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Abstract 
Children in sub-Saharan African countries especially Nigeria continue to suffer increased mortality owing 
to comorbidity of infections such as anaemia and malaria, which are known to epidemiologically overlap. 
In order to examine the risk factors and spatial patterns of comorbidity of anaemia and malaria using 2021 
Nigeria malaria indicator survey (NMIS), multinomial logit model was extended by incorporating spatially 
weighted random effect. The impact of climatic variation on the childhood disease comorbidity was 
explored by weighting the spatial structured component based on the 2021 NMIS average cluster 
temperature of each state in Nigeria. A number of spatial weighted geo-additive models were fitted and 
compared using defiance information criterion. Inference was fully Bayesian and Intrinsic Conditional 
Autoregressive prior was used for structured random effects. Based on the map generated from the best- 
fitted model which unveiled states that are more susceptible to the risk of  disease comorbidity, the average 
temperature used as a weighting factor however has strong relationship with the spatial pattern of disease 
comorbidity. States with low temperature have higher risk of comorbidity of anaemia and malaria 
compared to states with higher average temperature. Area of residence, level of education of the mother, 
economic status of the mother and owning mosquito-treated nets were identified as the significant risk 
factors associated with the disease comorbidity. Findings from this study will be helpful to policymakers 
and health authorities in their effort to combat the comorbidity of childhood anaemia and malaria thereby 
reducing child mortality in Nigeria.  

Keywords: disease comorbidity, geo-additive models, map, risk factors, temperature, weighted random 
effects.   

1.0  Introduction  

The high prevalence of childhood infections such as anaemia and malaria is a source of great concern to 
the world public health (Gaston et al. 2022).  Anemia can be thought of as a significant decrease in 
hemoglobin concentration, which leads to reduced oxygen delivery to the body's tissues and organs. 
(Kinyoki et al. 2021).  The World Health Organisation (WHO) classified anaemia for children aged 6 
months to 59 months based on the level of concentration of hemoglobin in the red blood cell. A child is 
free of anaemia if the Hb level is at least 11g/dL, it is mild anaemia if the level of Hb is between  (10	 −
	10.9)𝑔/𝑑𝐿, it is moderate if the Hb level is between (7 − 9.9)	𝑔/𝑑𝐿, and it is severe if the level of Hb is 
less than 7g/dL (WHO, 2011).   Anemia and malaria are two of the leading causes of illness and death in 
children under the age of five (Bolaji et al., 2021).  Young children have weak immune system to combat 
malaria as evident in 2018 total deaths due to malaria infection where  over 65% of those deaths are children 
below the age of five (Roberts and Zewotir  2019). The progress made in ensuring that the burden or cases 
of anaemia is reduced has been very slow and the global target of reducing anaemia cases by 50% by year 
2025 may not be achieved (WHO, 2023). In 2019, about 571 million of reproductive age representing 29% 
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and 269 million of children below the age of five years representing 38.9% were affected by anaemia and 
about 40% of children below the age of five years, 37% of expectant mothers and 30% of women of 
reproductive age were also affected (Philip et al., 2022). Malaria is regarded as an acute febrile infection 
caused by a parasite known as P. falciparum. Malaria infection is pervasive in the African region especially 
Nigeria which has a high prevalence of P. falciparum and a reasonable number of anemia cases especially 
among under-five children is attributed to malaria infection (White, 2018). Children with severe anemia are 
at a higher risk for contracting malaria, as the condition can weaken the immune system and make it more 
difficult for the body to fight off infection (Adebayo et al. 2016). In the year 2019, Africa accounted for a 
whopping share of 94% of the global malaria cases estimated at 229 million (WHO, 2021). Anaemia has 
grave consequences as it makes a young child more susceptible to other infections aside malaria thereby 
increasing the risk of death. It weakens cognitive performance, hinders growth and retards motor 
development of a child ( Gayawan et al., 2014). Besides, malaria in young children could cause anaemia, 
damage to the cerebra and respiratory pain (Erin et al. 2020).  Anaemia and malaria are considered as major 
indicators of a child’s overall well-being (WHO, 2023). In the time past, studies on anaemia and malaria 
with respect to their risk factors were based on available records or data in the hospitals and clinics. Such 
studies were grossly inadequate to reveal the required knowledge on the risk factors of these infections. In 
recent years, a number of national surveys have been conducted to collect comprehensive data on child 
health outcomes, including the Demographic and Health Survey (DHS) and the Malaria Indicator Survey 
(MIS). These data are available and accessible to researchers if due request is made and they are used to 
estimate the prevalence of these infections especially among young children as well as their risk factors for 
effective policy formulation.  A number of studies have examined the individual risk factors for anemia and 
malaria, as well as the spatial variation of these conditions in Nigeria and other sub-Saharan African 
countries.Phillip et al. (2022), in their study of anaemia prevalence among children aged 6-59 months 
utilized multiple binary logistic regression model to quantify the risk factors of anaemia and the associated 
predicted probability across the states in Nigeria including the Federal Capital Territory. Bilal et al. (2021) 
used geo-statistical model to analyze the risk factors of anaemia among preschool children in Ethiopia using 
the 2016 Demographic and Health Survey of the country. Alfred and Lawrence (2016) investigated the risk 
factors associated with the severity of anemia among children in Malawi by proposing an ordered categories 
model, using multinomial cumulative logistic regression. Abbas et al. (2017) utilized two national surveys, 
the DHS and MIS to examine the association of malaria endemicity and other causes of mortality across 
varying age strata among under five children in Nigeria by developing binomial geo-statistical models and 
Bayesian piecewise Cox proportional hazard to link mortality to the risk of malaria considering the spatial 
disparity of the survey data. Huge efforts have also been made by other authors in the modelling of single 
diseases (Habyarimana et al. 2017; Ogunsakin et al. 2020; Gaston et al. 2020; Obasohan et al. 2021). 

Studies on the comorbidities of childhood diseases such as anaemia and malaria are however scanty.  Jecinta 
et al. (2022) used a Bayesian spatial model to analyze the spatial patterns of anemia and malaria among 
children under the age of five in Nigeria, using data from the 2015 and 2010 Nigeria Malaria Indicator 
Surveys. Gayawan et al. (2021) also modeled childhood morbidity in West Africa using Distributional 
Bivariate Probit Model. Adebayo et al. (2016) adopted geoadditive latent variable model to examine the 
effects of different risk factors on anaemia-malaria morbidity among children below the age of five years 
in Nigeria. Also, Gayawan et al. (2014), Kezembe et al. (2007), Adeyemi et al. (2019) and Takele et al. 
(2021) have also utilized multinomial model to examine the comorbidity of multiple diseases among under 
five children in various Sub-Saharan African countries. However, the impact of climatic variation on the 



risk of childhood comorbidity of anaemia and malaria has not been explored. The spatial components have 
not been weighted to reflect the geographical variation in climates across the regions being considered. 
Children are particularly vulnerable to the effects of climate change because they rely on caregivers to meet 
their needs, and their developing bodies are more sensitive to environmental changes. Eduard (2022). In 
this study we used different spatial weighted multinomial model formulations to analyze the influence of 
covariates of different types on the comorbidity of malaria and anaemia. The climatic factors such as 
average temperature were used as spatial weighting factors. The generated maps which would unveil the 
risk of anaemia and malaria comorbidity across the 36 states of the federation including the FCT and the 
correlation between climatic variation and spatial distribution of disease risk add to the uniqueness of the 
work. This would provide accurate insight to the policymakers in designing relevant strategies to combat 
the menace of the two most common childhood diseases in the country.  

2.0 Source of Data  

This study utilized data from 2021 Nigeria Malaria Indicator Survey, a cross sectional survey conducted 
from August to December 2021. Access to download the data was granted after a proposal submitted to the 
DHS website was approved.  The components of the variables extracted from the 2021 NMIS include the 
dependent variables which are anaemia and malaria each having binary status of 0 and 1 signifying the 
absence or presence of the disease in a child. The independent variables are the covariates of different kinds. 
There are categorical covariates which represent the demographic factors (area of residence of the child’s 
parent), socio-economic factors (wealth index, mothers’ level of education, sex). The metrical covariates 
include the age of the child and age of the mother. The spatial covariates include the 36 states of the 
federation including the FCT and the cluster average temperature of each state. 

3.0 Methodology 

Let the anaemia and malaria status of a child be denoted by 𝑦!"# while the probability of comorbidity of the 
two infections be denoted by 𝑝!"#. The child infection status has four categories as defined below 

𝑌!" = 3
1
2
3
4

																													if	a	child	has	neither	anaemia	nor	malaria
	if	a	child	has	only	anaemia	

				if		a	child	has	only	malaria	
																												if	a	child	has	both	anaemia	and	malaria

 

This study assumes that	𝑌!"#~𝑀𝑁(1, 𝜋!"#), a child’s infection status follows a multinomial distribution.  

Given categorical covariates (𝑋!",) metrical covariates (𝑍!",)	spatial covariates (𝜃! 	and 𝜙!) and 𝜓!which 
represents the weighted parameter. The probability of a child belonging to each of the infection categories 
is modeled as: 

𝑝!"
(#) =

'()	(+!"
($))

,-∑ '()	(+!"&)$
&'(

		       (1) 

𝑐 = 1	,2	3,4, 𝜂!"
(#)	is a predictor which is extended so that the spatial weighed multinomial model has the 

following formulations. 

Model 1: 𝜂!"
(#) = 𝑋!"		𝛽#  + 𝜓! 𝜃!      (2) 



Model 2 : 𝜂!"
(#) = 𝑋!"		𝛽#  + 𝜓!𝜃! + 𝜙! 	     (3) 

Model 3: 𝜂!"
(#) = 𝑋!"		𝛽# + 𝑓#(𝑍!",) + 𝜓! 𝜃!    (4) 

Model 4: 𝜂!"
(#) = 𝑋!"		𝛽# + 𝑓#(𝑍!"	) +𝜓!𝜃! + 𝜙! 	    (5) 

𝜂!"# is a predictor function having a logit link function, 𝛽# is the regression parameter vectors associated 
with the linear explanatory or categorical variables, 𝑓# represents the smooth function for the metrical 
covariates assumed to have non-linear relationship with the response variables, 𝜃! denotes the state random 
effects (structured variation) which is geographically weighted with 𝜓! and 𝜙! 	 denotes the unstructured 
variation (heterogeneity).  

Model 1 contains the linear covariates (fixed effect model) with spatially weighted structured effects, model 
2 contains linear covariates with spatially weighted structured and unstructured effects. Models 3 and 4 
include the nonlinear covariates therefore containing all the covariates. In this study, the reference category 
is the first group (𝑓𝑜𝑟	𝑐 = 1, when a child has none of the two infections) 

A full Bayesian approach is applied in the estimation of model parameters. The regression parameters are 
assigned informative priors. The smooth functions for the metrical covariates are assigned p-priors while 
the spatial effect functions were modeled using priors of Gaussian Markov random fields, in particular the 
intrinsic conditional autoregressive model (ICAR). This assumes that the mean of each area 𝑖 written as 𝜃!, 
conditional on the rest of its neighbors is normally distributed with the same mean as the average of its 
neighbors (𝜃/!) and variance which is inversely proportional to the size of its neighboring areas denoted as 
𝑚! .  Each pair of areas that shares a border usually takes a weight equal to 1, and 0 otherwise. The full 
conditional specification of ICAR prior is  

𝜃!|𝜃/! 	~𝑁 Z
,
0!
∑ 𝜃/!/!~! , 2)

*

0!
\      (6) 

−𝑖~𝑖 implies that areas −𝑖 and 𝑖 are adjacent to each other on the map. 𝜎34 represents the spatial smoothing 
variance. The unstructured or area specific effect 𝜗! which measures the degree of heterogeneity, was 
estimated using normal priors as  

𝜗~𝑁(0, 𝜎54)                                          (7) 

To compare the robustness or goodness of fit of the various model specifications, Deviance Information 
Criterion (DIC) given by Spiegelhalter (2002) is employed 

𝐷𝐼𝐶 = 𝐷b + 𝜌𝐷        (8) 

𝐷b is the model deviance which was estimated at the posterior mean, 𝜌𝐷 represents the effective parameter 
values used to examine model complexity. The model with the small value of 𝐷𝐼𝐶 is considered to have a 
good fit, more parsimonious and hence a better model. 

The prior for the fixed effects from Bayesian view point is given as  

𝑝d𝑋"e ∝ 𝑐𝑜𝑛𝑠𝑡       (9) 



The nonlinear function 𝑓# are modeled by a basis function approach given by  

𝑓(𝑧) = ∑ (𝛽6𝐵6(𝑧))7
68,       (14) 

Where 𝐵6 are known basis functions and  𝛽 = (𝛽,,	𝛽4		.		.		.		𝛽6). A prior for a function 𝑓" is defined by 
specifying an appropriate designed matrix 𝑧"  and a prior distribution for the vector 𝛽" of unknown 
parameters.  The prior for 𝛽6  with 𝐾" 	as penalty matrix and 𝜏"4 as variance parameter is given as  

𝑝d𝛽"|𝛽"e ∝ 	
,

92"
*:
+,-./0"1

*

exp	 p− ,
42"

* 𝛽",𝐾"𝛽"q               (10) 

Highly dispersed gamma priors are assigned for the variance parameter 𝜎"4 as provided below. 

𝑝d𝜎"4e~𝐼𝐺(𝑎" , 𝑏")       (11) 

The corresponding probability density function is given as  

𝜎"4 ∝ d𝜎"4e
/;"/,exp	 p−

/<"
2"
* q     (12) 

In this work, 𝑎" =	𝑏" = 0.001 is the choice for the hyper parameters. 

The posterior of the model using Bayesian approach is given as  

𝑝d𝛽,,			.		.		.		𝛽=,		𝜎,		4		.		.		.		𝜎=,4 		𝜔#|𝑦!"#e ∝ 𝐿d𝛽,,			.		.		.		𝛽=,	e∏ Z𝑝d𝛽"w𝜎"4e𝑝d𝜎"4e\ 𝑝d𝑓3w𝜎"4e𝑝d𝑓3w𝜎"4e
=
"8, 	(13) 

Where 𝐿(. ) refers to the likelihood which, under the assumption of conditional independence is calculated 
by multiplying the individual likelihood contributions of each observation. 

MCMC simulation techniques is used to estimate the parameters of the posterior distribution.   

4.0 Results  Analysis 

While BayesX, version 2.1 was used for model fittings, descriptive analysis and the two-way cross-
tabulation with Pearson Chi-square test was performed using SPSS software. Descriptive analysis of the 
variables on the anaemia and malaria status of under five children is presented in Figure 1 and Table 1 
below. The children’s infection status are; None, Anaemia only, malaria only, and both anaemia and 
malaria. 

 



 
 

Figure I: Prevalence of Anaemia and Malaria among Under five children 

Table 1: Prevalence of Anaemia and Malaria by risk factors. 

Variables/child 
 illness status 

None Anaemia only Malaria only Anaemia  
and malaria 

Total no of 
children/% 

Pearson’s ch-
square test 

Sex  
Male 
Female 

 
1357(27.9,14.4)	
1388(30.3, 14.7) 

 
2630(54.1, 27.9)	
2396(52.3, 25.4) 

 
277(5.7, 2.9)	
254(5.5, 2.7) 

 
596(12.3, 6.3)	
540(11.8, 5.7) 

 
4860(51.5)	
4578(48.5 

6.581(0.087) 

Residence 
Urban 
Rural  

 
1001(36.2, 10.61)	
1744(26.1, 18.5) 

 
1354(49.0, 14.3)	
3672(55.0, 38.9) 

 
147(5.3, 1.6)	
384(5.8, 4.1) 

 
260(9.4, 2.8) 
876(13.1, 9.3) 

 
2762(29.3)	
6676(70.7) 

1.049𝐸2(0.00) 

Wealth Index 
Poorest 
Poorer 
Middle 
Richer 
Richest 

 
374(19.6, 4.7) 
440(23.3, 4.7) 
554(28.6, 5.9) 
642(33.6, 6.8) 
735(40.9, 7.8) 

 
1161(61.0, 12.3) 
1056(56.0, 11.2) 
1028(53.0, 10.9) 
979(51.2, 10.4) 
802(44.7, 8.5) 

 
95(5.0, 1.0) 
99(5.2, 1.0) 
129(6.6, 1.4) 
102(5.3, 1.1) 
106(5.9, 1.1) 

 
274(14.4, 2.9) 
291(15.4, 3.1) 
229(11.8, 2.4) 
189(9.9, 2.0) 
153(8.5, 1.6) 

 
1904(20.2) 
1886(20.0) 
1940(20.6) 
1912(20.3) 
1796(19.0) 

2.89𝐸2(0.00)	
 

Highest education 
No education 
Primary 
Secondary 
Tertiary 

 
911(22.6, 9.7) 
362(26.0, 3.8) 
1026(33.7, 10.9) 
446(45.9, 4.7) 

 
2330(57.9, 24.7) 
745(53.6, 7.9) 
1553(51.0, 16.5) 
398(40.9, 4.2) 

 
212(5.3, 2.2) 
87(6.3, 0.9) 
177(5.8, 1.9) 
55(5.7, 0.6) 

 
574(14.3, 6.1) 
197(14.2, 2.1) 
292(9.6, 3.1) 
73(7.5, 0.8) 

 
4027(42.7) 
1391(14.7) 
3048(32.3) 
972(10.3) 

2.809𝐸2(0.00) 

Availability of 
mosquito net 
No 
Yes 

 
1078(31.4, 11.4) 
1667(27.8, 17.7) 

 
1865(54.3, 19.8) 
3161(52.6, 33.5) 

 
167(4.9, 1.8) 
364(6.1, 3.9) 

 
322(9.4, 3.4) 
814(13.6, 8.6) 

 
3432(36.4) 
6006(63.6) 

48.3(0.001) 

Child age group 
6 – 11 
12 – 23 
24 – 35 
36 – 47 
48 – 59 

 
162(17.3, 1.8) 
386(20.2, 4.2) 
515(26.4, 5.6) 
687(33.4, 7.5) 
839(35.9, 9.1) 

 
619(66.1, 6.7) 
1161(60.7, 12.6) 
1074(55.0, 11.7) 
1038(50.5, 11.3) 
1134(48.6, 12.3) 

 
32(3.4, 0.3) 
77(4.0, 0.8) 
101(5.2, 1.1) 
104(5.1, 1.1) 
125(5.4, 1.4) 

 
123(13.1, 1.3) 
288(15.1, 3.1) 
264(13.5, 2.9) 
225(11.0, 2.4) 
236(10.1, 2.6) 

 
936(10.2) 
1912(20.8) 
1954(21.3) 
2054(22.4) 
2334(25.4) 

2.478𝐸2 



Age group of 
mothers 
15 – 19 
20 – 24 
25 – 29 
30 – 34 
35 – 39      
40 – 44 
45 – 49 

 
102(25.8, 1.1) 
417(24.9, 4.4) 
771(29.7, 8.2) 
690(30.2, 7.3) 
496(31.9, 5.3) 
203(28.4, 2.2) 
66(29.7, 0.7) 

 
221(55.9, 2.3) 
938(56.0, 9.9) 
1315(50.7, 13.9) 
1230(53.9, 13.0) 
802(51.6, 8.5) 
396(55.3, 4.2) 
124(55.9, 1.3) 

 
23(5.8, 0.2) 
107(6.4, 1.1) 
170(6.6, 1.8) 
103(4.5, 1.1) 
86(5.5, 0.9) 
32(4.5, 0.3) 
10(4.5, 0.1) 

 
49(12.4, 0.5) 
213(12.7, 2.3) 
337(13.0, 3.6) 
260(11.4, 2.8) 
170(10.9, 1.8) 
85(11.9, 0.9) 
22(9.9, 0.2) 

 
395(4.2) 
1675(17.7) 
2593(27.5) 
2283(24.2) 
1554(16.5) 
716(7.6) 
222(2.4) 

44.134(0.01) 

Zone 
North central 
(NC) 
North East (NE) 
North West (NW) 
South East (SE) 
South South (SS) 
South West (SW) 

 
637(36.2, 6.7) 
438(25.2, 4.6) 
589(21.6, 6.2) 
307(29.0, 3.3) 
411(33.1, 4.4) 
363(39.8, 3.8) 

 
892(50.7, 9.5) 
1031(59.4, 10.9) 
1433(52.5, 15.2) 
553(52.3, 5.9) 
649(52.2, 6.9) 
468(51.4, 5.0) 

 
84(4.8, 0.9) 
79(4.5, 0.8) 
202(7.4, 2.1) 
58(5.5, 0.6) 
77(6.2, 0.8) 
31(3.4, 0.3) 

 
147(8.4, 1.6) 
189(10.9, 2.0) 
505(18.5, 5.4) 
140(13.2, 1.5) 
106(8.5, 1.1) 
49(5.4, 0.5) 

 
1760(18.6) 
1737(18.4) 
2729(28.9) 
1058(11.2) 
1243(13.2) 
911(9.7) 

3.451 (0.00) 
 

 

Figure 1 shows that out of 9438 children who participated in the survey, 28.9% are free of both anaemia 
and malaria, 52.9% had anaemia only, 5.6% and 12.6% percent had malaria only and both anaemia and 
malaria respectively. Table 1 reveals the prevalence of anaemia and malaria by some risk factors.  The 
percentage of the infection within the covariate group is shown by the first value in the bracket, while the 
second value shows the percentage of the total children infected. Out of 4860 male children involved in the 
survey, 27.9% are infection free, 54.1% had anaemia only, 5.7% had malaria only while 12.3% had both 
malaria and anaemia.  Similarly, among 4578 female children, 30.3% had none of the diseases, 52.3% had 
anaemia only, 5.5% had malaria only while 11.8% had both malaria and anaemia. However, the Pearson 
chi-square test revealed that sex as a risk factor of childhood infection is not significant.  Among children 
from both rural and urban residences, anaemia had the highest infection rates; 49% (1354/2762) and 55% 
(3672/6676) for urban and rural areas respectively.  Area of residence is a significant risk factor as revealed 
by chi-square test. The descriptive analyses of other risk factors are similarly captured in Table 1. 

Table 2 : Model fit and complexity 

Model fit & complexity Model 1 Model 2 Model 3 Model 4 
Deviance (𝐷2) 19656.426 19653.137 18836.982 18829.27 

𝜌! 125.88701 124.88603 173.18146 173.96167 
𝐷𝐼𝐶 19908.2 19902.909 19183.345 19177.193 

 

Table 2 gives the model fit and complexity.  Model 1 which contains the linear and spatially weighted 
structured effects is considered as the most complex fitted model given that it recorded the highest value of 
DIC. Inclusion of both spatially weighted structured effect and unstructured random effects improves the 
fit of model 2 as it reduces its DIC value. Model 3 also has an improvement in model fit compared to model 
2. Model 4 which is regarded as convolution model as both spatially weighted structured and unstructured 
effects are incorporated including linear and non-linear covariates appeared as the best fitted and least 
complex model. Estimates of the fixed effects in Table 3 are given in line with the best fitted model (model 
4).  The estimated odds ratio for probabilities of the comorbidity of anaemia and malaria versus none of the 
diseases are also contained in Table 3. 



Table 3: Model Estimates and Odd ratios 

Variable Anaemia vs no infection 
 
ROR  &      95% CI 

Malaria vs no infection  
 
ROR        &    95% CI 

Both Anaemia and Malaria  vs 
 No Infection  
ROR       &               95% CI 

Residence 
Urban 
Rural 

 
1 
1.123(1.00198, 1.646) 

 
1 
1.116(1.021, 1.360) 

 
1 
1.0293(1.165, 2.218) 

Child sex 
Male  
Female 

 
1 
-0.146 (-0.241, -0.0427) 

 
1 
-0.106(-0.354, 0.0830) 

 
1 
-0.152(-0.298, 0.00621) 

Own mosquito treated 
net 
No 
Yes 

 
1 
0.0252(0.140, 0.824) 

 
1 
0.202(0.0182, 0.732) 

 
1 
0.310(0.0143, 0.983) 

Education status 
No education 
Primary education 
Secondary education 
Tertiary education 

 
1 
0.0766(-0.040, 0.0846) 
0.235 (0.152,  0.634) 
0.212(0.0783, 0.872) 

 
1 
0.381 (0.143,  0.591) 
0.114(0.243, 0.821) 
0.107(0, 0.104,  0.514) 

 
1 
0.313(-0.215, 0.837) 
0.371(0.214, 1.674) 
0.421(0.523, 0.928) 

Wealth index 
Poorest 
Poorer 
Middle 
Richer 
Richest 

 
1 
-0.214(-0.437, -0.0231) 
0.001(0.092, 0.151) 
0.0566(0.041, 0.213) 
0.037(0.021, 0.921) 

 
1 
-0.168(-0.481, 0.217) 
0.0477(0.023, 0.688) 
0.244(0.07, 0.874) 
0.231(0.198, 0.329) 

 
1 
0.087(0.04, 0.641) 
0.298(0.127,  0.921) 
0.021(0.0193, 0.391) 
0.0109(0.0284,  0.581) 

Geo-political Zone 
North Central 
North East 
North West 
South east 
South South 
South West 

 
1 
1.274(1.653, 2.837) 
0.541(0.06, 1.0581) 
0.577(0.0833, 0.324) 
0.461(0.0617, 0.943) 
0.363(0.176, 1.942069) 

 
1 
1.165(0.579, 1.982) 
0.0821(1.139, 2.622) 
0.342(0.322022, 0.932) 
0.165(0.0181, 1.4059) 
0.132(0.092, 1.576) 

 
1 
1.261(1.004, 1.951) 
0.473(0.202884, 0.896) 
1.06(1.513, 2.38) 
0.065(0.432, 0.923) 
0.224(0.081, 0.873) 

 

Area of residence is identified as a significant determinant of anaemia and malaria. Children in rural areas 
have an increased risk of contracting anaemia  (1.123(1.00198, 1.646)), malaria (1.116(1.021, 1.360)) and 
both infections (1.0293(1.165, 2.218)) compared to urban children. Being female is associated with a 
reduced risk of contracting anaemia, malaria or both. Although the results revealed that gender is not a 
significant determinant of anaemia and malaria among under-five children, the estimate of fixed effects 
covariates also showed that children from households that own mosquito-treated nets have a reduced risk 
of being infected with anaemia, malaria and both compared to those parents without mosquito treated nets 
(0.0252(0.140, 0.0824), 0.202(0.0182, 0.732), 0.310(0.143, 0.483. The odds of a child in Nigeria having 
anaemia, malaria or both are lower for parents who acquired at least primary school education compared 
with children from parents without education. However having primary education is only a significant 
factor for malaria. The likelihood of a child having anaemia, malaria, or both, is significantly lower for 
children from higher socioeconomic backgrounds. Children from poorer, middle, rich and richest parents 
have lower odds of contracting diseases compared with children from poorest parents. However, among the 
wealth indices observed, only the poorer category is not associated with the odds of a child having anaemia, 
malaria or both infections. Also, children from the North East and South West have the highest and lowest 
risk of having anaemia compared with children from Central Geo-political zone. Children from North east 



were 27%, 16% and 26% more likely to have suffered from anaemia, malaria and comorbidity of both 
infections respectively in comparison with children from North Central zone. Children from North West 
are 54%, 8% and 47% less likely to contract anaemia, malaria or both infections respectively compared 
with their counterparts from North Central zone. South East children have a 57% and 34% reduced chance 
of being infected with anaemia and malaria respectively while they are 6% more likely to suffer from both 
diseases. Under five children from South South ARE 46%, 17% and 7% less likely to have contracted 
anaemia, malaria and both infections compared with children from North Central. Besides, in comparison 
with children from North central part of Nigeria, children from South Western zone of Nigeria are 36%, 
13% and 22% less likely to have suffered from anaemia, malaria and both infections respectively. Figures 
2-4 present the non-linear effects of age of the child and age of the mother alongside the posterior modes 
and 95% CI. Essentially, the risk of anemia decreases as children grow and develop. The sinusoidal curve 
that describes the nonlinear relationship between the age of the mother and the risk of a child contracting 
anaemia in Figure 2 shows that a child is at higher risk of contracting anaemia when the mother is between 
the ages of 15 and 22 years. The chance declines when the mother is between 23 and 30 years, and the risk 
rises when the mother is between the ages of 31 and 40 years and declines when the mother is above 40 
years. Figures 3 and 4 also describe the non-linear relationship between the child’s age and the risk of 
contracting malaria and age of the mother and the associated risk of malaria. As presented in Figure 3, the 
risk of malaria in a child rises sharply from the first month until the 10th month of birth. It maintains a 
constant high value till the age of five years. Also, the relationship between mother’s age and risk of a child 
having malaria can also be described by a nonlinear curve. The risk rises among children from mothers 
between the ages of 15 and 20 years, and the likelihood of a child having malaria declines sharply as mothers 
reach the age of 45.  However, the finding for the comorbidity of anaemia and malaria as shown in Figures 
4 shows that the likelihood of a child having both infections increases from the first month until the age of 
the 10th month after which it maintains a constant pattern till the child reaches the age of 5 years. The 
nonlinear relationship between the age of the mother and the likelihood of a child contracting both anaemia 
and malaria is also best described by a sinusoidal curve. The risk was observed to rise sharply when the 
mother is between the ages of 15 and 20. It maintains a steady pattern when the mother is between 21 and 
45 years and declines after the age of 45 years. Figure 5 reveals the residual geographical pattern for 
anaemia, malaria and comorbidity of anaemia and malaria. The left maps show the posterior modes and the 
95% CI. The right maps show the states at high and low risk of the infections. As revealed by Figure 7, the 
odds of a child in Nigeria tested positive to the comorbidity of anaemia and malaria based on NMIS (2021) 
are significantly higher in four states which are Bayelsa, Akwa Ibom, Lagos, Kwara, it is lower in states 
like Borno, Ogun and Kaduna. However, the odds are not significant in other states.   

 



Child’s Age in Month    Mother’s Age in Years 

Figure II: Nonlinear effect of Child’s age and mother’s age  on the risk of childhood anaemia 

 

Child’s Age in Month   Mother’s Age in Years 

Figure III: Nonlinear effect of child’s age and mother’s age  on the risk of childhood Malaria in 
Nigeria 
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Figure IV: Nonlinear effect of child’s age and mother’s age  on the risk of childhoodcomorbidity of 
anaemia and malaria 



 

Figure V: Residual spatial weighted effects at state levels for Anaemia only versus no infection. 

The left map (Map I) shows the relative risk ratio and the right map (Map II) shows the corresponding 
posterior probability for a nominal level of 95%. Black denotes states with strictly negative credible 
interval, white denotes states with positive credible interval, grey denotes states with non-significant 
probability of relative risk ratio.  

 

Figure VI: Residual spatially weighted effects at state levels for malaria only versus no infection. 

The left map (Map III) shows the relative risk ratio and the right map (Map IV) shows the corresponding 
posterior probability for a nominal level of 95%. Black denotes states with strictly negative credible 
interval, white denotes states with positive credible interval, grey denotes states with non-significant 
probability of relative risk ratio. 



 

Figure VII: Residual spatial weighted effects at state levels for comorbidity of anaemia and malaria 
versus no infection. 

The left map (map III) shows the relative risk ratio and the right map (map IV) shows the corresponding 
posterior probability for a nominal level of 95%. Black denotes states with strictly negative credible 
interval, white denotes states with positive credible interval, grey denotes states with a non-significant 
probability of  the relative risk ratio. 

5.0 Discussion and Conclusion  

In this study, multinomial logit model was extended to a Bayesian spatially weighted model to analyze 
areas of high and low risk of comorbidity of anaemia and malaria after adjusting for different risk factors. 
A cross-sectional national representative survey precisely the 2021 Nigeria Malaria Indicator Survey data 
was used to measure residual spatial patterns across the 36 states of the federation including the FCT. The 
average monthly cluster temperature of the year 2020 for each state of the federation as realized in the 
survey was used in this study as weighting factor. The results of our study showed that the location of 
children can have an impact on their health and that this can be linked to socio-economic, climatic and 
environmental factors. Transforming binary data into multi-categorical data is appropriate for the analysis 
of  two diseases with overlapping characteristics. This approach captures the complex relationships between 
the diseases and better understands their patterns. The overall comorbidity prevalence of anemia and 
malaria was found to be 12%. The residual risk estimates for the comorbidity of both diseases as shown by 
the spatial map range from -0.967 to 0.853. Place of residence was found to be a significant factor in 
determining the risk of childhood diseases. A child who resides in rural area has a greater likelihood of 
contracting anaemia, malaria and even both infections compared with children in urban areas. Our findings 
also showed that a child’s gender is not a significant risk factor of childhood diseases. Owning a mosquito 
treated net is a significant risk factor for anaemia, malaria and both diseases. This means that owning 
mosquito net reduces the risk of a child contracting diseases. The educational level of a mother is also 
associated with the likelihood of her child being tested positive to childhood diseases.  As regards the 
comorbidity of childhood diseases, only tertiary education is significant. This means that a child from a 
mother who acquired tertiary education is less likely to contract diseases compared with their counterpart 
from uneducated mothers. This is also the same for the risk of contracting anaemia only and malaria only. 
Having secondary education was a significant factor and reduced the likelihood of a child contracting either 



anaemia or malaria compared to child from a mother who does not possess any academic qualification. The 
findings also revealed that wealth index which is a determinant of socio-economic status is also a 
determinant of childhood illness. In comparison with children from the poorest mothers, the risk of a child 
having the comorbidity of anaemia and malaria is lower among mothers in the middle, rich and richest 
wealth index. Also, our findings show that while children from North East and South East parts of the 
country have a higher chance of contracting both anaemia and malaria compared with their counterparts 
from the North Central, those from other geo-political zones are less likely to contract childhood disease 
comorbidity. Considering the findings from the study, the area of residence of a child, possessing tertiary 
education by a child’s mother, and belonging to at least the middle wealth index are significant risk factors 
of disease comorbidity among under-five children in Nigeria. The relationship between a child’s age and 
the risk of contracting diseases was found to be non-linear. The risk of a child having anaemia reduces as a 
child increases in age. In terms of malaria, the risk of infection increases up until the age of 10 months, 
after which it remains high but relatively stable. The non-linear effects of a child age and the risk of 
comorbidity of anaemia and malaria follow the same pattern with as that of malaria only with both peaking 
around 10 months of age. The effects of the mother's age on the risk of a child being tested positive for 
diseases follow a sinusoidal pattern, increasing and decreasing over time. This suggests that environmental 
and seasonal factors may play a role in the risk of infection, with certain ages being more vulnerable than 
others. This pattern is similar for both single and multiple diseases. The results of the spatial analysis 
suggest that while there is variation in the risk of comorbidity of anaemia and malaria among children 
across the 37 states of the federation, Bayelsa, Akwa Ibom, Lagos and Kwara states are at high risk of the 
disease comorbidity, Borno, Ogun and Kaduna states are at very low risk while the rest of the states have a 
risk that can be said to be indifferent. States with low average temperature have a higher risk of comorbidity 
of anaemia and malaria among under-five children in Nigeria compared to states with high average 
temperature. The average temperature used as weighting factors however have a strong relationship with 
the spatial pattern of disease comorbidity across the 36 states of the federation including the  Federal Capital 
Territory. The study recommends that, to better account for spatial variation in risk and identify states that 
are more susceptible to disease comorbidity among children under five years of age, future studies should 
incorporate weighted spatial random effects into the modelling approach. This will help to more accurately 
estimate the risks of disease and target interventions to the areas of greatest need. Also, future studies should 
consider other weighting factors, such as average levels of carbon monoxide, average amount of rainfall, 
and other climatic factors. These factors may help to further improve the accuracy of estimates of risk 
thereby making the model more robust. Based on the findings of this study, the identified areas with high 
risk of childhood comorbidity of anaemia and malaria illness should be prioritized for interventions. 
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