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Abstract. In this paper, we introduce the concept of vertex-edge lo-
cating Roman dominating functions in graphs. A vertex-edge locating
Roman dominating (ve−LRD) function of a graph G = (V,E) is a func-
tion f : V (G) → {0, 1, 2} such that the following conditions are satisfied:
(i) for every adjacent vertices u, v with f(u) = 0 or f(v) = 0, there exists
a vertex w at distance 1 or 2 from u or v with f(w) = 2, (ii) for every
edge uv ∈ E, max[f(u), f(v)] ̸= 0 and (iii) any pair of distinct vertices
u, v with f(u) = f(v) = 0 does not have a common neighbour w with
f(w) = 2 . The weight of ve-LRD function is the sum of its function
values over all the vertices. The vertex-edge locating Roman domination
number of G denoted by γP

ve−LR(G) is the minimum weight of a ve-LRD
function in G. We proved that the vertex-edge locating Roman domi-
nation problem is NP complete for bipartite graphs. Also, we present
the upper and lower bonds of ve-LRD function for trees. Lastly, we give
the upper bounds of ve-LRD function for some connected graphs.
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1. Introduction and Preliminaries

In this paper, we introduce the concept of vertex-edge Locating Roman
dominating function. Let G = (V,E) be an undirected graph with vertex set
V and edge set E. The number of vertices in G is the order of G and the
number of the edges in G is the size of the graph G. The set of all neighbors
of vertex u in G is the open neighborhood of u; that is NG(u) = {v ∈ V |uv ∈
E(G)}. The closed neighborhood of u in G is G[u] = {u} ∪ NG(u). The
number of vertices at distance 2 from vertex v in G is denoted as N2(v).
The degree of vertex u in G is d(u) = |NG(u)|. The path of order n is
written as Pn, the size of Pn is n − 1. The graphs Cn,Kn denote the cycle
and complete graphs of order n respecticely. The diameter of G, denoted by
diam(G) is define as the shortest maximum distance between two vertices in
G, that is diam(G) = max{dist(x, y) : x, y ∈ V (G)}.

A rooted tree is a tree whereby the vertex called the root is distinguished
from the other vertices of the tree. Let T denotes the rooted tree. Vertex of
degree one is the leaf of a tree and the support vertex is a vertex adjacent
to a leaf. A star and Bistar are trees with one and two non-leaf vertices
respectively.. Let S(T ) and L(T ) denotes the set of all support vertices and
the set of leaves in T respectively. Let |L(T )| = l(T ) and s(T ) = |S(T )|,
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we denote L(u) as the set of all leaves adjacent to a support vertex u and
l(u) = |L(u)|. Let I(T ) denotes the set of vertices in T that are neither root,
support nor leaf vertices. Also, let i = |I(T )|.

A subset D ⊂ V is known as a dominating set of G if every vertex u in
V \D has a neighbor in D. The dominating set with minimum cardinality
is known as the domination number γ(G) of G. Let β ∈ {0, 1, 2} and for
any vertex u ∈ G, we denote the set of vertices with f(u) = β by Vβ.

Slater [15, 16] introduced the study of locating dominating sets in graphs
whereby he studied many graph related problems with various types of pro-
tection. His objective in the work is to locate the intruder. A locating dom-
inating set D ⊂ V (G) is a dominating set with the property that the set
N(u) ∩D is unique for each vertex u ∈ V (G) \D. The locating dominating
set of G with minimum cardinality is known as locating domination number
of G. Several domination parameters in the concept of locating domination
has been considered, for more result, see [2, 4, 5, 6].

A Roman dominating function (RDF ) on G is a function f : V (G) →
{0, 1, 2} such that every vertex v ∈ V (G) with f(v) = 0 is adjacent to
at leaast one vertex u with f(u) = 2. The weight of RDF is the value
f(V (G)) =

∑
v∈V (G) f(v), denoted by w(f). Roman domination number

denoted by γR(G) is the RDF on G with minimum weight. Cockayne et
al. [9] introduced Roman domination which was motivated by the work of
Re Velle and Rosing [14] and Stewart [17]. See [7, 8] for more results on
Roman domination.

A RD-function is called a locating Roman dominating function (LRD-
function) if for any pair of vertices u, v with f(u) = f(v) = 0, N(u) ∩ V2 ̸=
N(v) ∩ V2. The minimum weight of LRD-function is known as the locating
Roman domination number denoted as γLR(G). See [10, 3] for more result
on LRD-function.

In this paper, we consider the case whereby there will be optimal location
of intruder , that is , all the intruder in the whole empire will be located
easily. This lead to the study of vertex-edge locating Roman dominating
function. Nares Kumar and Venkatakrishnan [12, 13] studied the vertex-edge
Roman domination. A vertex-edge Roman dominating (ve-LRD) function
on a graph G is a function f : V (G) → {0, 1, 2} with the property that for
every edge uv ∈ E, either max{f(u), f(v)} ≠ 0, or there exists w ∈ N(u) ∪
N(v) such that f(w) = 2. The vertex-edge Roman domination number of
a graph G denoted by γveR(G) is the minimum weight of a ve-RDF, i.e.,
γveR(G) = min{w(f) : f is a ve−RDF on G}. More result on vertex-edge
domination number can be found in [1, 11, 18]
Our aim in this work, is to apply the analogue of vertex-edge on locating
Roman domination and establish the variation vertex-edge locating Roman
domination as follows.
A vertex-edge locating Roman dominating function of a graph G, abbrevated
ve-LRD function is a function f : V (G) → {0, 1, 2} satisfying the conditions
that (i) every adjacent vertices u, v with u ∈ V0 or v ∈ V0, there exists a
vertex w ∈ V2 such that w ∈ N(u) ∪ N(v); (ii) max{f(u), f(v)} ≠ 0 for
every edge uv ∈ E and (iii) for any pair of distinct vertices u, v of V0,
N(u) ∩ V2 ̸= N(v) ∩ V2.
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In Section 2, we show that the vertex-edge locating Roman domination is
NP complete for bipartite graphs and in Section 3, we present the upper and
lower bonds of ve-LRD function for trees. In section 4, we presented the
ve-LRD function of complete graphs and upper bounds of ve-LRD function
for some connected graphs.

2. Complexity

In this section, we presents the complexity result for the vertex-edge lo-
cating Roman domination problem in bipartite graphs.
VERTEX-EDGE LOCATING ROMAN DOMINATION (ve-LRD)
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have a vertex-edge Locating Roman dominating function
of weight at most k?
Exact 3-cover (X3C)
Instance: A set X with |X| = 3q, a family C of 3-element subsets of X.
Question: Does G have a subcollection C ′ ⊂ C such that any member of
X appears in only one element of C ′?

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

w1 w2 w3 w4 w5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

c1 c2 c3 c4 c5

x1 x2 x3 x4 x5 x6

r1 r2 r3 r4 r5

Figure 1. NP-completeness of vertex-edge locating Roman
domination for bipartite graphs

Theorem 2.1. ve− LRD is NP -complete for bipartite graphs.

Proof. ve-LRD is NP since it can be check in polynomial time that the
function f : V → {0, 1, 2} is an ve-LRD and has weight at most k. Given an
instance (X,C) of X3C with X = {x1, x2, ..., x3q} and C = {C1, C2, ..., Ct}.
Bipartite graph G can be constructed as follows: for any xi ∈ X, create a
single vertex xi. A tree Tj can be built for any Cj ∈ C which comprises of
paths P6 = {uj , vj , wj , yj , zj , cj} and Q = {r1, ...rt} such that edges rjzj are
added to Pj6. To achieve the construction of G, we add edges cjxi when
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xi ∈ Cj (see Figure 1). Set k = 5t+ q. Observe that for every ve-LRD, each
P6 has weight at least 5. The leaf neighbor rj of zj , wj and cj has weight 0,
while vertices uj , vj and zj are assign 1 and yj must be assigned 2.
Suppose C ′ is a solution of the instance (X,C) of X3C. Then ve-LRD
function f on G of weight k can be constructed as follows: Assign value 0
to xi for each i, then for each j, if Cj ∈ C ′, assign value 2 to vertex zj , value
0 to vertex wj and 1 to the remaining vertices of Pj6. Also, assign 0 to the
vertices of Qj .
If Cj /∈ C ′, assign 2 to vertex yj in each Pj6, assign 0 to vertices wj , cj and
the set Qj . Assign 1 to the remaining vertices of Pj6.
Note that since C ′ exists, the order of C ′ is q and so the number of cj with
value 1 is q and every vertex in X is at distance two to vertex zj with value
2. Therefore, f is ve-LRD with weight f(V ) = 5t+ q = k.
Conversely, suppose that G has ve-LRD function with weight at most k.
Let α = (V0, V1, V2), observe from above, each Pj6 has weight at least 5.
We may assume that α(zj) = 2 if Cj ∈ C ′ and α(yj) = 2 if Cj /∈ C ′. It
is clear that vertices of Pj6 with value 0 is at distance two or one from the
vertex assign 2 such that any pair of vertices with value 0 does not have a
common neighbor assign 2 under α. Now since w(α) ≤ 5t + q, we can see
that X ∩ V0 ̸= ϕ. If α(xi) > 0 for some i, then this provides an ve-LRD
function of weight at most k with weight greater than α. Therefore X ⊂ V0.
Now, since each vertex of X is at distance two from a vertex in V2 and the
sum of end points of each edge must be greater than 0, each α has exactly
three neighbors in {x1, x2, ..., x3q}. This will be possible only if there are q
vertices zj of Tj that are assign 2 and q vertices cj of Tj that are assign 1.
We conclude that C ′ = {Cj : α(cj) = 1} is an exact cover for C. □

3. vertex-edge locating Roman domination of trees

In this section, we gave the value of vertex-edge domination number of
paths. We also gave the upper bound of ve-LRD function for bistar. Lastly,
we establish the lower and upper bounds of ve-LRD function for tree T in
terms of l leaves, s support vertices and i internal vertices. We begin with
the following result.

Proposition 3.1. For n ≥ 3, γveLR(Pn) =

{
4n+k

5 , if n ≡ k mod 5 and k ̸= 4
4n+k

5 − 1, if n ≡ k mod 5 and k = 4

Proof. Let Pn = u1, u2, ..., un be a path of order n > 2. Let f be a function
defined on the V (Pn) as f : V (Pn) → {0, 1, 2}. The problem can be split
into the following two cases.
Case 1: If n ≡ k mod 4, 0 ≤ k ≤ 3. The function f is define as

f(uj) =


0, if j ≡ 1 or 4 mod 5 and j < n− k

1, if j ≡ 0 or 2 mod 5, j < n− k and n− (k + 1) ≤ j ≤ n

2, if j ≡ 3 mod 5 and j < n− k

.
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Case 2: If n ≡ k mod 5 and k = 4.
Define f on V (Pn) as follows:

f(uj) =


0, if j = n− 3, n

1, if j = n− 2

2, if j = n− 1

f(uj) in case 1 above, otherwise.

.

Clearly, f is a ve-LRD of Pn and thus

γveLR(Pn) ≤

{
4n+k

5 , if n ≡ k mod 5 and k ̸= 4
4n+k

5 − 1, if n ≡ k mod 5 and k = 4

To proof the inverse inequality, we establish it by induction on n. Let P ′

be the a path obtained from path Pn by removing one vertex (say un) from
the path Pn. Then P ′ is a path of order n′ = n− 1. If f(un) ≥ 1, then the
retriction of f on P ′ will give ve-LRD on P ′ , that is w(f) ≥ γveLR(P

′) + 1.
Thus, if k ̸= 4,

w(f) ≥ γveLR(P
′) + 1

=
4n′ + k′

5
+ 1

=
4(n− 1) + k − 1

5
+ 1

=
4n+ k

5
.

If k = 4, we have

w(f) ≥ γveLR(P
′) + 1

=
4n′ + k′

5
− 1 + 1

=
4(n− 1) + k − 1

5
− 1 + 1

=
4n+ k

5
− 1.

Thus,

γveLR(Pn) ≥

{
4n+k

5 , if n ≡ k mod 5 and k ̸= 4
4n+k

5 − 1, if n ≡ k mod 5 and k = 4

Using the induction hypothesis, we get the desired lower bound. Hence, the
equality holds. □

Observation: For any star graph Sn, γveLR(Sn) = 3.

Proposition 3.2. For any bistar BSn of order n ≥ 6, γveLR(BSn) ≤ 6.

Proof. Let u, v be the support vertices in BSn and define a function f :
V (BSn) → {0, 1, 2} as follows: If lu ≤ 2 and lv ≥ 2, then set f(u) = 2 and
f(v) = 1. Also, assign 1 to only one leaf neighbor of support vertex u and
assign 0 to the remaining leaves in BSn. The above assignment will give a
ve-LRD function with weight 4.
If lu = 3 and lv ≥ 3, set f(u) = 2, f(v) = 1. Assign 1 to only two leaves
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neighbors of u and 0 to the remaining leaves in BSn. The labeling gives a
ve-LRD function with weight 5.
If lu, lv ≥ 3, set f(u) = f(v) = 1 and f(x) = f(y) = 2, where x ∈ lu and
y ∈ lv. Assign 0 to the remaining leaves in BSn. This gives a ve-LRD
function with weight 6. In all cases, γveLR(BSn) ≤ 6.
Assume that BSn admits a ve-LRD function h with w(h) > 6. Assume
that h is of minimum weight. If {h(s), h(r)} ≥ 1, where s ∈ lu \ x and
r ∈ lv \ y, then the restriction of h on BSn −{s, r} is a ve-LRD function on
BSn−{s, r} with weight less than 6, a contradiction. Thus h(s) = h(r) = 0.
Hence, γveLR(BSn) ≤ 6. □

Theorem 3.3. If T is a tree of order n ≥ 6 with l leaves, s support vertices
and i internal vertices and T is not a path, then γveLR(T ) ≤ n− l + 2s− i.

Proof. We establish the proof by induction on n. Assume that diam(T ) ≥
4, let u0, ..., ut be a diametral path . Then u0 and ut are the root and
leaf respectively and ut−1 is a support vertex. We split the proof into the
following cases:
Case 1: d(ut−1) ≥ 3. Then ut−1 is adjacent to atleast two leaves. Let T ′

be the tree obtained from T by deleting ut. Then T ′ has order n′ = n − 1
with l′ = l − 1, s′ = s and i′ = i. By induction hypothesis, T ′ admits
ve-LRD function f ′ such that w(f ′) ≤ n′ − l′ + 2s − i. Define a function
f : V (T ) → {0, 1, 2} as follows:
If f ′(ut−2) = 2 or f ′(ut−1) ≥ 1, set f(ut) = 0 and f(x) = f ′(x) for all
x ∈ T − ut, if f

′(ut−2) < 2 and f ′(ut−1) ≤ 1, then ut−1 is adjacent to a leaf
y in T ′ with f ′(y) ≥ 1, set f(ut−2) = 2, f(ut−1) = 1 and f(y) = f(ut) = 0.
Also, f(v) = f ′(v) for all v ∈ T − {ut−2, ut−1, ut, y}. Then f is a ve-LRD
function on T of weight

w(f) ≤ w(f ′)

≤ n′ − l′ + 2s′ − i′

= n− 1− l + 1 + 2s− i

= n− l + 2s− i.

Thus the statement is true.
Case 2: If d(ut−1) = 2.
Subcase I: If d(ut−2) = 2. Let T ′ be the tree obtained from T by deleting
ut−1 and ut. Then n′ = n − 2, l′ = l, s′ ≤ s and i′ ≤ i. T ′ admits ve-LRD
function f ′ by induction hypothesis such that w(f ′) ≤ n′ − l′ + 2s′ − i′.
Define f : V (T ) → {0, 1, 2} by f(ut−1) = f(ut) = 1 and f(x) = f ′(x) for all
x ∈ T − {ut−1, ut}. The assignment gives a ve-LRD function f on T with
weight

w(f) = w(f ′) + 2

≤ n′ − l′ + 2s′ − i′ + 2

≤ n− 2− l + 2s− i+ 2

= n− l + 2s− i.

Therefore, the statement holds.
Subcase II: d(tt−2) ≥ 3
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Let T ′ be the tree obtained from T by deleting ut−1 and ut. Then n′ =
n − 2, l′ = l − 1, s′ ≤ s and i′ = i. By induction hypothesis, T ′ admits a
ve-LRD function f ′ with w(f ′) ≤ n′ − l′ + 2s′ − i′. Define function f in T
as follows: If f ′(ut−2) = 1 and f ′(ut−3) = 2, set f(ut−1) = 0 and f(ut) = 1.
Also, if f ′(ut−3) = 2 and f ′(ut−2) = 0, set f(ut−1) = 1 and f(ut) = 0. If
f ′(ut−3) = 1 and f ′(t− 2) = 2, set f(ut−1) = 1 and f(ut) = 0. Therefore,
the labeling gives a ve-LRD function f on T with weight

w(f) = w(f ′) + 1

≤ n′ − l′ + 2s′ − i′ + 1

≤ n− 2− l + 1 + 2s− i+ 1

= n− l + 2s− i.

□

Theorem 3.4. If T is a treee with diam(T ) ≥ 4, l leaves, s support vertices
and i internal vertices, then γveLR(T ) ≥ n−l+s−i

2 .

Proof. We use induction on n to establish the proof. Assume that |T | ≥ 5,
let T ′ be an arbitrary tree of order n′ such that |T ′| < |T | with diam(T ′) ≥ 3.
Assume that the statement is true for any tree T ′. Also, let l′, s′, i′ be the
order of leaves, support vertices and internal vertices in T ′ respectively.
Assume that diam(T ) ≥ 4. Let u0, ..., ut be a diametral path and f a ve-
LRD function on T with minimum weight, that is w(f) = γveLR(T )
Claim 1: If d(u1) > 2, then the statement is true.
Proof: The vertex u1 is adjacent to atleast two vertices u0 and say leaf y.
Let T ′ be the tree obtained from T by deleting y. Then n′ = n − 1, l′ =
l − 1, s′ = s and i′ ≥ i. Define a function f : V (T ) → {0, 1, 2} on T and
f ′ is a function define on T ′. If f ′(u1) = 1 and f ′(u0) = 2 or f ′(u2) = 2 ,
set f(y) = 0. Then the restriction of f on T ′ is a ve-LRD function on T ′,
that is w(f) ≥ γveLR(T

′). If f ′(u1) = 0 and any of the vertices uj , j = 0, 2, 3
is assign 2, set f(y) = 1. If f ′(u1) = 2 and f(u0) = 0 or f ′(u2) = 0 or
f ′(u3) = 0, set f(y) = 1. The restriction of f on T ′ is a ve-LRD function on
T ′, so w(f ′) ≥ γveLR(T

′). Therefore in all cases, we have

w(f) ≥ w(f ′)

≥ n′ − l′ + s′ − i′

2

≥ n− 1− l + 1 + s− i

2

=
n− l + s− i

2
.

Let assume that d(u1) = 2.
Claim 2: If there exist j ∈ {2, .., t − 2} such that uj is a support vertex in
T , then the statement is true.
Proof. Let denote the leaf adjacent to ui in T by z. Let T ′ be the tree
obtained from T by deleting z. Then n′ = n − 1, l′ = l − 1, s′ ≤ s and
i′ ≥ i. By induction hypothesis, γveLR(T

′) ≥ n′−l′+s′−i′

2 . If f ′(ui) = 1
and f ′(ui−1) or f ′(ui+1) = 2, then set f(z) = 0. The restiction of f on
T ′ is a ve-LRD function on T ′; so w(f) ≥ γveLR(T

′). If f ′(ui) = 0, set
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f(z) = 1. If f ′(ui) = 2 and either f ′(ui−1) or f ′(ui+1) or f ′(ui+2) = 0,
set f(z) = 1 and f ′ = f otherwise. If neither f ′(ui−1) nor f ′(ui+1) nor
f ′(ui+2) = 0 and f ′(ui) = 2, set f(z) = 0 and f ′ = f otherwise. Thus
w(f) ≥ w(f ′) ≥ γveLR(T

′). If there exist v ∈ N(uj) \ {z} with f ′(v) = 2,
set f(z) = 0, the restriction of f on T ′ is a ve-LRD function on T ′, so
w(f) ≥ γveLR(T

′). Therefore, in all cases we have

w(f) ≥ γveLR(T
′)

≥ n′ − l′ + s′ − i′

2

≥ n− 1− l + 1 + s− i

2

=
n− l + s− i

2
.

Thus, the statement holds.
Assume that the set {u0, ..., ut} does not have a support vertex in T . Then
we have the following two cases:
Case 1: d(u2) > 2. Vertex u2 is adjacent to a support vertex say y since u2
is not adjacent to any leaf and the path {u0, ..., ut} is the diametral path.
Note that y /∈ {u1, u3} and y is adjacent to a leaf z. Let T ′ be a tree
obtained from T by deleting vertices y and z. Then diam(T ′) = diam(T ),
n′ = n− 2, l′ = l− 1, s′ = s− 1 and i′ = i. If f(u2) ≥ 1, then the restriction
of f on T ′ will give a ve-LRD function on T ′, i.e. w(f) ≥ γveLR(T

′). If
f ′(u2) = 0, then f(y) + f(z) > 1. Define a ve-LRD function f on T as
follows: If f ′(u2) = 1 and either f ′(u1) or **—————-f ′(u3) = 2, set
f(y) = 0, f(z) = 1 and f ′ = f otherwise. Also, if f ′(u2) = 2, set f(y) = 1
and f(z) = 0. If f ′(u2) = 0, set f(y) = f(z) = 1 and f ′ = f otherwise.
Thus in all cases, we have

w(f) ≥ γveLR(T
′) + 1

≥ n′ − l′ + s′ − i′

2
+ 1

≥ n− 2− l + 1 + s− 1− i

2
+ 1

=
n− l + s− i

2
.

Thus the statement holds.
Case 2: d(u2) = 2. If diam(T ) = 4, then T = P5 and by Proposition 3.1,
γveLR(P5) = 4 > n−l+s−i

2 . Let assume that diam(T ) ≥ 5. Let T ′ be the tree
obtained from T by deleting vertices u0 and u1. So diam(T ′) ≥ 3. Also,
n′ = n − 2, l′ = l, s′ = s and i′ ≤ i. Assume that f(u0) + f(u1) ≥ 1 and
the restriction of f on f ′ is a ve-LRD function on T ′ with w(f ′) ≥ n−l+s−i

2 .
Define f on T as follows: If f ′(u2) = 2, set f(u1) = 1, f(u0) = 0 and f = f ′

otherwise. If f ′(u2) = 1 and f ′(u3) = 2, set f(u1) = 0 and f(u0) = 1, f ′ = f
otherwise. Also, If f ′(u2) = 1 and f ′(u3) ̸= 2, set f(u0) = f(u1) = 1 and
f = f ′ otherwise. If f ′(u2) = 0, set f(u0) = f(u1) = 1 and f = f ′ otherwise.
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Therefore, in all cases above, we have

w(f) ≥ γveLR(T
′) + 1

≥ n′ − l′ + s′ − i′

2
+ 1

≥ n− 2− l + s− i

2
+ 1

=
n− l + s− i

2
.

Thus, the statement holds. □

4. Vertex-edge locating Roman domination of connected
graphs

In this section, we gave the vertex-edge domination number of complete
graphs and upper bound for the vertex-edge domination number of connected
graphs. We begin with the following result on ve-LRD function of connected
graphs.

Lemma 4.1. Let G be a connected graph of order n > 3 and G ̸= Kn. If
v ∈ V (G) with d(v) ≥ 2, then γveLR(G) ≤ n− 1.

Proof. Let u1, u2 ∈ N2(v) and let v1 ∈ N(v)∩N(u1) and v2 ∈ N(v)∩N(u2)
such that {u1, v1, v, v2, u2} is a path in G. If v has a leaf neighbor say x, the
function f : V (G) → {0, 1, 2} defined by f(v2) = 2, f(v1) = f(x) = f(u2) =
0 and f(y) = 1 for y ∈ V (G)\{v1, v2, x, u2} is a ve-LRD function on G with
weight n− 1. Therefore, γveLR(G) ≤ n− 1.
If only v1 has leaf neighbor say x ∈ lv1 , then define f : V (G) → {0, 1, 2}
by f(v) = 2, f(x) = f(u1) = f(v2) = 0 and f(y) = 1 for y ∈ V (G) \
{v, x, u1, v2}. The function f define above is a ve-LRD function on G with
w(f) ≤ n− 1.
If only v2 has a leaf neighbor, say x ∈ lv2 , then define f : V (G) → {0, 1, 2}
by f(v) = 2, f(x) = f(v1) = f(u2) = 0 and f(z) = 1 for z ∈ V (G) \
{v, x, v1, u2}. The function f gives a ve-LRD function with w(f) ≤ n − 1.
If u1 and u2 has leaves neighbors, say x ∈ lu1 ∪ lu2 , define function f :
V (G) → {0, 1, 2} by f(u1) = f(u2) = 2, f(x) = f(v) = 0 and f(t) = 1
for t ∈ V (G) \ {u1, u2, x, v}. The function gives ve-LRD function with
w(f) ≤ n− 1. Thus γveLR(G) ≤ n− 1. □

Corollary 4.2. If T is a tree of order n > 3, then γveLR(T ) ≤ n− 1.

Theorem 4.3. Let G be a connected graph of order n ≥ 2, then γveLR(G) =
n if and only if G = P3,Kn.

Proof. Obviously, if G = P3, γveLR(P3) = 3 by proposition 3.1. Now let
G = Kn. Suppose γveLR(G) = n, then this implies that all vertices in G are
adjacent , that is, G = Kn. Suppose all vertices in G are not adjacent . Let
u, v ∈ V (G) such that uv /∈ E(G). Then d(v) ≤ n−2 and u, v are at distance
2 from each other. Let vertex x ∈ N(u) ∩N(v) in G. Since G is connected
with n ≥ 3, then uxv is a path of length 2 and the function f define on
V (G) \ {v} is a ve-LRD function in G which implies that γve−LRG ≤ n− 1,
a contradiction.
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Assume that G = Kn, then all the vertices are adjacent. For u, v ∈ V (G),
define the function f : V (G) → {0, 1, 2} by f(u) = 2, f(v) = 0 and f(y) = 1
for y ∈ V (G) \ {u, v}. The above function f gives ve-LRD function of G
with weight n. Therefore, γveLR(G) = n. □

Corollary 4.4. Let G be a connected graph of order n such that γveLR(G) =
n, then diam(G) ≤ 2.

Proof. We establish the proof by contradiction. Assume that diam(G) ≥ 3
and let P = u1, u2, ..., ud be a diametral path in G. The vertices {u2, u6} ∈
N2(u4) which implies that d(u2) ≥ 2 and by Lemma 4.1, γveLR(G) ≤ n− 1.
This is a contradiction. □

Theorem 4.5. Let G be a cycle of order n ≥ 3, then γveLR(G) = 4n+k
5 ,

n ≡ (k mod 5).

Proof. Applying Proposition 3.1 (case 1) for all values of k gives the desired
result. □
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