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The microhertz frequency band of gravitational waves probes the merger of supermassive black

holes as well as many other gravitational wave phenomena. However, space-interferometry

methods that use test masses would require substantial development of test-mass isolation systems

to detect anticipated astrophysical events. We propose an approach that avoids on-board inertial test

masses by situating spacecraft in the low-acceleration environment of the outer Solar System. We

show that for Earth-spacecraft and inter-spacecraft distances of  AU, the accelerations on the

spacecraft would be sufficiently small to potentially achieve gravitational wave sensitivities

determined by stochastic gravitational wave backgrounds. We further argue, for arm lengths of 

AU and  Watt transmissions, that stable phase locks could be achieved with 20 cm

mirrors or   m radio dishes, although for the laser case this would require lower laser frequency

noise relative to the LISA lasers. We discuss designs that send both laser beams and radio waves

between the spacecraft, finding that despite the   longer wavelengths, even a design with

radio transmissions could reach stochastic background-limited sensitivities at  Hz.

Operating in the radio significantly reduces many spacecraft design tolerances. Our baseline concept

requires two arms to do interferometry. However, if one spacecraft carries a clock with Allan

deviations at   seconds of  , a comparable sensitivity could be achieved with a single arm.

Finally, we discuss the feasibility of achieving similar gravitational wave sensitivities in a ‘Doppler

tracking’ configuration where the single arm is anchored to Earth.
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1. Introduction

It has been less than a decade since the first direct detection of gravitational waves by the LIGO/Virgo

collaboration[1]. In subsequent years, the LIGO/Virgo collaboration has cataloged more than a hundred

black hole merger events at kilohertz frequencies[2], as well as several neutron star merger

candidates, including the famous 2017 multi-messenger event[3]. Recently, the observed spectral

range of gravitational waves has been extended to almost a nanohertz with the likely detection of a

stochastic gravitational wave background using pulsar timing arrays[4][5][6], a signal that probably

owes to the inspirals of the most massive supermassive black hole binaries.

A gravitational wave interferometer sensitive to significantly lower frequencies than LIGO/Virgo

requires going to outer space because of seismic noise as well as other terrestrial noise sources. The

Laser Interferometer Space Antenna (LISA), scheduled for launch starting in 2035[7], aims to fill in

the  Hz waveband that is intermediate between the pulsar timing arrays and the ground-

based efforts like LIGO/Virgo. LISA will send laser beams between three spacecraft in a triangle

configuration with side lengths of  AU. The lasers will work as multiple Michelson-like

interferometers, with the aim of measuring phase changes that result from displacements as small as

an angstrom. The reference for these precise displacement measurements must be sufficiently

isolated from sources of acceleration (such as the Sun’s irradiance variations) to reach the

sensitivities needed to detect known astrophysical gravitational wave sources. Each LISA spacecraft

employs the most sensitive accelerometer ever built, which works by monitoring a nearly drag-free

test mass.

Considerable effort has been directed towards finding detection strategies in other regions of the

gravitational wave spectrum. The most exciting frontiers are the decihertz region, between the

waveband probed by LISA and LIGO/Virgo[8], and the “microhertz” band of    Hz, which

falls between the pulsar timing arrays and LISA. This   Hz band probes the early inspiral of

the    black holes that LISA observes nearer to merger, as well as the inspiral and

merger of   black holes – the class of black holes that are associated with quasars and

may be more likely to yield an electromagnetic counterpart. There are a host of other astrophysical

sources that fall in the   Hz band e.g.[9]. While many proposed methods in this waveband

lack sufficient sensitivity for known astrophysical processes, they may still detect larger backgrounds,

such as those produced in the early universe[10][11]. One idea is to use measurements of the lunar orbit

− 110−4

0.017

−10−7 10−4

−10−7 10−4

∼ −105 106.5M⊙

−106.5 1010M⊙

−10−7 10−4

qeios.com doi.org/10.32388/L6RW3G.2 2

https://www.qeios.com/
https://doi.org/10.32388/L6RW3G.2


by future laser ranging[12]. Another is to use the very precise angular localizations of stars to constrain

angular variations from passing gravitational waves, i.e. gravitational wave astrometry[13][14][15]. The

proposals forecast to be the most sensitive follow in the spirit of an expanded LISA, where the three

spacecraft are situated in an equilateral triangle tracing Earth’s orbit[16][17]. Two recent examples are

the  Ares and LISAmax concepts[9][18].

The  Ares concept assumes acceleration isolation to   m s-2 Hz-1/2 over its proposed frequency

band of   Hz, which contrasts with the LISA acceleration allowance of   m s-2 Hz-1/2 at the

bottom of the LISA band of    Hz[7]. LISAmax more conservatively takes the same acceleration

control specifications as the LISA mission, allowing it to achieve   improved sensitivity over LISA

owing to the longer arms. LISAmax additionally extrapolates the LISA acceleration control below the

LISA band to   Hz assuming the square root of its error power spectrum scales as  [18]. However,

there are some acceleration sources for the LISA accelerometer that become important at 

  Hz and that scale much more strongly than    to lower frequencies, such as thermal-

mechanical noise e.g.[19]. Concerned that substantial development in acceleration control would be

required for space-interferometers to probe the    Hz band,[20]  considered the possibility of instead

establishing stations on two asteroids with orbits around   AU and carefully measuring their relative

distance. Because of their large masses, the asteroids would behave as excellent test masses, avoiding

the need for precise acceleration control.

Here we consider another method to avoid on-board acceleration monitoring – employing spacecraft

further out in the Solar System, reaching distances and inter-spacecraft separations of tens of

astronomical units. Abandoning drag-free control was considered by[21]  and[16]  in the context of a

LISA-like mission. The outer Solar System application we consider results in a potentially massive

reduction in acceleration sources, as the solar irradiance variations and the solar wind density fall off

as   with distance from the Sun. Arms over which the gravitational wave signal is measured can be

oriented perpendicular to the spacecraft-Sun direction to further suppress these largely radial

accelerations[21]. Finally, the longer baselines of our outer Solar System concept may relax other

system specifications: When fixing the strain noise power due to shot noise at long wavelengths, the

timing error, displacement error, and square of the angular pointing error are relaxed in proportion to

the baseline distance.
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A drawback of such long baselines is that the electromagnetic transmissions between spacecraft would

be weak. However, we argue that even for spacecraft that are separated by several tens of astronomical

units, Watt-scale electromagnetic transmissions are still sufficiently strong to achieve a stable phase

lock. Another concern is that only meager  kbps downlinks have been achieved to spacecraft in the

outer Solar System. Fortunately, only a single phase measurement for every hour of data may be

required because of the low frequencies of interest such that an hour per month of  kbps

downlinks would likely be sufficient.

This paper also considers an additional optimization, using radio dishes rather than lasers to measure

spacecraft separations. One difficulty with using lasers pertains to the spacecraft relative velocities:

larger relative velocities mean larger differences in the interfering frequencies,  . As phase errors

scale with timing errors   as  , many of the spacecraft design tolerances would be set by the

magnitude of this frequency difference. While the changes in velocity may be slow enough that small

frequency differentials can be achieved by periodically tuning the frequencies with small adjustments

to the laser cavity properties, the radio avoids this difficulty by directly measuring the phase of the

inter-arm transmissions. Other advantages of the radio include being insensitive to intensity

variations in the transmission as well as relaxed pointing requirements. However, using radio

broadcasts rather than lasers is potentially much less sensitive to gravitational waves due to the 

  times longer wavelengths. We show that a radio instrument can still be sufficiently sensitive

that acceleration noise (which is insensitive to the transmission wavelength) is dominant over much

of the gravitational waveband of interest. Another concern with a radio effort is that plasma

dispersion would contaminate the measured phases. We show that this noise can be essentially

eliminated using two frequency channels and at only moderate cost to the sensitivity.

A radio design may be more easily added to other outer Solar System spacecraft, which often already

include a relatively large high-gain antenna for telemetry.1

Indeed, there is a long history of using radio broadcasts to track spacecraft velocities and probe

gravitational waves for a review see[22]. There has been recent interest in Doppler tracking in the

context of a future outer Solar System mission, where it has been suggested that a large improvement

in sensitivity may be possible, pushing Doppler tracking into a regime where it can detect anticipated

astrophysical sources[23]. We show that reaching the sensitivity benchmarks in[23]  at  Hz

would likely require on-board instrumentation that corrects for the accelerations from solar radiation

and the interplanetary plasma.
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This paper is organized as follows. Section 2 discusses the radiometer and acceleration noise sources

that are likely to shape the sensitivity of the proposed concept. Section  3 uses these estimates to

predict the concept’s gravitational wave sensitivity, where we consider the three general mission

architectures illustrated in Figure 1. Section 4 elaborates on some of the instrumental considerations

that are most relevant. The appendices discuss the effects of the interplanetary plasma on the phase

timing of radio waves, considering dispersion (A) and refraction (B), and also consider the downlink

data rates that the concept would require (C).

Figure 1. Illustration of the three different architectures considered in this paper: (1) A two-arm design

that relies on time-delay interferometry in blue, (2) a single-arm design that relies on a precise atomic

clock in red, and (3) an Earth-anchored Doppler tracking design in purple. Our primary focus is on the

two-arm time-delay interferometry concept, but we discuss the clock requirements to achieve a

comparable sensitivity with a single arm. We contrast the sensitivity of these two designs with the

traditional Doppler tracking to outer Solar System spacecraft in § 3.3. For the calculations in this paper, we

consider designs with spacecraft-spacecraft and spacecraft-Earth separations of 10 AU and 30 AU,

although the spacecraft would be most easily placed on trajectories where they drift outward rather than

orbit the Sun (so that their separations would gradually increase with time). As a conceptual reference

comparison, Saturn orbits between approximately 9-10 AU, Uranus between approximately 18-20 AU, and

Pluto between approximately 30-50 AU.
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Unless stated otherwise, 1D power spectra are always half-bandwidth power spectra. As both

electromagnetic and gravitational signal frequencies appear in our calculations, to distinguish them,

we generally use wavelengths when referring to electromagnetic transmissions that are sent along

arms, and we generally use frequencies when referring to gravitational wave signals and their

potential noise sources, noting the few cases where we do not. We use Gaussian conventions for

electromagnetic quantities such as electron charge (although we do use volt rather than statvolt when

referring to spacecraft voltages).

2. Strain noise sources

This section considers the different noise sources that set the sensitivity. We first consider clock errors

and their avoidance through time-delay interferometry (§  2.1), then discuss errors related to the

strength of the electromagnetic beams (§  2.2), and finally discuss acceleration errors (§  2.3). These

noise sources are then used to calculate the gravitational wave sensitivity of our concepts in § 3.

2.1. Clock noise and its mitigation

Single-arm and an atomic clock

Let us first consider a one-arm configuration in which a monochromatic light wave with phase 

  tied to a on-board oscillator or atomic clock. This wave is sent from one spacecraft to another a

distance   away and then returns. If the phase of the incoming signal is compared with the phase on

board, up to an overall constant the phase difference is given by e.g. [24]

where   is the electromagnetic wave’s angular frequency,    is the noise, and   is

the gravitational wave contribution to the phase in the long wavelength limit  . (This limit

applies at our target of 1 Hz, where the gravitational wavelength is  .) The phase of the

electromagnetic signal   has noise that can be related to the Allan deviation   of the clock. If we

assume that the clock’s frequency noise is white such that  , the phase noise power is [25]

ϕos

L1

= (t − 2 /c) − (t) + (t) + ,ϕ1 ϕos L1 ϕos
2π

λ
L1h1 ϕ1,N (1)

2πc/λ ϕ1,N × (t)2π
λ

L1h1

c/f ≫ L1

μ 2000~AU

ϕos (τ)σy

(τ ∝σy )2 τ−1

(f) ≡ 2 ⟨ ⟩ = ,Sos T −1 ϕ
~2

os

2(2πc/λ × τ × (τ)2 σy )2

(2πf)2
(2)
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where   is the Fourier transform of   over time interval  . Since the phase difference given by

equation (1) involves   at two times, the phase noise power relevant for constraining   is

Equation (3) allows us to calculate the long-wavelength strain noise power of our interferometer

owing to white frequency modulation clock noise:

where we have adopted the convention of evaluating the Allan deviation at a second.

The Deep Space Atomic Clock – an atomic clock launched in 2019 and a prototype for future

interplanetary space missions – achieved   for   s in a 2019 launch

to a geostationary orbit[26]. The outer Solar System would avoid Earth magnetic field variations and

the    temperature variations that it experienced, perhaps allowing the Deep Space Atomic Clock to

achieve a noise level closer to its   improved performance in the laboratory[26], a precision that has

also been achieved by other space-certified clocks[27]. The best atomic clocks on Earth have achieved 

  values of    [28][29], and some studies have considered space-based gravitational wave

detectors with atomic clocks of comparable precision[30][31].

The strain sensitivity given by equation (4) for timing precision of the best space qualified clocks is

close to the sensitivity to detect the strain from equal mass    supermassive black hole

mergers (as will be discussed in §  3). However, a couple orders of magnitude more precise atomic

clocks are likely required to reach the strain sensitivities that could justify a spacecraft relying on

atomic clocks. Due to the rapid development of terrestrial atomic clocks, a one-arm mission that relies

on an atomic clock may become a possibility in the near future, and such a mission would be most

motivated at  Hz owing to the larger strain amplitudes from anticipated astrophysical sources.

We provide estimates for the mission sensitivity for different    in §  3. We next review time-delay

interferometry, an approach that essentially eliminates clock noise.

Two-arm and time-delay interferometry

The clock noise can be greatly reduced with a  -arm interferometer using a technique called time-

delay interferometry[32][33]. We consider a two-arm configuration with a home spacecraft

broadcasting monochromatic waves (either with lasers or high-gain antennas) to two other

ϕ
~

os (t)ϕos T

ϕos h1

= 2 [1 − cos(4π f/c)] .Sos,tot Sos L1 (3)

= = (1s × (1s) = 2.8 × ( ) .h
~LW

os
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− −−−−

√
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spacecraft, with these spacecraft a distance   and   away. This wave travels to the other spacecraft

and then is sent back and compared to the reference wave at the home spacecraft. The phase

differences measured from each of the two arms are

following the same conventions as in equation (1). The data from a three-spacecraft configuration

linked over two arms can be synthetically combined to create the following ‘time-delay’ observable:

Remarkably, the clock noise –    – cancels in this expression – and, when considering a single

frequency   and the limit  , other noise sources are suppressed by the same factor as   in this

estimator – meaning that  ’s sensitivity to    is the same as that of    but without clock

noise.2 For our calculations, the knowledge that   exists allows us to consider the interferometric

observable   in the absence of clock noise.3

2.2. Radiometer noise

When limited by the strength of the incoming transmission, and deferring until §  4.1 some

complications that arise for the heterodyne interferometry of lasers, a spacecraft can measure the

incoming phase using a phase-lock loop with a half-bandwidth error power spectrum of e.g. [34]

where    is the ratio of the carrier power to the unit-frequency noise power. Tildes denote the

Fourier dual such that   is the Fourier dual of the phase noise in equation (1). Equation (7) holds for

both an interferometric setup using optical lasers or one with radio dishes, although what sets the

noise is different in the two cases.

In the optical,   is set by the shot noise of the received laser[35]:

L1 L2

= (t − 2 /c) − (t) + (t) + ;ϕ1 ϕos L1 ϕos
2π

λ
L1h1 ϕ1,N

= (t − 2 /c) − (t) + (t) + ,ϕ2 ϕos L2 ϕos
2π

λ
L2h2 ϕ2,N

(5)

X(t) = [ (t − 2 /c) − (t)] − [ (t − 2 /c) − (t)].ϕ2 L1 ϕ2 ϕ1 L2 ϕ1 (6)

ϕos

f =L1 L2 h1

X(t) h1 −ϕ1 ϕ2

X(t)

−ϕ2 ϕ1

(k) ≡ 2 ⟨| ⟩ = (C/ ,Sn T −1 ϕ
~

1,N |2
N0)−1 (7)

C/N0

ϕ
~
N

C/N0

[C/N0]Optical
dB-Hz = 10 ,log10

Prec

2ηhc/λ

= 33dB-Hz + 10 ( )+ 40 ( )log10
Pem

10W
log10

D

20cm

− 10 η − 20 ( )− 10 ( ),log10 log10
L

30AU
log10

λ

1μm

(8)
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where    is the received power of a Gaussian laser optimized to maximize the received power, 

  accounts for efficiency of the photodiodes and the fraction of the laser power at the heterodyne

frequency,   is the mirror diameter, and we are using the engineering convention of characterizing 

 in dB-Hz where  . This paper considers   and   AU, and a

LISA-like   m.

In the radio, the noise is characterized by the effective temperature of the system,  , and given by

where   is the emitted power and   is the effective diameter of the radio dishes[34]. We have used

the expressions in[36] to calculate   from   for a radio dish. We will use Ka band transmissions

with  cm for our estimates. For reference, the Voyager and Cassini probes had 4 meter diameter

radio dishes, the SMAP spacecraft employed a fold-out 6 meter dish[37], the RadioAstron satellite that

orbited to the Moon had a fold-out 10-meter dish[38]. Additionally, values of the receiver noise

temperature of  K are typical for narrow band receivers at room temperature, even space-

qualified ones[39].4

To put the dB-Hz in equations (8) and (9) in context, which evaluate to    for

the parameter values discussed in this paper, LISA’s pilot tones, whose phase is measured and used to

correct timing jitter in the analog-to-digital conversion, have    [40], a full four

orders of magnitude larger    than the signal for fiducial values in equations  (8) and (9). The

GRACE-FO mission’s laser lock is able to operate at    with minimal cycle slips[41].

Another point of reference is the  -band downlink of Cassini at  AU to 34 m Deep Space Network

antenna – used for the most precise Doppler tracking experiment – had   [42].

Finally, the Voyager spacecraft at  AU communicated with   when communicating

to a  m Deep Space Network antenna[43].

Despite requiring lower    than previous space missions, there has been substantial success at

ranging with such weak electromagnetic signals. Indeed, dB-Hz    is known as the acquisition

threshold for a receiver locking onto the Global Positioning System ranging code – roughly the

threshold where a delay-lock loop can acquire the frequency and delay of a signal within  ms by brute

Prec

η

D

C/N0 [C/ ≡ 10 (C/ )N0]dB-Hz log10 N0 L = 10 30

λ = 1μ

Tsys

Radio
dB−Hz

= 10 ( ),log10
Prec

kTsys

= 34dB-Hz + 10 ( )+ 40 ( )log10
Pem

10W
log10

Deff

5m

− 10 ( )− 20 ( )− 20 ( ),log10

Tsys

50K
log10

L

30AU
log10

λ

1cm

(9)

Pem Deff

Prec Pem

λ = 1

∼ 50

[C/ ∼ 30 − 50N0]dB−Hz

[C/ = 75N0]dB−Hz

C/N0

[C/ = 61N0]dB−Hz

X 10

[C/ ≈ 40 − 50N0]dB−Hz

140 [C/ = 30N0]dB−Hz

D = 70

C/N0

≈ 35

1
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force search over a grid of delays and frequencies motivated by typical terrestrial uncertainties[34]. As

our concept’s velocities and positions would be extremely well constrained, the threshold for

acquisition of a ranging code would be even lower. (Of course, too small of a signal will result in cycle

slipping in the phase-meter as discussed below.) Just like in these examples, the wave sent along each

arm would likely be modulated by a pseudo-random code. Once a delay lock is established, the

pseudo-random code decorrelates the signal from contaminating signals, such that we would

anticipate phase measurements that are limited by either shot or thermal noise will be possible

despite the small  .

Translating   to a strain noises via equation (7) yields

which must satisfy the requirement that    for there to be a phase lock with

negligible cycle slipping for typical parameters considered in this paper, where    is the effective

averaging-time for the phase measurement made by the phase lock loop   is the bandwidth of the

phase-lock loop[44][34]. This condition and equation (10) means that our concepts require 

 s, with the exact value depending on their  . However,   cannot be longer than the

time over which the phase changes by an order one value because of displacements from

accelerations, clock drifts, or frequency drifts in the laser. The mean acceleration from the Sun we find

leads to displacements of a waveperiod over   s for the laser case and over a much longer

period for the radio one. The maximum   may also set by clock noise, although we find that this is

unlikely to prevent values of    s and even possibly much larger, or the lasers’ frequency

stability for the laser case. Defining    to be the laser frequency noise power, we find that 

  must be satisfied at    to not significantly impact the signal-to-noise of a phase

measurement as, in a simplified model for the phase lock where the phase is measured over a tophat

window of width  , we find the requirement for minimal cycle slips changes to 

 when measuring the phase from two interfering lasers, both with the

same white frequency noise  . For   s, this condition requires a factor of   improvement

over the requirement on   of LISA’s lasers, which have the requirement   over

pertinent frequencies. Improved frequency noise could potentially be achieved with greater thermal

control of the resonant cavity or choosing materials with smaller thermal expansion coefficients[45].5

The GRACE-FO mission lasers achieved frequency stability of   [41].

C/N0

C/N0

= = 0.01 × ,ϕ
~

rms (k)Sn

− −−−−
√ 10−([C/ −40)/20N0 ]dB−Hz  rad Hz−1/2 (10)

( /2 ≲ 0.1Tϕ )−1/2ϕ
~

rms

Tϕ

2/Tϕ

≳Tϕ 10−2 C/N0 Tϕ

∼ 10(r/30AU)

Tϕ

∼Tϕ 10−2

Sf

≲ 0.3SfTϕ f ≳ T −1
ϕ

Tϕ

( /2 exp[ ] ≲ 0.1Tϕ )−1/2ϕ
~

rms SfTϕ

Sf =Tϕ 10−2 ≳ 5

SF
−−−

√ < 30Sf
−−

√ Hz/Hz1/2

∼ 0.4(f/1HzSf
−−

√ )−1Hz/Hz1/2
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Translating equation (10) one step further into a displacement noise yields

where the two displacement noise values correspond to   cm – the Ka band radio regularly used

for ranging –    m – a LISA-like near infrared laser. For reference, LISA aims to achieve 

 rad Hz-1/2 and   cm Hz-1/2 [7].

Finally, these estimates translate into a precision for how well the gravitational wave strain can be

measured. The long wavelength strain noise for a single arm is

We will eventually use a transfer function that converts the single-arm noise in the low    limit to a

two-arm time-delay interferometry measurement that is applicable at all   (§ 3). The factor of   in

the first expression is because there are uncorrelated measurements of the phase at both spacecraft in

an arm. Here,   encapsulates the increase in the phase error from using phase measurements at two

wavelengths to eliminate plasma dispersion. Since plasma dispersion is negligible for lasers, for the

laser setup a single wavelength would be used and  . We show in Appendix A that   if

wavelengths differing by a factor of 4  (2) are used when referenced to the shorter wavelength,

assuming   and   are the same at both wavelengths.

Another possibility is to use nanosecond laser pulses as a clock, rather than the carrier phase timing

considered so far. Laser pulses would be more noisy for the Solar System-scale baselines we consider

since the signal can no longer be matched to a template phase, with

where    and    are the sizes of the mirrors on the emitting and receiving telescopes, and this

assumes the laser pulses have a width equal to the time between pulses cf. their eqn. 95[20]. We return

to this possibility in § 3.3.

= = ( , ) cm H × ,Δx
~

rms

λϕ
~

rms

2π
1.6 × 10−3
  

λ=1cm

1.6 × 10−7
  

λ=1μm

z−1/2 10−([C/ −40)/20N0 ]dB−Hz (11)

λ = 1

λ = 1μ

= 9 ×ϕ
~

rms 10−6 = 15 ×Δx
~

rms 10−10

h
~LW

rms = ,
2–√ Δx

~
rms

L

= ( , )   A × .5 × 10−18
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2.3. Acceleration noise

In this section, we consider different sources of acceleration on the spacecraft. We quantify this in

terms of the acceleration power spectrum on one detector, defined as  , where 

 is the Fourier transform of the acceleration over time  . Figure 2 summarizes our estimates for

the important acceleration sources, assuming a fiducial spacecraft effective area over mass of 

  m2  kg-1 – justified further in §  3.1 – and spacecraft at a heliocentric radius of 

 AU. These include solar irradiance variations, drag from the solar wind, Lorentz forces on the

spacecraft assuming the maximum possible spacecraft charge, and dust for two maximum dust

masses (as explained later, the lower of the two dust curves is the more applicable). Figure  2 also

shows the acceleration control specification of the Gravitational Reference Sensor (GRS) on LISA[7]. A

LISA requirement is to achieve the acceleration control shown by this curve to frequencies as low as 

  Hz, with the goal to achieve this to    Hz. This figure shows that at 30AU the different

sources of acceleration are only an order of magnitude larger than the sensitivity of the GRS at 

 Hz. Furthermore, since the dominant accelerations are radial with respect to the Sun, additional

geometric cancellation is likely when optimizing the spacecraft orientations. This motivates our

overall direction of considering an outer Solar System instrument without a precise accelerometer.

In what follows, we discuss each source of acceleration, ordered roughly by importance.

(f) ≡ 2 ⟨| (f) ⟩Sa T −1 a~ |2

(f)a~ T
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Figure 2. Square root of the power spectrum (the amplitude spectral density) of the most important

acceleration sources. The calculations assume a spacecraft at a solar distance of   AU (left panel) and 

 AU (right panel) with a mass of   kg and an effective area of   m . As irradiance and

solar wind are directed radially, a reduction in these forces can be achieved by orienting the arms to be

more perpendicular to these radial flows. Two different maximum dust masses are shown, reflecting

uncertainties in the measured distribution. The contamination of accelerations from   g

grains likely can be cleaned. Also shown are the acceleration goal of the LISA Gravitational Reference

Sensor (GRS).

2.3.1. Solar irradiance

During active periods, the Sun shows 0.2% peak-to-peak irradiance variations on the timescale of its

27-day rotation period plus fluctuations over a broad range of timescales. Figure 2 shows the power

spectrum of irradiance variations measured using the Variability of Solar Irradiance and Gravity

Oscillations instrument on the Solar and Heliospheric Observatory VIRGO/SOHO; [46], converting the

radiation force to spacecraft acceleration.6 We use measurements over   that were near the

minimum of solar activity  [46]. The amplitude of the square root of the irradiance power spectrum

varies by a factor of three at   Hz over the eleven-year solar cycle, with smaller variations at 

 Hz.

2.3.2. Solar wind drag

We find that drag from the solar wind is the other important source of accelerations in addition to

irradiance variations. While the mean drag force scales as    with distance from the Sun, the
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inhomogeneous component falls off somewhat less quickly at   AU owing to the amplitude of the

fractional density fluctuations growing with  . From Fourier transforming the time series along its

trajectory, Voyager 2 finds a 1D power spectrum of electron density fluctuations with the approximate

form

where  , and we find using the measurements of  [47]  that the    index

approximates the radial scaling over   AU.

We can convert from an electron density power to a (radial) spacecraft acceleration power using

If we take our approximate form for the power given by equation  (14), a mean molecular weight of 

, and   km s-1 for the velocity of the solar wind, we can rewrite equation (15) as

However, rather than assuming some power-law spectrum as in equation  (16), we can compute the

drag using the actual electron power that Voyager 2 measured using the measurements presented

in[47]. Figure  2 shows just this at 30 AU assuming a spacecraft effective area to mass of 

 m2 kg-1, also using equation (15). Figure 2 illustrates that Voyager 2’s electron power

spectrum is not exactly a power law. Between   Hz,[47] finds  . At higher frequencies,

the spectrum is more consistent with a Kolmogorov turbulence-like   spectrum. There is the

additional complication that[47] did not consider   Hz. While we think it would be possible to

use the Voyager data to probe these lower frequencies, for this study we extrapolate thier

measurement with the index  . Extrapolating with a flatter scaling than that observed at higher

frequencies is motivated by the power spectrum of the solar wind within several astronomical units,

which tends to have a power spectrum of   at these low frequencies. (The properties of the solar

wind are likely to be largely maintained as it advects into the outer Solar System.) Additionally, in the

solar wind, the power spectrum of density fluctuations is often similar to that of magnetic field
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fluctuations, and the power spectrum of the magnetic field amplitude is observed to flatten at sub-

Hz frequencies[48].7

2.3.3. Dust

Each collision with a dust grain results in a change of velocity of the spacecraft of  ,

where    is the mass of the   dust grain and   the mass of the spacecraft. We treat all grains as

having the same velocity of   km s-1, motivated by the interstellar flow of dust that is found to

dominate the dust population in the outer Solar System[49]. If the interferometer arm is not oriented

in the flow direction of the interplanetary dust (which has been found to be moving in roughly the

ecliptic with longitude  ), there is a geometric suppression relative to our estimates.

The density distribution of interplanetary dust is found to be roughly constant per   mass between 

 and   g with   g cm-3[50]. The grain size distribution has not

been measured above    g. We assume    g  cm-3  up to  . Since each

dust collision can be approximated as causing a step function in the spacecraft velocity, the

acceleration of the spacecraft   is then a sum of Dirac  -functions at the collision time  , which

in Fourier space is  . If we treat each grain as uncorrelated in time,

then the acceleration power spectrum is

Figure  2 shows that the dust acceleration power given by equation  (18) is a subdominant source of

acceleration for our fiducial spacecraft specifications. Only if we increase the maximum mass to 

 does it become comparable to other sources of acceleration at  AU.

The accelerations from more massive dust particles can be fit and their contribution to the noise

power removed. The ‘characteristic strain’ of a single dust event provides an estimate for what dust

masses should be detectable and is given by  , where    is the period over

which other dust collisions contribute less to the acceleration relative to the grain in question. To the

extent that the characteristic strain falls above the strain noise, which we find is the case for 

g if  s, the acceleration from the collisions with the dust grain can be

fit for and removed. With our above assumptions about  , grains of mass    strike the
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spacecraft every  , suggesting that dust collisions with  g

grains can be cleaned. We find this statement is relatively independent of the radiometer noise for

typical values considered in this paper, as   has a similar scaling with   to the total acceleration

noise. This indicates that this source of anomalous accelerations would be removable for dust grain

masses that could lead to significant acceleration noise relative to other acceleration sources.

2.3.4. Spacecraft charging

A spacecraft will build up charge as it flows through the interplanetary plasma. The Lorentz force of

the interplanetary magnetic field will then impart accelerations on the spacecraft. The maximum

possible charge    is roughly the charge able to repel solar wind protons from striking the

spacecraft  , where    is the electron charge,    the proton mass,    the

velocity of the solar wind, and    the characteristic size of the spacecraft. We find for a velocity

characteristic of the solar wind of  km  s-1, this results in a maximum voltage of 

V.

The magnitude of both the homogeneous and inhomogeneous magnetic fields in the outer Solar

System are on the order of a  Gauss, falling off by only a factor of two from 1AU to 20AU[48]. The

magnetic field power spectrum is also found to maintain a similar spectrum with distance from the

Sun. This near constancy supports our approach of using the magnetic field power spectrum measured

by the Voyager  1 spacecraft at  AU to compute the Lorentz force on the spacecraft at all the

solar radii considered. This acceleration power for the maximum spacecraft charge is shown in

Figure  2, assuming an effective spacecraft extent of  m to calculate    and then the

acceleration power along an arm is given by  , assuming isotropic 

-field perturbations. However, this is likely an overestimate as interplanetary spacecraft are designed

to have voltages that are likely to be closer to a tenth of our estimate for the maximum[51].

2.3.5. Gravity from asteroids and larger bodies

The gravitational attraction of asteroids will be another source accelerations. Using the JPL Small-

Body Database,[52] computed the acceleration power from asteroids for spacecraft at   AU from the

Sun, finding an acceleration power that is absolutely negligible (  at   and

even smaller values at higher frequencies). However, this catalog of asteroids is wildly incomplete at 

. They also considered a spacecraft at    where catalogs are more complete, and found 

∼ 4 × s( / g ( /10 )106 md 10−9 )−1 Aeff m2 ≳ 10−9
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  at  , dropping to    at  . Given that even

these    values are subdominant when compared to the other outer Solar System acceleration

sources we compute, asteroids are unlikely to be an important acceleration source.

Displacements owing to gravitational pulls from the Sun and planets should be correctable, as the

spacecraft ranging system would measure spacecraft separations to centimeter precision[36]. Long-

term trends from these pulls on the    year orbital time scales of these bodies can be fit for and

removed from contaminating the  yr-1 frequencies of interest.

2.3.6. Off-gassing and other spacecraft emissions

Because our spacecraft would be in such a low acceleration environment, a concern is that off-gassing

either from thrusters or from other components in the spacecraft could drive a substantial

acceleration. Since external accelerations are    for the wave periods of interest,

10 picoNewton of thrust over these periods could result in increased noise.

Thrusters are necessary to dissipate angular momentum on the reaction wheels on week to month

times, but for the science operation would be generally turned off. They can be turned on to dissipate

angular momentum during a science run, and then their delta-function like acceleration profile can be

fit and removed just like for dust grain collisions. When turned off, micro-Newton thrusters can only

leak at a part in   of their baseline thrust to achieve the 10 picoNewton specification. Additionally,

consider the off-gassing of    K gas from within the thermally regulated spacecraft. If the

spacecraft emits in a single direction, the acceleration would be   for   emitted

over time  , or  , evaluated at values that

yield a similar acceleration to what we find for external accelerations at a microHertz (

). As the acceleration power from external sources decreases to higher

frequencies, shorter period off-gassing events may be even more problematic. Ventilation and

thermal control systems that are designed to off-gas perpendicular to the arms and maintain a stable

environment over the gravitational wave periods of interest would likely be required for such

precision.

3. Strain power sensitivity

The carrier-to-noise ratio discussed in § 2.2 and the acceleration noise in § 2.3 allow us to estimate

the gravitational wave strain sensitivity. Namely, the radiometer noise power,  , and acceleration

   10−12 m s−2 Hz−1/2 < 2 × Hz10−7    10−14 m s−2 Hz−1/2 4 × Hz10−7

1 AU

≳

f ≫
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power,  , can be related to the interferometer’s sensitivity to the polarization- and sky-averaged

gravitational wave strain power at a specific frequency (e.g.  [53][54]). The gravitational wave

instrument’s noise when performing the average that generates this strain power is

where the factor of    is because there are two spacecraft in an arm with independent radiometer

noise and    encapsulates the increase in error from fitting out plasma dispersion (and is only

different from unity in the radio). The factor    is because the acceleration of a

spacecraft contributes to a displacement that coherently impacts the phase both in the incoming and

outgoing directions. The function   is a transfer function that transforms the single-arm noise in

the long-wavelength limit (and in which the gravitational wave is propagating orthogonally) to the

noise power seen when averaging the instrument’s strain response over all angles. We will first

consider the instrument to be a two-arm (time-delay) interferometer and later consider one-arm

configurations. The overall factor of two out front of equation (19) follows the conventions for time-

delay interferometry where the phase observable is a difference between the two independent arms,

although we will define    for one-arm configurations to cancel this factor of two so that this

equation still applies. We use the analytic form for    calculated in  [53], and for our time-delay

interferometer configurations assume an angle between the arms of  .8 Equation (19) assumes the

noise and accelerations are independent between spacecraft: This will not be true for the acceleration

noise on the intermediate spacecraft that joins both arms in the time-delayed inteferometry

configuration, as the radial accelerations from solar irradiance and the solar wind will project onto

both interferometer arms.

In what follows, we present the sensitivity for both a two-arm time-delay interferometry setup (§ 3.1)

as well as a setup with a single-arm and atomic clock (§  3.2), and finally consider the ‘Doppler

tracking’ architecture in which the single-arm is anchored to Earth (§ 3.3).

3.1. Two-arm time-delay interferometry forecasts

The left and right panels in Figure  3 show respectively the gravitational wave strain sensitivities

calculated from equation (19) for the proposed concept at a solar distance of   AU and   AU,

assuming the same arm lengths as the solar distance, e.g.  . The calculations assume a geometric

suppression of the radial accelerations from the Sun’s radiation and drag forces by  , as would occur

Sa

(f) = ( + ) ,Sh
2
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2A2Sn
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if each interferometer arm was a side of a distinct equilateral triangle with the other two sides the

Sun-spacecraft distances. If instead the configuration were an isosceles triangle with two satellites at

distance   from the Sun, the suppression factor would be  . These calculations additionally assume

an effective area-to-mass ratio for the spacecraft of   m2 kg-1, which for example could

be achieved with a spacecraft with   m2 and mass of   kg (perhaps more applicable

for the radio dish case) or    m2  and    kg (perhaps applicable to the laser case and

similar to each LISA spacecraft once the solar panels are removed).

Figure 3. Gravitational wave strain sensitivities for the first design architecture: the two-arm time-delay

interferometry concept, with   AU (left panel) and   AU (right panel). The calculations

assume an effective area to mass ratio for the spacecraft of   m2 kg-1 and a geometric

suppression of  , as would occur if each interferometer arm was a side of an equilateral triangle with the

other two sides the Sun-spacecraft distances. The curves show the contributions from accelerations owing

to solar irradiance variations, solar wind drag, the maximum possible Lorentz force from spacecraft

charging, and dust collisions assuming   g and   m2. Also shown by the thick curves

is the total strain error for radio and laser transmissions with different carrier-to-noise ratios ( ),

where we have excluded the smaller contributions to the accelerations from dust collisions and spacecraft

charging. A requirement of the LISA mission is to achieve the sensitivity shown by the gray solid curve for 

 Hz, with the goal to be sensitive to   Hz as illustrated by the dashed extension. The

total strain sensitivity lines are repeated in Fig. 4.

The curves in Figure 3 show the contributions to the noise from accelerations owing to solar irradiance

variations, the solar wind, the maximum possible Lorentz force from spacecraft charging, and dust
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collisions assuming  g and  m2. Also shown by the thick curves is the total

strain error for radio and laser transmissions with different carrier-to-noise ratios ( ). Those

that are for  cm assume carrier-to-noise ratios ( ) of  dB-Hz and  dB-Hz (§  2.2) and 

 (Appendix A). Also shown is a laser effort with  m and  dB-Hz. The noise is smaller

for the case of laser links compared to radio ones at  Hz, whereas at lower frequencies the

sensitives are similar as acceleration noise dominates. A major goal of the proposed concepts would be

to fill in the portion of the gravitational wave spectrum not probed by LISA. The LISA mission (which

has three arms and, hence, more interferometric observables than our one-arm concepts) is required

to achieve the sensitivity shown by the gray solid curve for   Hz, with the goal for LISA to be

sensitive to   Hz as illustrated by the dashed extension.

Figure  4 shows how these sensitivity projections compare to the gravitational wave signals from

astrophysical sources, where we have taken  dB-Hz for the  AU case (left panel) and 

dB-Hz for the  AU one (right panel). The green curves show the characteristic strain of

equal-mass supermassive black hole mergers at    with the initial mass of each black hole

annotated and showing the five years before merger[55]. The characteristic strain is defined such that

the integral over   of the ratio of the characteristic strain to the concept’s noise power equals the

square of the signal-to-noise ratio for detection.

Figure  4 also shows the estimate for the Galactic white dwarf binary stochastic gravitational wave

background (WDB GWB) from[56], which we find to be a factor of two lower than the estimate of[57].

The stochastic background is defined as the background where the density of sources is too high in

each spectral bin over a  yr observing period for cleaning to be effective and hence this represents

essentially an irreducible noise[56]. Frequencies of  Hz correspond to orbital periods for which

gravitational waves in stellar mass systems are not able to drive coalescence in  Gyr. Since this is

approaching the maximum age of stellar systems, at lower frequencies (where the coalescence time is

even longer) the gravitational wave background from stellar binaries will be shaped by the initial

distribution of orbital properties and not just the limit where this distribution is set by gravitational

radiation as these curves assume.

Below    the unresolvable massive black hole binary stochastic gravitational wave background

(MBHB GWB) at the centers of galaxies likely exceeds the background from stellar binaries. The ‘most

likely’ estimate for the MBHB GWB from[58] is shown by the darker grey solid – and we find the total

background in this estimate is in agreement with pulsar timing array observations at  Hz
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e.g.  [4].  [58]  also provided ‘maximum’ and ‘minimum’ bounds on the MBHB GWB, with each bound

shifting the amplitude of   by a factor of   relative to the ‘most likely’ model.

We can also forecast the number of astrophysical sources to which this concept would be sensitive,

using the fact that the strain sensitivities we are forecasting at    Hz are somewhat

similar to the  -Ares concept[9], particularly for our    AU configuration. Over a ten year

period,  -Ares forecasts detecting    inspiralling supermassive black holes, finding 

 black hole binaries in the Milky Way, and observing all stars and compact objects that would

merge with Sag A∗ in   year. Our most sensitive designs would be capable of similar returns.

Figure 4 also shows curves for a more aggressive suppression factor of  . Such a suppression would

likely require monitoring and then correcting the radiation from the Sun and the solar plasma with

additional onboard instrumentation. In fact, the Lagrange concept, proposed as a potentially cheaper

replacement to LISA by abandoning drag-free control, found that such instrumentation could

potentially produce a factor of    suppression beyond the factor of    they aimed to achieve

geometrically[21].

Figure 4. Gravitational wave sensitivity for the same time-delay interferometry architectures as shown in

Fig. 3 with   AU (left panel) and   AU (right panel) and a geometric suppression of  ,

plus the same cases but assuming a more aggressive   suppression factor. Also shown are different

astrophysical sources: estimates for the galactic white dwarf binary stochastic gravitational wave

background (WDB GWB; [56]), the massive black hole binary stochastic gravitational wave background

(MBHB GWB; [58]), and the characteristic strain within   yr of coalescence from equal-mass black hole

mergers at  , where the pre-merger black hole masses are annotated.

Sh
−−

√ ∼ 5

f ≲ 0.5 × 10−4

μ r = L = 30

μ O(1000)

O(100)

−106 108

0.05

100 ∼ 10

r = L = 10 r = L = 30 0.5

0.05

5

z = 3

qeios.com doi.org/10.32388/L6RW3G.2 21

https://www.qeios.com/
https://doi.org/10.32388/L6RW3G.2


3.2. Single-arm with atomic clock forecasts

A simpler mission would use a single arm, but a single-arm design would also require the inclusion of

an atomic clock to reach interesting sensitivities. Figure  5 considers this one-arm setup for 

 and   AU, but Note that the phase noise power induced by clock noise is independent of

the baseline length for  . For this calculation, we generalize equation  (19) to also include the

clock noise given by equation (3), requiring the replacement  , where   is

given by equation (3). This assumes the signal travels along one arm and, then, is transponded back to

the home satellite that has a precise clock. The sensitivity curves are for the   cm radio case for

the specified  , but we note the laser and radio sensitivities are the same to the extent that the

sensitivity is limited by clock noise rather than radiometer noise.

Figure 5. Similar to Figure 4 except showing the gravitational wave strain sensitivities for the second

design architecture: the single-arm atomic clock concept. Additionally, the same   cm time-delay

interferometry curve as in Figure 4 is included for comparison. The curves consider the   cm radio

case, although the sensitivity would not be different for the laser case to the extent that clock noise limits

the sensitivity. Allan deviations for   s of   are similar to the Deep Space Atomic Clock,

whereas the most precise atomic clocks on Earth achieve  . The dashed pink curve shows what

happens to the   case if the clock enters the flicker frequency noise regime at 

 Hz (rather than white frequency noise as otherwise assumed). Phase measurements referenced

to a local clock in each arm would achieve nearly the sensitivity of time-delay interferometry with two

arms if the clock has  . All sensitivity curves assume a geometric suppression of the accelerations

by a factor of  .
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The clock noise is comparable to radiometer noise in the curves that assume the most precise clock

with  , as can be seen by noting their sensitivity is comparable to the corresponding

time-delay interferometry curve. (The transfer function    is modestly different compared to the

two-arm concept.9 At larger  , distinct downward spikes in the noise are present at    for

integer  , due to the clock noise canceling in the noise power. One can see that the amplitude of these

downward spikes decreases with decreasing   as clock noise becomes less of a limiting factor.

For the case of radio transmissions, phase measurements referenced to a local clock in each arm

would achieve nearly the sensitivity that would be achieved by time-delay interferometry if the clock

has  . Allan deviations for  s of   are similar to the Deep Space Atomic Clock,

whereas    has been bested by three orders of magnitude by the most precise Earth-based

clocks[28]. The calculations discussed so far assume   as applies in the case of white frequency

modulation noise, a scaling demonstrated to hold for  s in the case of the Deep Space Atomic

Clock (but sometimes only to  s for the most precise atomic clocks). When white frequency

modulation noise no longer applies, clocks often enter the ‘flicker frequency modulation’ noise

regime where   is constant with   resulting in the clock noise power flattening in   by one index.

The pink dashed curves in Figure  5 show that transitioning to this flicker clock noise scaling at 

Hz for the case   has a relatively modest affect on the sensitivity.

3.3. Doppler tracking forecasts

A potentially simpler design uses Earth for one element in the single-arm setup. This approach has an

extensive history and is called Doppler tracking (for a review, see[59]). Beyond requiring just a single

spacecraft, such a setup has several other advantages: 1) the Earth station’s non-gravitational

accelerations are potentially negligible, 2) more substantial resources are available at the Earth

station, allowing kilowatt up-links, larger collecting areas, and cryogenic cooling, 3) the Earth station

can be equipped with an ultra-precise atomic clock. However, the mechanical distortions of the

instruments from gravity and terrestrial temperature cycles are larger on Earth, and an Earth station

has to further contend with propagation delays due to the Earth’s atmosphere. For reference, our

estimates for a purely space-based time-delay interferometry setup with    AU have

sensitivities of   for  Hz, which corresponds to detecting variations of  cm. It

is conceivable that comparable distance control could be achieved from Earth since lunar laser ranging

has achieved  cm measurements of the Earth-Moon distance[60].
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Previous Doppler tracking, which has been most successfully executed with the Cassini spacecraft, has

been limited by mechanical variations in the analog path owing to e.g. thermal expansion or

gravitational stresses. For Cassini, this resulted in centimeter-scale noise over relevant

frequencies[59]. However, mechanical distortions could potentially be further reduced by using a

smaller terrestrial radio dish constructed to be more rigid[59], by using an optical laser setup, or by

employing a precise atomic clock on the spacecraft. More details on the latter two are provided below.

If mechanical noise can be significantly reduced, atmospheric delays are likely to become the limiting

factor. The atmospheric delay that is most worrisome is the tropospheric “wet” delay from water

vapor in the atmosphere because it is frequency independent – it cannot be removed by observing

multiple frequencies. Although typical wet delays vary by several centimeters on day timescales

towards zenith, much of this delay can be removed by precise atmospheric monitoring, such as with

water vapor radiometers. Indeed, such monitoring occurred for the Cassini Doppler tracking system,

for which[61]  estimated its error by differencing the predictions of two identical systems. They

predicted that the delay could be corrected to   cm over times of hours to months, although their

differencing methodology should be taken as a lower bound on the true error as it does not account for

modeling uncertainties.

Figure 6 investigates the potential sensitivity of Doppler tracking of an    AU (left panel) and 

  AU (right panel) spacecraft. The solid blue curve is the strain sensitivity that a Doppler

tracking arm could achieve if its sensitivity is set by spacecraft accelerations and the downlink

radiometer noise with   dB-Hz (left panel) and   dB-Hz (right panel) and broadcasting in

the Ka band at   cm, with these larger dB-Hz values than in previous plots reflecting that more

collecting area can potentially be available for the Earth station. (The downlink is the limiting step in

terms of phase noise.) Unlike in previous figures, where we assumed some geometric cancellation of

the largely radial spacecraft acceleration, the radial nature of Doppler tracking to outer Solar System

spacecraft means that nearly all of the acceleration projects onto the Earth-spacecraft chord. Still,

mechanical noise and the atmosphere are likely to limit the sensitivity over this ideal curve. Indeed,

the dotted blue points are the best constraints using Doppler tracking, achieved with the Cassini

mission with   AU, with the sensitivity likely limited by mechanical noise[59]. Improvements in

the Cassini noise by as much as several orders of magnitude would be required to reach the blue solid

curve.
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Figure 6. Gravitational wave strain sensitivities for the third design architecture: the Doppler tracking

concept, sending   cm radio signals between an Earth station and a   AU (left panel) and 

 AU (right panel) spacecraft. The solid blue curve is the strain sensitivity that an ideal instrument

could achieve if its sensitivity is set by spacecraft accelerations and radiometer noise with the specified 

. Mechanical noise and Earth’s atmosphere likely limit the sensitivity over this ideal curve. The

magenta dashed curves illustrate the noise power if the atmosphere and mechanical noise can be

subtracted to a residual power that has equal variance per   and equal to   cm and   cm, numbers

motivated in the text. The orange Doppler-tracking sensitivity curve in the right panel is the same as the

blue one except that it includes clock noise with  . If the spacecraft is equipped with such a

clock, an observable exists that can remove atmospheric and mechanical delays. The green dot-dashed

curve shows the   Hz ‘priority’ sensitivity goal for a future mission to Uranus of[23]. The dotted

blue points in the left panel are the best constraints using Doppler tracking, achieved with the Cassini

mission with   AU[59].

Atmospheric and mechanical delays could also be reduced by using a precise clock on the spacecraft

and then doing one-way and two-way ranging (‘One-way’ uses the clock on the spacecraft as the

phase reference that is differenced with a signal sent from Earth. ‘Two-way’ phases the spacecraft to

the terrestrial phase and so does not require a precise clock on the spacecraft and, therefore, is the

mode used by previous Doppler tracking experiments.) Analogous to time-delay interferometry, an

observable can be constructed from the phases of the one-way and two-way ranging signals that

cancels out any delays that occur at the time of emission and reception by the Earth station and does

not remove all of the gravitational wave signal[62], namely by differencing the phases in this manner: 

  -    -  . The orange curve in Figure  6 is the same as the
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blue curve but also includes clock noise with   – ten times lower   than the Deep

Space Atomic clock.10 (This type of observable also eliminates acceleration noise at one satellite. It

could motivate a configuration with a more-resourced satellite in the high-acceleration near-Earth

environment broadcasting to one in the outer Solar System or, alternatively, the satellite near Earth

having a precise accelerometer and the acceleration noise nulled for the outer Solar System satellite.)

The magenta dashed curves shown at   Hz show the residual noise power if the atmosphere

and mechanical noise can be subtracted to a residual power that has an equal variance per   (i.e. 

  noise) and equal to    cm and    cm, numbers motivated above for the degree to which wet

tropospheric delays could be cleaned. Although tropospheric delays have a redder spectrum than  ,

the spectrum[61]  found after atmospheric correction was much closer to the    form. These curves

show that for   Hz, achieving   cm error in mechanical and tropospheric delays would

be sufficient to be limited by accelerations in the outer Solar System.11

There has been some recent interest in Doppler tracking for the   Hz band in the context of a flagship

Uranus mission[23]. The green dot-dashed curve in Figure  6 shows the    Hz ‘priority’

sensitivity goal for this “Uranus Orbiter and Probe” (UOP) mission. This goal assumes an order of

magnitude improvement of the theoretical Cassini noise, which was an order of magnitude better than

what was actually achieved, and extrapolates this noise curve to lower frequencies. Our estimates

show that at   Hz, the accelerations on the spacecraft from variations in the solar irradiance

and the solar wind must be corrected (likely by equipping the spacecraft with solar irradiance and

plasma monitors) to achieve this sensitivity goal.

As discussed in[23]  for the UOP, Doppler tracking using lasers might also be possible, but such an

approach is unlikely to improve the sensitivity with respect to our radio estimates. Earth’s turbulent

atmosphere and the low    downlink make phase locking in the optical impractical (as this

requires both adaptive optics and a   sufficient to achieve phase lock in the millisecond before the

atmosphere changes). Thus, a laser Doppler tracking system would track the beat of laser pulses

rather than the carrier phase. In contrast to timing the carrier phase – which allows a matched filter-

like approach that results in the timing sensitivity scaling as   –, the timing sensitivity for pulsed

lasers scales as  , which is problematic for the envisioned Solar System-scale baselines. Equation

(13) in comparison to equation (12) shows that at    AU the timing noise for pulsed lasers will

only be comparable with radio transmissions if a   m telescope on Earth is deployed along with

a    m on the spacecraft. Additionally, optical transmissions experience a time-varying delay
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from the atmosphere that is similar in magnitude to the wet tropospheric delay for radio waves: Near

zenith, this delay is a couple of centimeters and can be corrected using atmospheric instrumentation

similar to those used for the wet tropospheric delay. Attempts to correct for this error in the context of

lunar laser ranging has resulted in millimeter-scale errors[63].

4. Instrumental considerations

At fixed strain noise power due to shot noise, the timing error, displacement error, and square of the

angular pointing error are relaxed in proportion to the baseline distance. Thus, the extremely long

arms of the presented concepts may reduce many design tolerances. Of course, long arms do come

with the challenge that the transmitted signal strengths are much weaker compared to, e.g., LISA;

Section 2.2 argued that the strengths are still sufficient to acquire stable phase locks. We now discuss

other challenges of the laser and radio concepts, as well as challenges with placing spacecraft in the

outer Solar System.

4.1. Laser design

Perhaps the biggest challenge in our laser-based concept is tuning the laser frequencies to cancel the

relative velocities of the spacecraft. In all the scenarios we considered, the spacecraft would likely have

much larger relative velocities compared to LISA, which are kept to   m s-1.12 Relative velocities

are problematic in that they spoil the cancellation of clock errors from time-delay interferometry, as

the observed phase difference (eqn. 6) now has a strongly time-dependent phase given by 

, where    is the part of the Doppler shift to the lasers emitted frequency that is

uncorrected by any frequency tuning. This time-dependent phase means that, when it is recorded, the

clock error   – or any timing error – again enters and results in a phase error of

For LISA,    is large enough to substantially reduce instrument performance. The LISA design

includes an elaborate scheme for correcting this error by superimposing weak pilot tones on top of the

primary laser signal. The phase of these pilot tones contains the   information that allows   to

be corrected and essentially eliminated from the phase noise. The low   of the inter-spacecraft

broadcasts in our concept likely makes this strategy of superimposing weaker pilot tones not viable.

Fortunately, our concept’s much larger phase error tolerance may allow   to be sufficiently small

as to not dominate the error if the spacecraft adjoining both arms is equipped with an atomic clock. We

≲ 10

= 2π tϕhet fhet fhet
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can write the standard deviation of   in terms of the Allan deviation of its clock (cf. eqn. 2):

For reference, the shot noise errors on the phase are    for    dB-Hz

(eqn.  10). We conclude that the heterodyne phase error is manageable with an atomic clock like the

Deep Space Atomic Clock for which    if   MHz, an order of magnitude higher

than the maximum heterodyne frequency allowed for LISA.

The simplest orbits would send the spacecraft on radial trajectories with respect to the Sun. In this

case, the relative velocities between the spacecraft could be tens of kilometers per second. A   km s-1

offset velocity would have to be compensated for by a    Å  shift of the output wavelength of a 

 Å laser in order for it to interfere within the heterodyne specification. Tuneable lasers that can

adjust their wavelength even to   Å exist. Additionally, space interferometers like LISA must adjust

the laser frequency on month timescales to compensate for this drift and stay under the maximum 

 that the system can tolerate[64][65]. For spacecraft on radial trajectories, the rate of change of the

frequency from Doppler shifting between a spacecraft and some fixed reference is

Equation (22) suggests that for radial trajectories and spacecraft at   AU, this tuning would

also have to be done weekly or monthly to maintain a maximum heterodyne frequency of   MHz.

A second challenge with lasers is controlling the phase noise from laser intensity variations, called

‘relative intensity noise’ (RIN), which scales inversely with received laser power, and the received

power is exceptionally small owing to our concepts’ long baselines. The square root of phase noise

power spectrum from RIN is    , where    is the power of the

local laser that is being recombined with the received beam prior to phase readout and    is the

RIN at the heterodyne frequency and   expresses how much of this term is canceled by ‘balanced’

detection methods that split the laser beams and combine their phase readout in a manner that, if

perfectly performed, eliminates this dominant RIN term[35][66]. As RIN phase noise scales in the same

manner with   as the phase noise from shot noise, it is helpful to take the ratio with the analogous

shot noise (eqns. 8 and 10):
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where we have referenced the latter expression to the LISA requirement   Hz-1/2 and a

similar   as LISA.13 Thus, especially for balanced detection that potentially could achieve 

[67], RIN is likely not a limiting factor in the phase noise nor the phase lock if the lasers as long as the

lasers achieve LISA-like specifications for  .

4.2. Radio design

There are many aspects that are easier for an experiment that relies on radio transmissions. For

example, the requirements on any error that manifests as an apparent satellite displacement

requirements are relaxed relative to laser transmissions by the factor of    ratio of the

wavelengths at frequencies where the sensitivity is set by radiometer noise. Additionally, relative

velocities lead to much smaller frequency differences in the radio and, hence, much smaller timing

errors in the phase (eqn.  20). Because the phase of the signal itself would be fed directly into the

phase-lock loop for radio transmissions, in contrast to the laser setup in which the phase of the

received laser is beat against a reference laser, relative intensity noise is not a concern. The pointing

requirements are also relaxed relative to lasers, as lasers generate more planar wavefronts than radio

dishes (which leads to larger phase errors from mispointing).

The radio design requires large dishes and an analog instrumental path via wires, such that thermal

path length variations are likely to be larger than the optical design. For metals, the thermal

expansion factor for    m of pathlength is typically    K-1, with the smaller values for

temperatures an order of magnitude below room temperature. To keep thermal expansion to   cm,

as required for these pathlength changes to be a tenth or so of the radiometer noise on displacements

(eqn. 11), the temperature should be controlled to just tens of Kelvin.

4.3. Outer Solar System considerations

One challenge to our proposal is that outer Solar System missions are significantly restricted when it

comes to downlink data rates, to their mass, and to the power budget. Here we discuss each.

downlink data rates: Appendix C shows that, due to the low gravitational wave frequencies targeted,

even   kbps hour-long downlinks every several months could be sufficient. Such downlink rates have

been achieved to outer Solar System spacecraft, including New Horizons.

mass and orbits: The New Horizons spacecraft took nearly a decade to reach Pluto at 34 AU despite

weighting just    kg[68]. However, with new Block 1B and Block 2 rockets from the Space Launch
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System, plus advances in third/fourth stage boosters, it will soon be possible to launch several times

more massive spacecraft at the same C3 velocity as New Horizons[69]  and it is likely that similar

specifications will be met by SpaceX and Blue Origin rockets. These new rockets would allow a

spacecraft with the mass of New Horizons to reach Pluto in half the time. As achieving a particular

orbit would require substantial fuel to slow down, the most feasible architecture would likely involve

spacecraft that are continually drifting further from the Sun, possibly on unbound trajectories from

the Solar System.14

power: Outer Solar System spacecraft must rely on radioisotope power. If the power output is similar

to the radioisotope thermoelectic generator on the New Horizons spacecraft, the total power budget

would be   Watt, and only a fraction of this could be dedicated to the spacecraft’s science system.

Meeting such a restrictive power budget seems potentially feasible given our result that   Watt

inter-spacecraft transmissions are sufficient. We further estimate similar power requirements for

other systems, such as for compute and for the reaction wheels. For our designs that rely on an ultra-

precise atomic clock, this technology likely would require substantial development. The Deep Space

Atomic Clock requires 47 Watt[26], although there is a miniaturized version of this trapped ion clock

that requires 6 Watt but has an order of magnitude larger Allan deviation[70]. Clocks based on optical

frequency combs are being developed by NASA and likely can be smaller and less power-intensive, in

addition to having smaller Allan deviations[71]. Power budgeting for our concepts is aided by removing

the requirement of ultra-precise drag-free control – one of the most power-intensive systems on

LISA.

4.4. Systematic checks and sky localization considerations

For gravitational wave observatories, there are two more important considerations to make when

designing the mission - the ability to perform systematic checks, and the ability to localize

gravitational wave signals on the sky. Systematic checks are necessary for being able to identify and

differentiate occasional transient signals as being either instrumental in nature (“glitches”) vs. being

astrophysical in nature (“bursts”). And in general, sky localization to any source tends to be poorer for

gravitational wave observatories as compared to electromagnetic observatories, since they are

effectively all-sky antennae.

Considering terrestrial-based gravitational wave observatories, the duration of the signals they are

sensitive to are short, typically of order seconds to minutes. During this time, the antenna pattern of

250

∼ 1 − 10
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an individual interferometer observatory does not change a significant amount, therefore multiple

observatories placed at very large separations across the Earth and in different orientations are

necessary in order to estimate a sky location to any given signal. Having multiple observatories also

benefits their systematic checking capabilities, as localized transient glitches in any one observatory

would not appear across multiple, far-separated observatories. Astrophysical gravitational bursts

would, however, appear correlated across all observatories. This helps give terrestrial observatories

their glitch vetoing capabilities.

Considering the LISA mission, the duration of the signals they will be sensitive to are much longer,

ranging between hours to years. During this time, the antenna pattern of the observatory will change

as the constellation of satellites tumbles and orbits the Sun. The changing antenna pattern means that

once an individual source has been identified, its localization will improve over time. The shorter the

duration of the signal (e.g. for astrophysical bursts), the poorer the sky localization will be.

It is also anticipated that glitch vetoing will be partially enabled by having the three time-delay

interferometry data channels, given the three arm design. Isolated transient instrumental noise

signals occurring on one of the three spacecraft will propagate through the data channels differently

than a common astrophysical burst that hits all three spacecraft. Therefore, in considering the three

architectures presented in this work, these two factors may favor a multi-arm design. This fits with

the two (or more) arm, time-delay interferometry architecture, or multiple concurrent instances of

single arm missions, enabled either by atomic clocks or through Doppler tracking.

The angular resolution of an arm with length   we anticipate would be  , with no

rotational information around each arm and a   degeneracy, where SNR is the signal-to-noise of the

gravitational wave event and this assumes that for   the source drifts appreciably in frequency

in order to select the correct ‘interference fringe’. Since our concepts target extremely long

wavelengths of  AU, localizations    that would be most useful for

electromagnetic follow-up will only be possible for bright sources that appear at the highest

frequencies these concepts are potentially sensitivity (likely  Hz). Furthermore, analogous to

the LISA spacecraft, the spacecraft would likely drift by many AU over year timescales, reaching

different points in the phase pattern of a long-term gravitational wave source, which could be further

used for localization and to isolate gravitational wave signals from systematics.

L δθ ∼ /(LSNR)λGW
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5. Conclusions

This paper discussed the feasibility of detecting microhertz gravitational waves using outer Solar

System spacecraft. This waveband probes the merger of supermassive black holes as well as a host of

other gravitational wave phenomena. Taking advantage of the low acceleration environment beyond 

  AU, such a system could avoid the substantial technological development required for sufficient

drag-free control at lower frequencies of  Hz than the LISA mission targets. For solar

distances as well as inter-spacecraft separations of    AU, we showed that the various

interplanetary acceleration sources are small enough that even reaching a sensitivity where the noise

is set by the stochastic gravitational wave background from massive black holes and white dwarf

binaries appears achievable. We showed that such an acceleration-limited system would be easily able

to detect the mergers of supermassive black holes at all likely redshifts.

We investigated systems that lock onto and time the phase from both laser and radio transmissions

between the spacecraft. For both, we argued that even for   AU separations, transmission powers of 

 Watt and reasonable mirror/dish sizes, stable phase locks may be achievable. We found for the

laser concept this would require reduced frequency noise compared to the allowance for the LISA

lasers, although possibly inline with the frequency noise achieved by the lasers in the GRACE-FO

mission. Additionally, despite the much longer wavelengths of radio compared to laser transmissions,

we showed that the sensitivity is likely to still be set by acceleration noise at    Hz and,

hence, independent of the wavelength of the transmissions. A system that uses the radio significantly

reduces many design tolerances, such as those regarding pointing, transmission intensity variations,

and spacecraft relative velocities. For radio implementations, interplanetary plasma contributes phase

noise that can be effectively eliminated by transmitting at two wavelengths, with only a modest

(factor of  ) reduction in strain sensitivity and only when limited by radiometer noise.

This paper considered three possible architectures. The first was a two-arm (three-spacecraft)

configuration that allows time-delay interferometry. This configuration was also the most sensitive

without substantial improvement in space-certified atomic clocks. We considered configurations

where the arms are at solar distances of   and   AU, and where the arm lengths were the same as the

solar distance. Both configurations were able to detect merging    black holes out to

substantial redshifts, and the    AU case was sensitive to middle-of-the-road predictions for the
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stochastic gravitational background at    Hz. The sensitivity can be further improved by

correcting for accelerations by monitoring solar irradiance variations and the solar wind.

The second architecture we considered involved just a single-arm. As a single arm cannot do

interferometry to essentially eliminate clock noise, a single-arm design must incorporate a precise

atomic clock on at least one spacecraft. We showed that the single-arm architecture equipped with a

clock similar to the Deep Space Atomic Clock – a clock scoped for future interplanetary missions –

could be sensitive to the characteristic strains of   and   supermassive black hole mergers,

one of the most exciting signals anticipated in the microhertz waveband. Three orders of magnitude

improvements in the timing precision over the Deep Space Atomic Clock, still far from the precision of

the most precise terrestrial clocks, could achieve a sensitivity similar to the interferometric

configuration when comparing at the same  .

The single-arm design becomes Doppler tracking of outer Solar System spacecraft when one of the

nodes is located on Earth. Doppler tracking using outer Solar System spacecraft has a rich history[22].

Doppler tracking is the final architecture that we considered. We discussed the atmospheric and

ground station delay requirements for Doppler tracking to reach interesting sensitivity benchmarks.

We showed that for gravitational waves with  Hz, spacecraft accelerations must be corrected

with on-board instrumentation for Doppler tracking to achieve the sensitivity goals of[23], envisioned

in the context of a future Uranus probe. We also investigated the sensitivity of Doppler tracking if the

spacecraft could be equipped with an atomic clock, allowing for a time-delay observable that nulls out

atmospheric and some mechanical delays.

Placing spacecraft in the outer Solar System puts severe limits on the downlink rates, mass

requirements, and power considerations. We showed that the achievable downlink rates should be

sufficient because of the low frequencies of the targeted gravitational waves. We also argued that

several tens of Watts of power could conceivably power the science systems on the spacecraft, within

the realm of what can be supplied radioisotope thermoelectric generator. The mass of each spacecraft

would likely have to be under  kg in order to be launched to tens of astronomical units in  yr.

The spacecraft requirement that we identified as potentially concerning (and in need of further study)

is the severe restrictions on off-gassing (§ 2.3.6).

Although the discussion in this paper focused on concepts without acceleration control and  Hz

gravitational waves, some of our results could also apply to an outer Solar System concept that

includes an ultra-precise accelerometer or that targets higher frequencies. The extremely long arms

∼ 10−5

108M⊙ 109M⊙

L

f ≲ 1μ

103 5 − 10

μ
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of our hypothetical concepts mean that the accelerometer would not need to be as precise as in designs

with shorter arms to reach the same sensitivity. Furthermore, the stable thermal and acceleration

environment of the outer Solar System may facilitate acceleration control over the long periods of our

targeted gravitational waves. Laser locks over  AU arms could allow better sky localizations at 

Hz than more LISA-like concepts.
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Appendix A. Dispersion

An issue with radio observations that is not present for our laser setup is that dispersion in the

interplanetary plasma will contribute phase noise. Taking the density of the solar wind to be 

 cm-3 (e.g., [47]), plasma dispersion leads to an error on the strain of

where    converts an electron column density to a phase delay. Of course, the

uniform solar wind signal does not look like gravitational waves. We can calculate the inhomogeneous

part in terms of the power spectrum of the solar wind electrons,  , by first calculating the temporal

∼ 10

f ≲ 10−4

= 0.05(r/10AUne )−2

δh ∼ cκ = 2.6 × ,ne 10−15( )
r

30AU

−2

( )
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correlation function of the plasma delay between the two dishes. Additionally, because the solar wind

acts to radially translate the inhomogeneities, the correlation function of delays between parallel

paths can be related to the temporal correlation function that we desire. We approximate the paths

along the arms as being at a fixed solar distance   and perpendicular to the direction of the Sun. We

additionally assume that the perturbations along the path that the light travels do not change over the

round-trip light-travel time for an arm, which means that our calculation will somewhat

overestimate the effect for frequencies that satisfy  . Figure 7 illustrates the setup.

Figure 7. Illustration of the setup of the calculation presented in Appendixes A and B for

the dispersive delays owing to the interplanetary plasma. Parallel paths   and 

 represent the arms linking two spacecraft at different times. We calculate the phase-

delay correlation between these paths separated by   and oriented perpendicular

to the direction of the solar wind. We treat the solar wind as acting to translate

inhomogeneities in the electron density with velocity  , mapping spatial correlations

between paths   and   to the desired temporal correlations. The spectrum of electron

density fluctuations are represented by  , and only modes that have perpendicular

orientations to the path contribute substantially to the correlations. One such nearly

perpendicular mode of electron density fluctuations is illustrated.

The correlation of the phase delays between two parallel paths is

r

f ≳ c/(2L)

P1

P2

−x⊥1 x⊥2

vsw

P1 P2

(k)Δne

~

⟨Δ Δ ⟩ = ⟨ d Δ ( ) d Δ ( )⟩ ,τd,1 τd,2 κ2 ∫
P1

x1 ne x1 ∫
P2

x2 ne x2 (A2)
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where    is the 3D field of electron density fluctuations. Writing    in terms of its Fourier

transform, the expectation value becomes

where we have defined the electron density power spectrum as 

. In the ‘Limber approximation limit’ that applies

when the integral’s support comes from  , the integral over the line-of-sight wavevector

along    can be approximated as a  -function. The  -function can then be used to eliminate the

integral over the wavevector along the path. The remaining integral along   evaluates to its length, 

, such that equation (A4) reduces to

where   is the minimum separation between the two parallel paths.

The half-bandwidth temporal power of phase delay fluctuations is given by twice the temporal Fourier

transform of  , using that time is related to position by  , where    is

the direction of the solar wind as well as the direction perpendicular to our two parallel paths. Thus,

where    and    is the component of the wavevector perpendicular to the solar wind.

Equation (A7) used that the 1D density power that is measured by, e.g., Voyager 2 is related to the 3D in

the above expression by

where the factor of    is because this is the half bandwidth power. Since the integral that yields 

  is somewhat different than that in equation  (A6), to determine the numerical coefficient in

Δne Δne
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equation  (A7) we assumed the scaling    as motivated in §  2.3.2. However, we find this

coefficient depends weakly on what power-law index is assumed over relevant indices.15

We can convert this to fluctuations in phase as

where the four is because the light travels out and back for each arm, probing essentially the same

electron field for  . At higher frequencies, the return path will see different electrons such

that we should replace   – a correction which we ignore.

Converting the phase error to the error on the gravitational wave strain yields

where we are using the form of the 1D solar wind density power given by equation (14), noting that 

  for  Hz (§  2.3.2). We include the transfer function    to convert from the long

wavelength limit (cf. eqn. 19).

Figure 8 shows the effect of dispersion for an interferometer operating at  cm. The dashed curves

shows the strain noise power we estimate from plasma dispersion. The other curves are our

predictions for the noise in the time-delay interferometry configuration once correcting for plasma

dispersion by transmitting at two frequencies (see below; these are the same curves as in Fig. 4). The

left panel shows  AU, and the right panel  AU assuming the spacecraft separation

is nearly orthogonal to the radial direction so that the above calculations apply. Rather than assuming

a power-law scaling as in equation (A10), the estimates in this figure use equations (A7) and (A9) as

well as the 1D electron density power spectrum of the solar wind measured in  [47]  using Voyager 2

data.16 This figure shows that the effect of dispersion is large and, if uncorrected, would limit the

sensitivity of our concept at intermediate frequencies.
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Figure 8. Effect of dispersion for an interferometer operating at  cm. The dashed curve shows the

strain noise power we estimate from plasma dispersion. The other curves show the total noise once

correcting for plasma dispersion with   in the time-delay interferometer setup (the same curves as

in Fig. 4). The left panel shows the case  AU, and the right panel  AU with the

approximations discussed in § A. The estimates in this figure use equation (A9) and the electron density

power spectrum of the solar wind measured by Voyager 2 [47].

While the phase noise due to the plasma can limit the sensitivity, it can be essentially eliminated by

broadcasting at two wavelengths,   and  , and then applying the following estimator for the inter-

spacecraft displacement:

Accelerations and gravitational waves lead to the same    as the previous single-phase estimator.

Therefore, this estimator’s gravitational wave strain sensitivity is not affected when accelerations set

the noise. However, this estimator does come with the cost of an increased error when radiometer

noise is important. When radiometer noise dominates, if we assume    as applies if    and 

  are the same for the links at both    and  , then phase errors are mapped to total errors as 

, using that  , rather than   as for the

single-phase estimator. Thus, it results in an increase in the estimator error by the factor 

. If   cm and   cm (  cm), this results in an increase in the error of 

  ( ) relative to what the error would be if we used the single phase estimator at  . We

parameterize the increase in noise power from de-dispersion relative to the (higher  ) shortest
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wavelength band by the factor   and include this in our error calculations, taking a fiducial value of 

 (cf. eqn. 19).

Appendix B. Refraction and diffraction

Since Appendix  A showed that dispersion (which scales as  ) can be perfectly removed, the

next question is how good of an assumption is it that  ? For a homogeneous plasma, the

correction to this long-wavelength scaling of the dispersion relation is suppressed by the ratio of the

plasma frequency to the frequency squared. Since the plasma frequency for interplanetary gas is very

small (  kHz) relative to the radio-wave frequencies of interest (  GHz), this correction to the 

 scaling is extremely small.

A potentially larger effect is that the radio waves at different frequencies travel different paths owing

to diffraction or refraction caused by the density inhomogeneities in the solar wind. Diffraction – or

multipath propagation – results from phase fluctuations below the Fresnel scale  . The

Fresnel scale physically corresponds to the impact parameter that encapsulates most light paths that

contribute constructively to the image. For the case at hand, the Fresnel scale corresponds to

perturbations in the solar wind that pass the spacecraft with frequencies of 

Hz. We can use our estimate for the RMS phase

fluctuations (eqn. A9) to evalauate the phase fluctuations at  . Evaluating at the fiducial parameters

where the parentheses in equation  (A10) are unity, the phase fluctuations at    are 

, and the leading-order contribution of diffraction to the RMS phase scales

quadratically in   (as the linear order cancels since both positive and negative sub-Fresnel

phase fluctuations contribute to the total). This suggests that the RMS diffractive phase fluctuations

should have an absolutely negligible value of  . Furthermore, the sub-Fresnel

fluctuations that drive the diffractive phase perturbations will decorrelate on timescales of  ,

leading to further suppression over this estimate. Thus, phase fluctuations from diffraction are likely

to be extremely small.

Refraction is the displacement of images from a super-Fresnel density gradient. Refraction will

contribute a larger effect since the phase perturbations in the solar wind are larger for  , and

the longer wavenumbers of the participating modes mean there will be less decorrelation compared to

diffraction. However, in the following, we show that refraction also sources a negligible amount of

phase noise.
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To analyze the effect of refraction, let us assume that all phase is acquired halfway between the two

spacecraft in an arm, an assumption that will put an upper bound on refractive-phase fluctuations.

The electric field’s phase received at one receiver at wavelength    is given by the Fresnel-Kirchhoff

integral (e.g. [78])

The integral is over the plane halfway between the two spacecraft,    is the phase acquired by a

sightline at position  , and  .

Since refraction owes to the smooth contribution from longer wavelengths than  , we can

approximate the phase with a quadratic function given by  ,

where all the Taylor expansion coefficients are evaluated at  . Equation (B12) then evaluates to

where we have reconstituted the    argument for the coefficients in the expansion so that we can

capture their time variability as the solar wind flows past, as well as omitted the wavelength argument

in    to simplify notation, and we have dropped an overall constant as this term is what was

considered in Appendix A and is perfectly removed by the de-dispersion estimator given by equation

(A11). We have rotated to the basis where   is diagonal, and   indices are implicitly summed.

Equation (B13) shows that the leading refractive term is the square of the phase gradient times the

Fresnel scale. Since each    brings in a factor of    where  , the refractive effect

should be suppressed at    Hz and    cm (noting that then  ) by a factor of 

  relative to the mean dispersive term, which is   and whose effect was estimated in the

previous section. This order-of-magnitude estimate uses that the phase fluctuation at   Hz is 

. This simple estimate is consistent with the following more detailed calculation.

To calculate the phase noise from refraction in more detail, let us consider the lowest-order non-

constant term in equation (B13). Assuming the same setup as in Appendix A and illustrated in Figure 7,

where temporal correlations can be related to spatial correlations of the advecting solar wind, we can

calculate the corrections from refraction owing to phase correlations as
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where in addition to dropping an irrelevant constant, the last line assumed statistical isotropy and

Gaussian statistics to express the four-point correlation function in terms of the two-point

correlation function, where

The half-bandwidth power spectrum of phase fluctuations from refraction can be calculated from the

Fourier transform of equation (B14):

where the full-bandwidth power spectrum of   is defined as

and we have converted to gradients of the time delay rather than phase using that  . Using

the integral expression given by equation (A5) for  , and that the derivatives bring down

factors of   under the integrand, we can write equation (B16) as

where   and, similarly to how we reached equation (A7), we assumed a power-law for the

electron density power spectrum. (The coefficient changes to 3.1 if   is taken for the spectral slope

of the 1D power spectrum rather than  , as was assumed to evaluate this expression.) The

convolution that yields the phase noise power    (eqn.  B4) is only convergent for  ,

which conveniently is the rough range of indices favored by the Voyager 2 data, and has the scaling

where we have stuck in a   prefactor to match our order-of magnitude estimates from evaluating

this integrand.
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Finally, our expression for the RMS strain error using this estimate for    and our de-dispersion

estimator given in equation (A11) becomes

where  , which evaluates to    if    and we have

used the parameterization of the power given by equation (14). Equation (B21) shows that the effect of

refraction is very small relative to other sources of noise.

Appendix C. Data rates

Due to the tens of astronomical units distances of the spacecraft in our concept, the concept developed

here is likely constrained to a downlink data rate of   kbps as has been achieved by previous outer

Solar System missions such as the New Horizons spacecraft[68]. To estimate how much data would

need to be telemetered back to Earth, let us compare the proposed mission with the LISA mission. LISA

aims to send a downlink with a data rate of   kbps for eight hours every day[7]. Since LISA’s goal is

to constrain gravitational waves to frequencies as high as   Hz, it is designed to sample at 4 Hz[79][7].

Because LISA has three interferometric arms, the downlinked data include data streams from the six

interferometric observables as well as from the positions of six test masses.

The proposed mission likely could accommodate a total data transmission that is a factor of 

  smaller than LISA because (1) it targets    Hz and so can sample on    longer

timescales, (2) it has one or two arms and no test masses, such that there are fewer data streams to

downlink, and (3) it would have   times less precision in the phase measurements relative to LISA

and, hence, require fewer bits per sample. This much lower data rate means that an one-hour

downlink at 10 kbps could potentially download an entire year of science data.

Footnotes

1 The radio-dish design we propose to measure gravitational waves could plausibly also execute 

 AU very long baseline interferometry to radio sources (particularly fast radio bursts) as has been
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proposed for measuring cosmic distances and dark matter structure in [36] and [80]. Additionally, this

concept may also be able to use the timing of Fast Radio Bursts repetitions to measure gravitational

waves over frequencies similar to those considered here [81].

2 In practice, the arm lengths are not perfectly known, leading to a clock noise like equation (3) that

does not cancel in the time-delay observable but where  , where    is the uncertainty in the

arm lengths [35]. This leads to the RMS strain error from clock noise being suppressed by the factor 

  compared to in equation (4), where if the positions of the detectors are known to tens of

centimeter precision, as is reasonable for ranging on Solar System scales [36], this leads to negligible

error. Additionally, equation (6) is one example of a synthetic time-delay interferometry observable

that can be constructed. More advanced combinations can be created that can, for example, further

suppress the clock noise even when the arm lengths are changing during the measurement [82].

3 For the case    and in the long-wavelength limit    the noise of this time-delay

interferometry observable is increased by    relative to what we would compute from the

observable   without clock noise and if both arms have length  [83].

4 The low noise amplifiers can be further positioned on a cold plate on the spacecraft to achieve lower 

.

5 In contrast to LISA where this phase noise must be maintained to milliHertz frequencies to not

compromise gravitational wave science, our concepts’    larger phase noise relaxes the

allowance on    for    by this factor (for fixed spacecraft-spacecraft ranging error), which

could provide more flexibility in material choices for the resonant cavity that stabilizes the lasers’

frequencies[45].

6 We maintain the major features in the power spectrum using the data from Figure 12 in [46], but we

omit much of the fine-grained structure in this power spectrum at    Hz. Note that the

effective area used for the conversion from irradiance to acceleration (  m2) would include the

factor of two enhancement for a reflective surface directed at the Sun.

7 The power spectrum of the magnetic field is proportional to the accelerations from Lorentz forces,

which is shown in Figure 2 (cf. § 2.3.4).

8   at low frequencies, where   is the angle between arms that we will take to be  .

This differs from the limit   that applies for LISA by the factor of   owing

L → δL δL

∼ δL/L

<L1 L2 c/f ≫ L1

/L2 L1

−ϕ1 ϕ2 L2

Tsys

∼ ×104

Sf f ≪ T −1
ϕ

f > 10−5

= 10Aeff

R(f) → 4/5 (γ)sin2 γ 90∘

R(f) → 6/5 2 ( )/ (γ)sin2 60∘ sin2
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to LISA having two independent channels at low frequencies and   orientations for the arms [54]

9 To compute    for one arm, we drop the    term in equation  (23) in  [53]  that accounts for the

cross-correlation of the gravitational wave signal between two arms, but include all other terms in

their calculation of  . This results in an    that is a factor of two larger than might be most

natural to define for a single arm, but this extra factor of two cancels the two out front of equation (19)

that owes to noise in both arms, allowing this equation to still apply for our one-arm concepts.)

10 For mechanical and other instrumental delays, the cancellation in the estimator of [62] occurs to the

extent that the one-way and two-way ranging share the same analog path (even during transmit and

receive). In our calculations, we have not used the correct transfer function of this observable, which

we anticipate will result in a    reduction in the sensitivity relative to the single-arm transfer

function used for our calculation due to the cancellation of some of the gravitational strain terms in

this combination.

11 Our estimates for noise of a Doppler tracking do not include the error from the Earth’s ephemerides.

Earth’s position needs to be tracked and is uncertain at the   m level, with these errors on year-

and longer-timescales [84]. Ranging can be used to reduce this ephemerides error along the vector to

the spacecraft, but this will come at the cost of being less sensitive to gravitational waves on the

timescales for which the uncertainties ephemerides need to be fit for. Such fitting will bleed into

shorter timescales than Earth’s orbital period and possibly set the error for the lowest frequencies

considered in our plots of    Hz (as    cm residuals will lead to larger errors than

accelerations at such frequencies). A dedicated study is needed to understand the frequencies over

which ephemerides errors limit the strain sensitivity.)

12 The way to avoid large relative velocities is if the outer Solar System spacecraft were in a circular

orbit, each separated by   in orbital phase; [16][9]. Achieving such a configuration in the outer Solar

System would be challenging.

13 Electronics noise can also add to the phase noise. We further find, using the online interface

associated with Towards a Gravitational Wave Observatory Designer: Sensitivity Limits of Spaceborne

Detectors[35], that a LISA-like    W minimizes the combination of shot, RIN and

electronics noise for a system with    AU. Aside from  , these calculations assume LISA-like

specifications for other system parameters. At this minimum, the shot noise of the received laser does

indeed contribute most of the phase noise rather than RIN and electronics noise (and this interface

60∘

R(f) T3

R(f) R(f)

O(1)

∼ 100

f ∼ 10−7 ∼ 100

120∘

= 2 ×Plocal 10−3

L = 30 L
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assumes no balanced detection such that  ). Additionally, for a much larger value of 

  MHz from    MHz that was used for the calculations just summarized, which

increases electronics noise, we find the total noise from all three terms is minimized at    shot

noise alone when   Watt.

14 Spacecraft trajectories that do not require achieving precise orbits may be an advantage over other

interferometric concepts targeting microHertz gravitational waves, which require precise placement

at   in orbital phase at   AU[16][18][9][18].

15 The coefficient changes from    to    if we use  , which may be more appropriate at 

Hz.

16 Since our derivation of equation (A7) assumed a power law, it is not rigorous to use the measured 1D

electron density power spectrum,  : The different wavenumber weighting of the integrand over 

 that yields the measured 1D electron density spectrum (eqn. A8) and the phase noise delay power

spectrum (eqn. A7) means that the features in the measured   should be somewhat distorted in

the phase noise.
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