7 7 8 10 10 12 15 2 2.5 3 6 6.5 8 11 11.5 14.5 19

19.2 23.75 28.2 36.8 40.95 45 52.8 56.55 63.75 73.8

7 8 9 10 11 12 13 14 15 16 2.8 4.5 6.2 8.6 10.3 12 14.4 16.1 18.5 21.6
26.88 33.25 39.48 51.52 57.33 63 73.92 79.17 89.25 103.32

10 9 11 9 12 13 14 9 10 12 4.6 4.5 7.4 7.2 11.1 13 15.8 11.7 14.5 19.2
34.56 42.75 50.76 66.24 73.71 81 95.04 101.79 114.75 132.84
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