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Accurate quanti�cation of wound closure in cell migration assays is crucial yet challenging. Still,

existing methods often underperform due to omitting cell detection within the wound area, resulting

in biased outcomes. To overcome this limitation, we developed the CSMA plugin for ImageJ. CSMA

utilizes advanced image processing techniques, including contrast enhancement, edge detection, and

morphological operations, to precisely identify and quantify cells in the wound region. The plugin

o�ers user-friendly features and adjustable parameters to accommodate di�erent imaging

conditions, ensuring robust performance across diverse experimental setups. Validation against

conventional tools con�rms CSMA’s superior ability to delineate wound boundaries and provide

accurate estimations of area and width at every time point. As applied to SW480-ADH colon cancer

cells treated with various compounds, CSMA proves valuable in biomedical research. It represents a

signi�cant advancement in wound healing assay analysis, providing researchers with a simple and

reliable tool for studying cell migration dynamics with enhanced precision and reproducibility. CSMA

is available as an ImageJ plugin and source code at

https://github.com/AminaSagymbayeva/CSMA_WoundHealing.

Introduction

Wound healing assay is a classic method for the assessment of collective cell movement in epithelial

and endothelial tissue cultures[1]. It can be applied to study persistence, speed, and the e�ect of cell-to-

cell and cell-to-extracellular matrix interactions in populations of migrating cells[1][2][3]. Moreover, it

may be coupled with di�erent microscopy methods to study intracellular events that occur during

migration[1]. Wound healing assay is often a method of choice because of its compatibility with multiple

cell lines, easy and inexpensive setup, and wide application[4]. Therefore, it is used as a model for
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studying many processes, such as embryonic morphogenesis, angiogenesis, in vivo wound healing, and

metastasis[5][6][7][8][9].

Migrating cell cohorts maintain their intercellular junctions, unlike individual migrating cells[7]. Cell-

cell junctions are supported by adherens junction proteins that interact with actin cytoskeleton and

allow cell plasticity[7]. In epithelial cells, cadherins, speci�cally E-cadherin (CDH1), play a central role

in cell-cell adhesion and supracellular polarization[3][7]. Cell polarization is induced by extracellular

chemical signals, such as growth factors, cytokines, and extracellular ligands[3][7]. In response to

chemical stimuli, the actin cytoskeletons in cells at the leading edge reorganize to form various

protrusions, such as broad lamellipodia and cylindrical �lopodia[3][7]. Interestingly, not only do the

cells at the front of the edge develop protrusions, but also those behind them form cryptic lamellipodia

to interact with the substratum and thus promote further movement[10]. Four small GTPases Rho, Rac,

Ras, and Cdc42 are the dominant regulators of the collective cell movement, as they control many

processes from cell polarization to adhesion, to pseudopodia development[4].

Wound healing assay includes growing cells of interest to high-level con�uency, creating a narrow gap

in the tissue monolayer, and taking snapshots of it at equal time intervals to observe the gap closure[1].

There are two methods of gap introduction: physical exclusion and direct manipulation[2]. The �rst

method prevents monolayer growth under an insert placed in the dish. Although it is more expensive,

this method causes less damage to cells at the gap front and produces a cleaner gap with less debris[2].

The second method, commonly referred to as the scratch assay, is more popular due to its cost

e�ciency and ease of implementation. A gap is created by scratching the surface of the tissue

monolayer with a sharp object, such as a micropipette tip[1]. Subsequently, a time-lapse series of

images is captured to monitor and estimate the rate of gap closure[2].

Conventionally, each snapshot image is analyzed manually[2]. However, this method is very time-

consuming and prone to user bias. Several plugins, scripts, and stand-alone software have been

developed for the automatic or semi-automatic quanti�cation of wound closure. Many of them

demonstrate highly accurate wound detection on images with di�erent illumination conditions and

require the adjustment of only a few parameters[11][12][13][14][15][16][17][18]. However, since some of

these algorithms only account for the largest cell-free area, as demonstrated in Fig. 1, they sometimes

underestimate the true wound area, especially when it is divided into multiple regions. In addition, they

detect only the wound front and ignore cells that are left in the center of the gap, which also introduces
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a bias in the results as shown in Fig. S1. Though not all cell types tend to break away from the tissue

monolayer and migrate inside the gap, for those cell lines that do, the currently available software may

produce inaccurate results.
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Figure 1. Representative images of wound closure in the solvent control group of SW480-ADH colon

cancer cells detected by the High-Throughput Microscopy (HTM) algorhithm and the Cell Scratch

Migration Analysis (CSMA) plugin (quanti�ed with default settings). Yellow arrows point to the region

dismissed from the calculations due to the closure of the wound gap in the middle. In the

corresponding graph, the yellow arrow points to the rapid drop of wound area % as detected with HTM

due to the artifact described above.

In this paper, we present a newly developed ImageJ plugin named Cell Scratch Migration Analysis

(CSMA), which improves on the existing tools by (i) enhancing the quanti�cation of the wound closure
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by detecting the cells found in the middle of the wound, (ii) providing a user-friendly interface, (iii)

o�ering two modes of quanti�cation by wound area closure (hence wound closure from this point on)

or by wound width, and (iv) supporting various imaging conditions due to the �exibility in parameter

adjustment. We demonstrated the features of the applied CSMA plugin on a dataset created by treating

SW480-ADH colon cancer cells with weak (WVA) and strong (SVA) vitamin D receptor (VDR) agonists,

where WVA is about 10,000 times weaker than SVA. VDR signaling is an excellent model for studying

migration because CDH1, involved in cell-cell adhesion, is its direct target gene[19]. CSMA is available as

an ImageJ plugin and source code at https://github.com/AminaSagymbayeva/CSMA_WoundHealing.

Materials and Methods

Cell culture and maintenance

The SW480-ADH human colon cancer cell line, which was used to test the CSMA ImageJ plugin, was

kindly provided by Professor Alberto Muñoz Terol from CSIC-Autonomous University of Madrid. The

cells were cultured in Dulbeccos Modi�ed Eagle Medium (DMEM) (high glucose, GlutaMAX, Life

Technologies Limited, UK) supplemented with 10% (v/v) fetal bovine serum (FBS, Life Technologies

Limited, UK), and 1% (v/v) penicillin-streptomycin (#15140-122, Gibco) at 37žC in 5% CO2. Prior to

experiments, the cells were cultured for three days, reaching 70% con�uency. Cell viability was

determined by trypan blue (cat. no. T10282, Life Technologies Limited, UK) exclusion using Corning

hemocytometer Cell Counter (cat no. CLS6749, Corning, Inc, Germany).

Wound healing assay

SW480-ADH human colon cancer cells were seeded in a standard 24-well culture plate at a density of

2.5 × 105 cells per well and incubated in 500µl of DMEM supplemented with 10% (v/v) FBS at 37žC until

they reached the con�uency of 90 - 95%. All experiments were performed on cells between passages 4

and 10. A gap in the cell monolayer was introduced using a sterile generic 200µl micropipette tip. The

200µl micropipette with a plastic tip was pressed against a plastic ruler pre-sterilized with 70% ethanol

solution to make the gap in a straight line at the middle of the well. Subsequently, the growth medium

was removed, and the well was gently washed two times with 1× phosphate bu�er solution (PBS) to

remove detached cells and cell debris. Cells were treated with DMSO as a solvent control, 10nM SVA, or

100µM WVA. Prior to the treatment, both ligands were dissolved in 500µl DMEM supplemented with 5%
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FBS. The cells were then incubated at 37žC in 5% CO2 for 48 hours. The experiment was performed once

with four replicates per condition.

Datasets for testing and analysis

The images were acquired using an Omni Cell Imager Microscope (CytoSMARTő Technologies BV, The

Netherlands) at 10× magni�cation. The imaging was done at 1-hour intervals over 48 hours. Regions

with 1 mm radii were selected from each well at approximately the same position. Regions close to the

well periphery were avoided during selection due to poor illumination. A total of 49 images were

exported for each condition as JPEG �les. Regions with dimensions of approximately 1537 × 1537 pixels

were cropped from the exported �les using the ImageJ toolkit.

Additionally, a publicly available dataset, consisting of 48 images of mutant human renal carcinoma

cell line, 769-P (ATCC CRL-1933) imaged for 23.5 hours every 30 minutes using the Live Cell-R Station

(Olympus), was used for the comparative testing of di�erent wound detection tools[14].

Data analysis with CSMA

The CSMA ImageJ plugin is free and open-source software based on the OpenCV (version 4.7.0.72)

library. The plugin was developed in both Python 3 and Java programming languages. Python 3 is used

for image processing and the user interface (UI), whereas Java facilitates communication between

ImageJ and Python.

The image analysis tool is available as the ImageJ plugin for Windows and a source code with UI for

Linux and macOS. The plugin supports common image extensions such as *.tif, *.jpeg, and *.png.

Before using the plugin, the user must con�gure a virtual environment named ImageJCSMA using an

executable �le included in the package. All necessary Python libraries are automatically installed in this

environment, preventing con�icts with possibly existing library versions on the users PC.

The image processing algorithm is divided into two stages: i) �rst mask creation and ii) wound and cell

edge detection as summarized in Fig. 2. The �rst stage creates a mask with roughly de�ned wound

edges, while the second stage re�nes the wound edges and detects cells within the wound. The

algorithm description provided below is applicable with default parameters listed in Table 1.
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Figure 2. Schematic diagram of the CSMA algorithm work�ow. Default parameters were used to obtain the

representative images of the solvent control group of SW480-ADH colon cancer at every step.
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Functional step in the pipeline Parameter

Parameter setting value

First mask

creation

Wound edge

detection

Cell edge

detection

Contrast enhancement

(CLAHE)

Contrast limit 30 30 20

Square grid

size
30 30 20

Boundary dilation

Disk radius 5 5 3

Iterations 2 1 –

Boundary erosion

Disk radius 5.5 5.5 3

Iterations 2 1 –

Mask erosion

Disk radius 5.5 – –

Iterations 2 – –

Threshold – – 0.15 –

Cell �lling Kernel size – – 25

Table 1. Default values applied for the adjustable parameters of the CSMA ImageJ plugin

First, the original image is preprocessed by applying contrast limited adaptive histogram equalization

(CLAHE) image contrast enhancement method and Gaussian blurring. Gaussian blurring is achieved by

convolving the input image with a Gaussian kernel of 9 × 9 pixels to remove noise signals. CLAHE is

superior to simple histogram equalization since it generates fewer noise signals that may lead to

artifacts in the processed image[20]. After image preprocessing, wound edges are detected with the

Canny edge detection method[21]. The lower threshold value used to di�erentiate between candidate

edges and true non-edges is calculated with Otsus method[22], while the higher threshold is �xed at

255.

Since the Canny method detects only individual cells within the cell monolayer on both sides of the

wound, the next step is to fuse these individual cell boundaries into continuous wound front. This is
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done by �rst expanding the boundaries of the individual cells to merge them and then eroding them

back using OpenCV morphological operations. Since users might have images of di�erent sizes and

resolutions, the parameters for all morphological operations are adjustable. The perimeter of the image

is then padded with one row of black pixels to connect the front cells on two sides of the wound into a

single continuous boundary. Lastly, the largest boundary (true wound boundary) �lled with white

pixels is redrawn on a black background with cv2.drawCountours function, creating a wound gap mask.

Since morphological operations applied earlier distort the true edges of the wound, the redrawn wound

boundary is eroded back to avoid overestimation in the output image.

The same operations are performed in the second stage of image processing. After the Canny edge

detection method is applied in the wound edge detection pipeline, the black-and-white binary mask

created earlier is overlaid on top of the newly obtained image to ensure that no residual holes remain in

the cell monolayer in the output image. Morphological operations are applied as previously, but the

parameter values are set lower for a more accurate representation of wound edges. After all boundaries,

including true wound bondaries and individual cell boundaries, are detected on the black-and-white

image with cv2.�ndContours function, the areas enclosed by these boundaries are calculated. If a

boundary-enclosed area is smaller than 100 pixels or its ratio to the largest detected boundary is less

than 0.15, it is classi�ed as noise and discarded. The remaining boundaries are redrawn on a black

background and �lled with white pixels.

Similar steps are repeated to detect cells inside the wound. The output image with re�ned wound edges

is obtained; however, the contrast limit and square grid size values for the CLAHE contrast

enhancement function are reduced to minimize noise signals. Finally, the wound edge and cell edge

detection pipelines are combined to produce an image with re�ned wound edges and cells within the

wound.

At last, the number of white pixels representing the wound is calculated in the output image. The area

of the gap is normalized and converted to the percentage as shown in Equation 1:

where   is the total cell-free area at a given time, and   is the initial cell-free area.

The alternate width-based quanti�cation method is also implemented using a similar image processing

technique. As shown in Fig. S2, the di�erence is that the cell edge detection pipeline is removed from

the algorithm, which signi�cantly reduces the processing time, and the quanti�cation of the gap width

(%) = × 100At

( pixel )At

( pixel )A′
t

(1)

At A′
t
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is performed by calculating the number of white pixels in every row. The mean of the gap width for

every image is calculated as shown in Equation 2:

where   is the gap width in   row, and   is the number of rows.

The plugin produces three types of outputs: a.csv �le with the calculated wound area or width for every

time point in pixels and percentage formats, output images with detected wound boundaries, and a

graph representing the closure of the wound over time.

The images acquired from treating SW480-ADH cells with DMSO, SVA, and WVA were analyzed by

applying user-de�ned parameter values listed in Table 2.

Table 2. User-de�ned parameter values applied for the analysis of wound closure in SW480-ADH cells

treated with DMSO, SVA, and WVA (user-adjusted values are in bold)

Data analysis with MRI

Montpellier Ressources Imagerie (MRI) is a semi-automatic ImageJ tool for wound healing assay

analysis[23]. MRI tool relies on two di�erent methods for image processing and requires the adjustment

of four parameters. It can quantify the area of the wound on a time stack sequence of images and store it

in a.csv �le. Parameters in Table 3 were used for the analysis as indicated in their tutorial[24].

mean =
∑wi

n
(2)

wi ith n
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Parameter Value

Method Variance

Variance �lter radius 10

Threshold 50

Radius open 4

Min. size 10 000

Table 3. Settings for the MRI ImageJ macro used for wound healing assay analysis

Data analysis with HTM

HTM Wound healing tool is a semi-automatic tool developed by Dr. Ivan Vorobyevs laboratory for the

Scratch assay analysis. It is available in MatLab with no UI. Default parameters were used for the

analysis. For demonstration purposes, the code was modi�ed by changing the color and increasing the

thickness of the detected boundaries in output images.

Dynamics of wound closure

The dynamics of wound closure were initially assumed to be linear with a linear regression line �tted to

all time points on the wound closure curve over 48 hours. The gradient or slope of this trendline was

used to represent the wound closure rate, expressed as a percentage per hour.

Although linear dynamics of wound closure were observed for all detection methods, this pattern held

true only for the early stages of wound closure. Careful observation revealed that the wound closure rate

slowed down in the later stages (starting around 30 hours), deviating from the initial linear trend (see

Fig. 1 and Fig. 4 for more details). Consequently, the dynamics of wound closure appeared to follow an

exponential decay function rather than a linear curve. To better capture this behavior, a single

exponential decay curve, y = Ae−λt, was used to estimate the dynamics of wound closure with λ

representing the rate constant or decay constant. The comparison of its suitability against the linear

model is shown in Fig. S4.
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Results

Evaluation of the CSMA plugin with default and user settings

Solvent-treated group of SW480-ADH cells was used to assess the accuracy of wound detection with

the CSMA ImageJ plugin. The default parameters were tested against user-de�ned parameters, which

were tuned according to the instructions provided for the plugin in the README �le. As shown in Fig. 3,

the number of cells found in the middle of the wound increased until they fused with the cells at the

wound front after approximately 20 hours. The CSMA plugin successfully detected the cells in the

middle of the gap at all time points, which allowed for more accurate area estimation. The �nal wound

area was estimated to be 11.52% of the initial area (Fig. 3 and 4). The linear wound closure rate

estimated for 48 hours was 1.83% per hour (R2 = 0.95). However, when two separate linear regressions

were applied to two di�erent regions of the graph with visually distinct wound closure rates, the

following values were obtained: 2.48% per hour (R2 = 0.99) for the �rst 30 hours and 0.90% per hour

(R2 = 0.90) for the remaining 18 hours (Fig. 4). The best-�tted exponential decay constant for the entire

48-hour period was 0.043 (R2 = 0.98).
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Figure 3. Wound closure in the vehicle control group of SW480-ADH colon cancer cells detected by the

CSMA plugin with default settings. The graph representing the wound closure, which was generated

automatically by CSMA algorithm and stored together with the output images.
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Figure 4. (a) Representative images of wound closure in the vehicle control group of SW480-ADH colon

cancer cells detected by the CSMA plugin with default (red) and user-de�ned (blue) settings. The

yellow arrow points to the overestimation of the cell-covered area for default settings. (b) Wound area

closure vs. time. The inset shows the deviation of the curve between default and user setting from 16

hours on highlighted in blue area. The table within the graph displays the default and user-de�ned

parameters used. The curve obtained for default setting has been �tted with linear and exponential
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functions demonstrating the superior performance of the exponential model (blue dashed line) over

the linear (black dashed lines).

User manipulation of the plugin settings involved changing the contrast limits only since it was

su�cient to achieve reliable quality of wound closure detection as demonstrated in Fig. 4. The �nal

wound area as estimated with user-de�ned settings was 12.33%, which was slightly larger than with

the default settings. The exponential decay rate reduced to 0.041 (R2 = 0.99).

During the �rst 16 hours, the wound area estimations obtained with default and user-de�ned

parameters correlated closely since cells at the wound front moved uniformly, and cells in the middle of

the wound remained separated from the wound front (Fig. 4). However, after 16 hours, the wound front

came into proximity to the cells in the middle. The fusion of two wound fronts with cell-covered

patches inside the wound led to an overestimation of the covered area for default settings. However,

adjusting the contrast limit parameters minimized the area of regions falsely detected (Fig. 4A, yellow

arrows).

Performance comparison of CSMA, MRI, and HTM algorithms

To test the e�ectiveness of CSMA compared to other publicly available tools for wound healing assay,

we selected MRI and HTM. To ensure a fair comparison between all the tools, we applied the

recommended settings from the provided README �le or source code for each one (Fig. 5). An

additional dataset of 769-P cells was chosen to ensure that our plugin worked properly on images with

di�erent characteristics (Supplementary Fig. S3).
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Figure 5. (a) Representative images of wound closure in the vehicle control group of SW480-ADH

colon cancer cells as detected by HTM MATLAB code, the MRI ImageJ macro, and the CSMA ImageJ

plugin. Default settings were used for all three wound detection tools. (b) Quanti�cation of the wound

area closure over 48 hours expressed in pixels. (c) Quanti�cation of the wound area closure over 48

hours expressed as a percentage. The table displays the R2 values for both linear and exponential �ts

demonstrating the superior performance of the exponential function over linear.
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Fig. 5A highlights di�erences in how cell boundaries were detected by di�erent algorithms. While both

HTM and MRI had some challenges in detecting cells at the center of the wound area (yellow arrows),

CSMA detected these cells with high precision (green arrow). Further, HTM and MRI could not detect

the empty regions in the middle of the wound after 32 hours (blue arrows), leading to biased wound

area estimations. In contrast, our plugin accurately detected these regions (red arrows). CSMA showed a

smaller initial wound area compared to HTM because it successfully detected the cells inside the wound

(Fig. 5B). On the other hand, MRI demonstrated a smaller initial wound area than CSMA presumably

because of the overestimation of the wound front (see Fig. 5A). Finally, CSMA produced a much

smoother wound closure curve than HTM, which falsely detected only the largest remaining wound

region as the true wound at approximately 24 hours neglecting the smaller unoccupied areas (Fig. 5B

and C).

CSMA also e�ectively detected wound boundaries and cells within the wound in the 769-P dataset

(Supplementary Fig. S3), accurately tracking the migration of cells within the wound. The wound area

estimations of CSMA and HTM correlated very closely, except for the sudden drop at 22 hours detected

by HTM, which was caused by the disconnected detection of the wound area while only the largest area

was used for the estimation. MRI underestimated the area of the wound at all times most probably due

to the speci�cities of the detection algorithm.

In general, CSMA accurately detected cells within the wound in three replicates of SW480-ADH colon

cancer cells treated with DMSO. The mean R2 values obtained from three replicates for the exponential

best-�t curves for CSMA, HTM, and MRI were 0.97±0.01%, 0.95±0.03%, and 0.91±0.08%, respectively

(see Supplementary Fig. S4). As a result, the wound closure curve of CSMA �tted the exponential model

better than that of HTM and MRI as demonstrated by the calculated R2 values.

E�ect of SVA and WVA on the migration of SW480-ADH cells

The e�ect of SVA and WVA on the migration of human colon cancer cells was assessed by the CSMA

plugin (Fig. 6A). SW480-ADH cells treated with 100µM WVA demonstrated the lowest mean linear

wound closure rate of 0.78±0.22 % per hour (R2 = 0.93±0.05), compared to 1.17±0.30 % per hour (R2 =

0.98±0.01) in the group treated with 10 nM SVA, and 1.63±0.21 % per hour (R2 = 0.96±0.02) in the

solvent control group. The mean exponential decay constants obtained from four replicates were

estimated as follows: 1.03×10−2 ±3.30×10−3 (R2 = 0.93 ± 0.06) for WVA, 1.78 × 10−2 ± 8.18 × 10−3 (R2 =

0.97 ± 0.01) for SVA, and 2.83×10−2 ± 6.99 × 10−3 (R2 = 0.96 ± 0.02) for the solvent control group. The
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average �nal wound areas were 27.22 ± 8.25 %, 45.20 ± 12.74 %, and 59.89 ± 8.22 % for the DMSO, SVA,

and WVA groups, respectively (Fig. 6B).
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Figure 6. (a) Representative images of wound closure in SW480-ADH colon cancer cells treated with

DMSO, 10nM SVA, and 100µM WVA detected by the CSMA ImageJ plugin with user-de�ned parameters

listed in Table 2. (b) Quanti�cation of the mean wound area closure over 48 hours obtained from four

replicates. (c) Quanti�cation of the mean wound width over 48 hours obtained from four replicates.
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Discussion

The CSMA plugin demonstrated high-precision edge detection in all tested datasets by detecting

migrating cells in the middle of the wound and minimizing the overestimation of wound edge

boundaries.

The performance of the plugin with default and user-de�ned parameters was comparable, and the �nal

wound area estimations for both vehicle control group SW480-ADH and 769-P cells were less than 1%

di�erence, demonstrating high compatibility of the default parameters with di�erent imaging

conditions. However, with user-de�ned parameters, the wound closure was more accurate in the

vehicle control group SW480-ADH since the false detection of empty regions was minimized.

Importantly, such improvement in wound detection resulted from the adjustment of only the contrast

limits, while the rest of the parameters remained the same. In all analyzed datasets, the user-de�ned

contrast limits of wound edge detection and �rst mask contrast limit values matched closely, which is

why keeping these two parameters the same is a good starting point for �ne-tuning the plugin settings

as listed in Tables 1 and 2.

The detection of cells in the middle of the wound was precise for both the SW480-ADH and 769-P

datasets. For instance, the plugin accurately detected the changing boundaries of a migrating cell front

in the 769-P dataset with default settings (Supplementary Fig. S3). This suggests that the default

parameters of the CSMA plugin may serve as a universal starting point for accurate wound detection

across various imaging conditions. Other detection tools were unable to account for these cells in their

calculations, suggesting that our plugin is one of the few freely available options that o�er such high

precision in wound area closure detection. Additionally, other tools failed to detect empty regions

occasionally, leading to inaccurate wound area detection. The CSMA plugin also outperforms others in

terms of image processing speed. For example, while HTM takes about 4.19 × 10−1 ± 6.51 × 10−3 seconds

to process an image, CSMA requires only 2.26 × 10−1 ± 5.49 × 10−4 second with default settings.

The datasets used for testing the e�ect of various VDR agonists on SW480-ADH migration were more

di�cult to analyze for several reasons. First, uneven and constantly changing illumination impeded

edge detection because the borders of dark and light regions were detected as the wound edges by the

Canny method, which is based on detecting the regions of sharp illumination changes[21]. This

drawback was minimized by carefully adjusting the contrast limit and square grid size. Increasing the

contrast limit and decreasing the square grid size improved the detection of smaller elements, such as
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single cells, while decreasing the contrast limit and increasing the square grid size helped to reduce the

detection of false edges.

In addition, it is occasionally possible for the “�eld of view” and the “location of the wound in the

image” to be slightly shifted as a result of the image stitching process or a minor disturbance of the

imaging device inside the incubator during the image acquisition procedure. Since the CSMA plugin

applies the mask from the previous image to the current one, this shift resulted in an inaccurate wound

detection with the default parameters. However, this limitation was overcome by increasing the mask

erosion parameter. It is advised to accompany such adjustments with increasing the dilation radius to

maintain accurate detection of the true wound edges. Lastly, the microscope’s focus likely shifted over

time, causing cells inside and at the front of the wound to appear larger and blurrier in later images.

Although the resulting sudden drops in the wound area could not be entirely corrected, the plugin still

accurately detected small elements and wound edges.

Precise detection of wound edges and cells within the wound allowed CSMA to achieve high-accuracy

area detection and produce smooth wound closure curves. As a consequence, wound closure curves

generated by CSMA �t the linear and exponential models better than those generated by HTM and MRI

(Supplementary Fig. S4). Although both the linear and exponential regression curves have R2 values

above 0.90, the exponential regression curve is more suitable due to its higher R2 value. This is because

exponential curves can accurately �t both visually linear and exponential wound closure patterns,

whereas the linear �t aligns well only in cases of linear closure. For example, as demonstrated in Fig. 4

and 5, a single linear �t line cannot adequately describe the cell behavior over the entire period since

di�erent time intervals exhibit varying closure speeds. Therefore, two linear trendlines are required to

capture the true behavior of this curve, which is both time-consuming and potentially misleading. In

contrast, a single exponential decay curve �ts the data well and allows the behavior to be described with

only one decay rate.

One limitation of the study is the inconsistency in the initial wound width due to variations in the force

applied to the pipette tip. Additional challenges include low image quality, cells with suboptimal

adhesion properties such as being overly adhesive or non-adhesive, number of adjustable parameters,

and potential installation issues due to operating system di�erences and unique user settings.

Though CSMA o�ers two modes of wound closure quanti�cation, we found that the area quanti�cation

method was more accurate than width because it accounted for cells proliferating in the middle of the

gap.
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Conclusion

Our study demonstrates that the newly developed CSMA ImageJ plugin o�ers a signi�cant advancement

in the accurate quanti�cation of wound closure in cell migration assays. By addressing the limitations

of existing methods, which often fail to detect cells within the wound gap and result in biased

measurements, our plugin provides a more reliable and precise approach for evaluating cell migration

and wound healing. The ability of our tool to identify empty regions and avoid overestimation of the

cell-covered area further validates its e�ectiveness. Additionally, accurately detecting wound closure at

all time points allows for the correct estimation of wound closure dynamics such as its rate. This

innovative solution not only enhances the accuracy of wound closure assessments but also o�ers a

user-friendly platform for researchers to obtain robust and reproducible results in cell migration

studies such as in studying the metastatic properties of cancer cell lines.

Supplementary Data

Figure S1. Representative images of wound closure at 12 hours in SW480-ADH colon cancer cells

treated with DMSO and detected using the CSMA ImageJ plugin, MRI ImageJ macro, and HTM MatLab

code with default settings. The two yellow arrow indicate the misdetection of cells inside the would for

HTM and MRI compare proper detection via CSMA (green arrow).
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Figure S2. Schematic diagram of the CSMA algorithm work�ow for wound width detection and

quanti�cation. Default parameters were used to obtain the representative images for every step.
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Figure S3. Representative images of wound closure in mutant 769-P renal cancer cells detected using

the CSMA ImageJ plugin, MRI ImageJ macro, and HTM MATLAB code with default settings. (b)

Quanti�cation of wound area closure in pixels over 23.5 hours. (c) Quanti�cation of wound area closure
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as percentage over 23.5 hours. The drop in wound closure area corresponds to a smaller area detected at

22 hours, as shown in the images below the graph alongside the 21.5- and 22.5-hour time points.

Figure S4. Representative graphs of the wound area closure vs time for the vehicle control

group of SW480-ADH colon cancer cells detected by HTM, MRI, and CSMA algorithms.

Both linear and exponential curves were �tted to determine the R2 values. The table within

the graph displays the mean R2 for both linear and exponential regression curves obtained

from three independent measurements.
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