
29 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

MapQaTor: A System for E�cient
Annotation of Map Query Datasets

Mahir Labib Dihan1, Mohammed Eunus Ali1, Md Rizwan Parvez2

1. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh; 2. Qatar

Computing Research Institute, Doha, Qatar

Mapping and navigation services like Google Maps, Apple Maps, Openstreet Maps, are essential for

accessing various location-based data, yet they often struggle to handle natural language geospatial

queries. Recent advancements in Large Language Models (LLMs) show promise in question

answering (QA), but creating reliable geospatial QA datasets from map services remains challenging.

We introduce MapQaTor, a web application that streamlines the creation of reproducible, traceable

map-based QA datasets. With its plug-and-play architecture, MapQaTor enables seamless

integration with any maps API, allowing users to gather and visualize data from diverse sources with

minimal setup. By caching API responses, the platform ensures consistent ground truth, enhancing

the reliability of the data even as real-world information evolves. MapQaTor centralizes data

retrieval, annotation, and visualization within a single platform, o�ering a unique opportunity to

evaluate the current state of LLM-based geospatial reasoning while advancing their capabilities for

improved geospatial understanding. Evaluation metrics show that, MapQaTor speeds up the

annotation process by at least 30 times compared to manual methods, underscoring its potential for

developing geospatial resources, such as complex map reasoning datasets. The website is live at:

https://mapqator.github.io/ and a demo video is available at: https://youtu.be/7_aV9Wmhs6Q.

1. Introduction

In recent years, mapping and navigation services have transformed the way individuals access and

interact with location-based information. Platforms such as Google Maps1 and Apple Maps2 have

become essential tools, providing users with features like route planning, nearby points of interest

(POIs), and contextual data, including reviews and operating hours. However, while these services

o�er extensive geospatial data, they often struggle with understanding and processing natural

Qeios

qeios.com doi.org/10.32388/MI3WH4 1

https://mapqator.github.io/
https://youtu.be/7_aV9Wmhs6Q
https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


language queries. This limitation hampers their e�ectiveness for users seeking to obtain speci�c

information or engage in more complex question-answering (QA) tasks.

Recent advancements in multi-agent and tool-augmented large language models (LLMs)

demonstrate signi�cant promise for complex reasoning, decision-making, and generation tasks

across various application domains, including those that interact with domain-speci�c tools such as

maps[1][2]. Notable tasks like WebArena[3] and VisualWebArena[4] have been proposed with practical

real-life applications involving map usage. However, despite these developments, there remains no

straightforward method for LLMs to access the vast databases of map services. Currently, there are no

dedicated platforms designed to e�ciently annotate language-map reasoning tasks, such as question

answering. This gap leads to signi�cant challenges in creating reliable datasets for training and

evaluating LLMs for geospatial reasoning tasks, as many existing approaches rely on manual data

collection methods that result in inconsistencies, lack of reproducibility, and di�culties in tracking

the origins of information.

To address these issues, we present MapQaTor, a web application designed to streamline the creation

of map-based QA datasets. MapQaTor empowers researchers to seamlessly integrate with any map

API in a plug-and-play manner, enabling them to gather, visualize, and annotate geospatial data with

minimal setup. By caching API responses, the platform ensures a consistent ground truth, which

enhances the reliability of the datasets, even as real-world information evolves over time.

In summary, in this demo we have made the following key contributions:

1. We propose a novel framework, MapQaTor, �rst of its kind, which simpli�es the creation of

reproducible map-based QA datasets and reduces reliance on manual data collection through

seamless integration with any map API (e.g., Google Maps, Apple Maps, Openstreet maps, etc.) in

a plug-and-play manner.

2. We provide visualization tools that facilitate better understanding and annotation of geospatial

information.

3. We implement caching of API responses to ensure a consistent ground truth, enhancing the

reliability of QA tasks over time.

4. We evaluate MapQaTor to estimate its usefulness and e�ciency.

We have published the code on GitHub3 under the Apache 2 license.

qeios.com doi.org/10.32388/MI3WH4 2

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


2. MapQaTor

MapQaTor  is a web-based platform designed to streamline the creation of reproducible, map-based

question-answering (QA) datasets that can be used to evaluate and advance the geospatial reasoning

abilities of large language models (LLMs). By integrating with any map API in a plug-and-play

manner, MapQaTor  enables users to e�ciently gather, annotate, and visualize map data to support

complex, location-based QA tasks. This section details the main components of the platform, its

architecture, and its unique features. Figure 1 outlines the proposed framework, which enables users

to interact with map APIs by submitting queries, processing responses, and visualizing data. The

framework allows users to design question-answer pairs and export the dataset in JSON format for

downstream applications. The whole working �ow is shown using ten key steps. Example of step-by-

step annotation process is provided in Appendix E.

Figure 1. Overview of the annotation and visualization process of MapQaTor.

qeios.com doi.org/10.32388/MI3WH4 3

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Tool API Provider API Endpoint

Text Search

Google Maps

Text Search (New) | Places API

Text Search | Places API

OpenStreetMap Search queries | Nominatim

Mapbox Suggest | Search Box API

TomTom Point of Interest Search

HERE Discover | Geocoding and Search

Azure Maps Search - Get Search Fuzzy

Place Details

Google Maps Place Details (New) | Places API

OpenStreetMap Place details | Nominatim

Mapbox Retrieve | Search Box API

TomTom Place by ID

HERE Lookup | Geocoding and Search

Azure Maps Search - Get Search Fuzzy

Nearby Search

Google Maps Nearby Search (New) | Places API

TomTom Nearby Search

Compute Routes

Google Maps Get a route | Routes API

OpenStreetMap Routing API | GraphHopper

TomTom Calculate Route

Search Along Route

Google Maps Search along route

TomTom Along Search Route

Table 1. Current API Support for Data Collection Tools in MapQaTor

qeios.com doi.org/10.32388/MI3WH4 4

https://developers.google.com/maps/documentation/places/web-service/text-search
https://developers.google.com/maps/documentation/places/web-service/search-text
https://nominatim.org/release-docs/develop/api/Search/
https://docs.mapbox.com/api/search/search-box/
https://developer.tomtom.com/search-api/documentation/search-service/points-of-interest-search
https://www.here.com/docs/bundle/geocoding-and-search-api-developer-guide/page/topics/endpoint-discover-brief.html
https://learn.microsoft.com/en-us/rest/api/maps/search/get-search-fuzzy?view=rest-maps-1.0&tabs=HTTP
https://developers.google.com/maps/documentation/places/web-service/place-details
https://nominatim.org/release-docs/develop/api/Details/
https://docs.mapbox.com/api/search/search-box/
https://developer.tomtom.com/search-api/documentation/place-by-id-service/place-by-id
https://www.here.com/docs/bundle/geocoding-and-search-api-developer-guide/page/topics/endpoint-lookup-brief.html
https://learn.microsoft.com/en-us/rest/api/maps/search/get-search-fuzzy?view=rest-maps-1.0&tabs=HTTP
https://developers.google.com/maps/documentation/places/web-service/nearby-search
https://developer.tomtom.com/search-api/documentation/search-service/nearby-search
https://developers.google.com/maps/documentation/routes/compute_route_directions
https://docs.graphhopper.com/#tag/Routing-API
https://developer.tomtom.com/routing-api/documentation/tomtom-maps/calculate-route
https://developers.google.com/maps/documentation/places/web-service/search-along-route
https://developer.tomtom.com/search-api/documentation/search-service/along-route-search
https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


2.1. Plug-and-Play Architecture

A core design principle of MapQaTor  is its adaptable architecture, allowing seamless integration with

multiple map APIs. The platform incorporates an adapter layer that standardizes API requests and

responses, making it compatible with any map service (e.g., Google Maps, Openstreet Maps, etc.). For

each map API, MapQaTor  employs a custom adapter (Details in A) that translates incoming requests

into the format required by the target API and then converts the API’s responses back to a

standardized format that the platform can process. This plug-and-play architecture allows for easy

expansion, enabling users to incorporate di�erent map providers with minimal con�guration.

2.2. Caching Mechanism

To enhance e�ciency and ensure consistency, MapQaTor    caches API responses in a PostgreSQL

database. This caching mechanism not only reduces the number of repeated API calls, saving time and

resources, but also ensures that the ground truth data remains consistent over time. By storing API

responses in a JSONB column, the platform enables e�cient retrieval of previously fetched data,

which is particularly valuable when querying the same locations or routes multiple times. The caching

mechanism thereby contributes to faster performance and more reliable QA dataset creation, even as

real-world map data continues to evolve.

2.3. Visualization Tools

For visualizing geospatial data, MapQaTor  utilizes the Google Maps JavaScript API4 to display places

and routes directly on an embedded map. Users can view places as markers and visualize route paths,

o�ering an interactive and intuitive experience for exploring map data. This visualization capability

supports users in understanding spatial relationships, which is essential for designing complex map-

based questions and ensuring that annotations accurately re�ect the geospatial context. For further

details, please refer to Appendix B.

2.4. Data Collection Tools

In MapQaTor  , we have implemented �ve essential tools/features that leverage the capabilities of

various map APIs for e�cient data collection. The current API support for these tools is summarized

in Table 1, highlighting the speci�c APIs integrated with each tool and illustrating how easily new APIs

qeios.com doi.org/10.32388/MI3WH4 5

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


can be incorporated to meet diverse user needs. For demonstration purposes, we have ensured that

each tool integrates with at least two di�erent APIs.

2.4.1. Text Search

This feature allows users to perform searches for speci�c places or types of locations using natural

language queries as shown in Figure 2. By utilizing the search capabilities inherent to most map APIs,

users can quickly retrieve relevant results, enhancing the e�ciency of data collection.

Figure 2. Search for a place

qeios.com doi.org/10.32388/MI3WH4 6

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


2.4.2. Place Details

With this tool, users can obtain detailed information about selected locations (see Figure 3). By

accessing attributes such as name, address, ratings, opening hours, and reviews, users can enrich

their understanding of each place, which is crucial for creating accurate QA pairs that capture essential

context.

Figure 3. Fetch full details of a place

2.4.3. Nearby Search

This feature empowers users to discover points of interest in close proximity to a speci�ed location

(see Figure 4). By leveraging the nearby search functionality commonly available in map APIs, users

qeios.com doi.org/10.32388/MI3WH4 7

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


can explore related locations, providing valuable context for their QA pairs.

Figure 4. Search Nearby Places

2.4.4. Compute Routes

This feature �nds alternate directions/routes from one place to another for di�erent travel modes (see

Figure 5). Users can view di�erent routes and step-by-step navigation. This functionality is

particularly useful for developing questions related to navigation. For multi-stop routes, intermediate

waypoints can be optimized, which is useful for trip-related queries.

qeios.com doi.org/10.32388/MI3WH4 8

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 5. Find routes between places

2.4.5. Search Along Route

This feature allows users to identify points of interest along a de�ned route (see Figure 6). Users can

input their desired path and receive a list of relevant locations, enhancing the contextual richness of

their QA pairs by exploring how di�erent places relate to one another during travel.

qeios.com doi.org/10.32388/MI3WH4 9

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 6. Search places along a route

After collecting necessary data, users need to store it as Context, which represents a collection of API

calls and their responses (Details in Appendix D.1).

2.5. Question Design and Annotation

The Question Design and Annotation feature in MapQaTor  facilitates the creation and management of

questions, enhancing the process of generating high-quality QA pairs (see Figure 7). It supports four

question formats: Yes/No, Single Choice, Multiple Choice, and Open Ended, allowing users to select

the format that best suits their needs (Details in Appendix D.3).

Users can assign categories to each question, enabling better organization and retrieval based on

thematic relevance. Also, while writing question/answer user will get Place Name suggestions to

ensure consistency and uniqueness (Details in Appendix D.2).

qeios.com doi.org/10.32388/MI3WH4 10

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Since multiple questions can be designed based on a single Context and not all the information (e.g.,

API responses) in the Context is relevant to each QA pair, users need to specify which pieces of

information in the Context are needed to answer each question (Details in Appendix D.4). This process

is crucial, as it allows the system to link relevant API calls to the corresponding QA pairs seamlessly.

This integration streamlines the question-creation process while ensuring that each QA pair is backed

by veri�able data sourced from the underlying map APIs. By maintaining a clear connection between

questions and API calls, MapQaTor  enhances the reliability and traceability of the generated datasets,

making it easier for researchers to validate and reproduce results.

qeios.com doi.org/10.32388/MI3WH4 11

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 7. Create a question, provide options, and annotate the correct answer.

2.6. Tracking and Traceability

MapQaTor  includes a tracking feature that logs all API calls made during the annotation process. As

users interact with the platform, every API call—whether retrieving nearby points of interest, route

information, or other geospatial data—is automatically logged. This logging process ensures that each

qeios.com doi.org/10.32388/MI3WH4 12

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


interaction is documented, capturing the request details, response data, and the corresponding

timestamps. This feature allows users to associate speci�c API calls with each question-answer pair,

ensuring that the origin of each answer is traceable to a speci�c data source. Additionally, this could

provide valuable insights for training API retrieval models[2]. This level of traceability is crucial for

creating reproducible datasets, as it allows users to review and verify the data used for each question

and answer, reinforcing the reliability of the QA dataset.

2.7. Technology Stack

The following section details the technology stack employed in the development and operation of our

system.

Frontend: The user interface is built using Next.js, a React framework that provides server-side

rendering and static site generation.

Backend: Our server-side logic is implemented in Node.js with Express.js, providing a robust and

scalable environment for handling API requests and managing business logic.

Database: We utilize PostgreSQL for its relational database capabilities, supporting complex queries

and ensuring data integrity.

2.8. Application Scenarios

MapQaTor    is primarily designed to support the creation of a comprehensive and everyday-use

geospatial question answering (QA) dataset, with the potential to benchmark large language models

(LLMs), assess their capabilities, and identify areas for improvement in geospatial reasoning tasks.

Using MapQaTor’s plug-and-play architecture, users have the �exibility to evaluate the richness and

capabilities of any available map service across a wide range of location-based services.

3. Experiments and Evaluation

Evaluating MapQaTor  presented unique challenges due to the lack of any existing system with similar

capabilities for creating and managing map-based question-answering datasets. As a �rst-of-its-

kind platform, direct comparisons to other tools were infeasible. Instead, we designed an experiment

to measure the e�ciency of MapQaTor    in comparison to manual data collection methods currently

used by researchers (see Table 2).

qeios.com doi.org/10.32388/MI3WH4 13

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


To simulate the manual method, two human participants were tasked with retrieving map data from

Google Maps using common search functions and then manually copying the necessary textual

information to ensure traceability. This included gathering information on Place Details, Nearby

Search, Route Computation, and Search Along Route. We then used MapQaTor    to retrieve the same

data, noting the time taken for each method across these four features. The results demonstrate a

signi�cant improvement in data retrieval speed, with MapQaTor  requiring at least 30 times less time

than the manual approach.

Task MapQaTor Manual

Place Details 10.17 sec 487 sec

Nearby Search 12.50 sec 456 sec

Compute Routes 14 sec 516.5 sec

Search Along Route 15.66 sec 476 sec

Table 2. Quantitative comparison between our system and manual methods

4. Related Works

Recent research has highlighted the potential of map data in mimicking real-world planning tasks

through various tools[5][6]. Additionally, studies emphasize the signi�cance of caching API call results

to establish a stable database for evaluation purposes[7][5]. The development of web-based platforms

for integrating geospatial data has also been explored, focusing on streamlining data collection and

enhancing the usability of geospatial information for research and development[8][9][10].

While tool-calling datasets like ToolBench[2] and APIBank[11] include location-based tasks, their data

collection processes lack traceability and reproducibility. This limitation highlights a signi�cant gap

in the current landscape: the development of datasets for geospatial question answering is still in its

infancy. Existing resources often fail to capture the rich contextual information provided by modern

map services. Therefore, there is a pressing need for innovative approaches that e�ectively leverage

the extensive data available from map services to create comprehensive geospatial QA datasets.

qeios.com doi.org/10.32388/MI3WH4 14

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


5. Conclusion

In this paper, we have proposed a novel framework, MapQaTor, �rst of its kind, to automatically fetch

rich contextual map service data, which forms the basis to develop language-map benchmark datasets

for evaluating SoTA LLMs. Our developed web platform simpli�es data collection for users by o�ering

precise spatial information, user-friendly search, and e�cient data retrieval by using Map APIs. Our

application also enables user to create geospatial questionnaire. Experimental evaluation suggests

that MapQaTor is highly e�ective in developing geospatial question answer datasets. We believe this

approach introduces a new task in geospatial question answering, which has the potential to open a

new research direction in the intersection of language models and spatial reasoning. Furthermore, our

framework can be adapted to other domains.

Limitations

Despite the capabilities of MapQaTor, several limitations should be acknowledged. The platform

utilizes several paid map APIs, which may incur costs based on usage. During the current public

demonstration period, users can explore its features without immediate expenses; however, in the

long run, users will need to host the platform independently and integrate their own API keys to

access paid functionalities. This requirement necessitates an understanding of the pricing structures

associated with the various APIs, potentially impacting accessibility for some users. The platform’s

functionality is heavily dependent on the availability and stability of external map APIs, meaning that

any changes or deprecations in these APIs could negatively impact performance. The quality of the

generated QA pairs is contingent on the retrieved data and users’ ability to formulate meaningful

questions, which can introduce variability in dataset quality. The evaluation metrics used might not

encompass all aspects of usability, possibly overlooking qualitative user feedback. In addition to map

service data, other platforms such as Trip Advisor can also be a rich source of additional context for

geospatial queries.

Appendix A. Adapter Layer

The Adapter Layer in MapQaTor    provides base classes for various tools, including ‘TextSearch‘,

‘PlaceDetails‘, ‘NearbySearch‘, ‘ComputeRoutes‘, and ‘SearchAlongRoute‘. To integrate a new API

under any tool, developers need to extend the speci�c base class and implement two methods:

qeios.com doi.org/10.32388/MI3WH4 15

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


‘convertRequest‘ and ‘convertResponse‘. These methods standardize the request and response

formats to align with MapQaTor’s requirements, ensuring consistent interaction across APIs. Figure 8

demonstrates an implementation example of extending the ‘TextSearch‘ base class to support the

TomTom API. Note that "key:TOMTOM_API_KEY" is used as a placeholder, which will be replaced in

the backend using environment variables to prevent exposing the API key on the frontend.

qeios.com doi.org/10.32388/MI3WH4 16

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 8. Implementing the TomTom API Adapter for Text Search in

MapQaTor

Appendix B. Visualization Tools

For visualizing geospatial data, MapQaTor   utilizes the Google Maps JavaScript API to display places

(see Figure 10) and routes (see Figure 11) directly on an embedded map. Markers are used in the map to

qeios.com doi.org/10.32388/MI3WH4 17

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


represent places. It just needs the latitude and longitude of the place. On the other hand, routes are

actually encoded polylines5. But embeded map expects a set of coordinates along the path to visualize

the route. So, we need to �rst decode the encoded polyline and convert it to a set of latitude and

longitude. The decoding algorithm is shown in Figure 9.

Figure 9. Polyline Decoding Algorithm

qeios.com doi.org/10.32388/MI3WH4 18

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 10. Set of markers indicating di�erent places

qeios.com doi.org/10.32388/MI3WH4 19

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 11. Visualizing routes between places

Appendix C. Exclusion of Temporal Variations in Routing APIs

To ensure reproducibility in the dataset, we have implemented speci�c measures to eliminate

temporal variations in routing responses. These measures are essential for maintaining consistency

across identical queries, regardless of when they are made.

Tra�c Awareness Setting: In MapQaTor, routing APIs are set to "TRAFFIC_UNAWARE," meaning no

real-time tra�c data is used in generating routes and travel times. Real-time tra�c data would

introduce variability in travel times, as identical requests made at di�erent times would yield di�erent

results based on current tra�c conditions. By disabling tra�c awareness, we ensure that each query

consistently returns the same travel time, independent of real-time conditions, thereby enhancing

dataset reproducibility.

Exclusion of Transit Mode: We have also excluded the "TRANSIT" travel mode from ’ComputeRoutes’

and ’SearchAlongRoutes’ tools. Transit routes, which include public transportation options like buses

qeios.com doi.org/10.32388/MI3WH4 20

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


and trains, are heavily in�uenced by the speci�c time a request is made due to schedules, service

frequency, and operational hours. Including transit mode would introduce further temporal

variability, as the same query could yield di�erent results depending on schedule changes, service

frequency, and operational hours. This would undermine the consistency of the dataset, as identical

queries could yield di�erent travel times and routes.

Bene�ts of These Measures: By setting routes to be tra�c-unaware and omitting transit mode, we

ensure that:

Responses remain consistent: Identical queries yield the same routes and travel times, regardless

of request timing.

Benchmarking is simpli�ed: Model evaluations can focus purely on spatial and routing reasoning

without accounting for real-time variations.

Reproducibility is maintained: The dataset provides a stable baseline for testing and comparing

model performance over time.

These adjustments support our goal of creating a reproducible benchmark dataset, free from the

temporal dependencies that could otherwise complicate consistent evaluation of geospatial reasoning

tasks.

Appendix D. Question Design and Annotation

D.1. Context Preview

During data collection process, users need to save the necessary fetched information, which we will

refer to as Context. Context consists of a collection of API calls and their responses. After creating a

context, annotators will proceed to create questions. They can view the created context in two mode.

1. Summarized Context: A textual summarized view as a list of fetched information. One liner for

each information (see Figure 12).

qeios.com doi.org/10.32388/MI3WH4 21

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 12. Summarized Context

2. Visual Context: In visual context, full details of each information in the context is shown with

corresponding Map View ((see Figure 12).

Figure 13. Visual Context

qeios.com doi.org/10.32388/MI3WH4 22

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


D.2. Place Name Suggestion

Annotators gather di�erent places using TextSearch tool. At the time of writing question, on pressing

’@’ annotator will get the option to choose from available place names. On pressing enter, the selected

name will be entered on the cursor position. This ensures the consistency of place names between

context and questions in a hassle free way. This is also applicable in answer �eld.

Figure 14. Suggesting available places from the context

D.3. Answer Formats

We incorporate four distinct answer formats, which provide �exibility in how users interact with the

system. These formats are crucial for creating a diverse set of training and evaluation data for large

language models (LLMs). By supporting a range of response types, the dataset captures various ways

that models must handle user queries and generate appropriate answers. The four answer formats are

as follows:

1. Open Ended: The Open Ended format allows for unrestricted, free-text responses, enabling

models to generate detailed and contextually rich answers. This format tests the model’s ability

to understand and generate responses that may require creativity, explanation, or reasoning. It is

particularly useful for questions that demand nuanced answers or elaboration.

qeios.com doi.org/10.32388/MI3WH4 23

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 15. Answer format: Open Ended

2. Yes/No: The Yes/No format tests the model’s ability to provide binary, de�nitive answers. This

format is valuable for questions that require a clear-cut response, such as con�rming or denying

information. The model’s performance in this format re�ects its ability to handle factual

questions with straightforward answers.

Figure 16. Answer format: Yes/No

3. Multiple Choice: The Multiple Choice format allows the model to choose from a prede�ned set of

possible answers, potentially selecting more than one option. This format challenges the model

to identify the most relevant responses from a set of alternatives and is useful for assessing its

ability to discern multiple correct answers or �lter out incorrect options.

qeios.com doi.org/10.32388/MI3WH4 24

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 17. Answer format: Multiple Choice

4. Single Choice: Similar to Multiple Choice, but with the restriction that only one option can be

selected. This format is used to evaluate the model’s ability to determine the most appropriate

single answer from a set of alternatives. It tests the model’s decision-making and accuracy in

selecting the correct response.

qeios.com doi.org/10.32388/MI3WH4 25

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 18. Answer format: Single Choice

D.4. Reference Field

After creating a QA pair, annotator need to select which of the informations in the context is actually

relevant to this pair (see Figure 19). We are focusing on the informations fetched through PlaceDetails,

NearbySearch, ComputeRoutes and SearchAlongRoute tool. This step is necessary to create a well-

grounded and traceable dataset. This ensures that all the necessary information to answer a question

is available in the context. Under the hood, corresponding api calls (Relevant API Calls) to each

information are linked with the QA pair (see Fig. 35).

qeios.com doi.org/10.32388/MI3WH4 26

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 19. Choosing relevant informations to provide the correct answer.

Appendix E. Example Annotation

On entering MapQaTor, we will see 3 major steps (see Fig. 20). First we need to design a context, which

contains all the necessary information to design question-answer (QA) pairs. Then we will create QA

pairs. And �nally we can review and save the dataset.

Figure 20. Major steps of MapQaTor 

As described in section 2.4, we can design context using 5 data collection tools (see Fig. 21).

qeios.com doi.org/10.32388/MI3WH4 27

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 21. Overview of data collection tools integrated into MapQaTor, showcasing essential

functionalities.

Now let’s start designing a context. Let’s say we want to create questions on Louvre museum and

Ei�el tower. For that we �rst need to search them using TextSearch tool and add them to context (see

Fig. 22).

qeios.com doi.org/10.32388/MI3WH4 28

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 22. Example use of TextSearch tool

Next, we can search for the nearby restaurants of Ei�el Tower (see Fig. 23). Once we submit query,

nearby places of Ei�el Tower will be added to the context and we can see the list of places with some

key details (see Fig. 24).

qeios.com doi.org/10.32388/MI3WH4 29

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 23. Example use of NearbySearch tool

qeios.com doi.org/10.32388/MI3WH4 30

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 24. Nearby restaurants of Ei�el Tower

We can also search for available routes from Louvre Museum to Ei�el tower using ComputeRoutes tool

(see Fig. 25). After submitting query, all the available routes with distance, duration and step-by-step

navigation will be added to the context (see Fig. 26).

qeios.com doi.org/10.32388/MI3WH4 31

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 25. Example use of ComputeRoutes tool

qeios.com doi.org/10.32388/MI3WH4 32

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 26. Available routes from Louvre museum to Ei�el tower by car

Thus we can �nish designing context, and move forward to create questions based on the context. We

can start with an example question "Fastest time to go from Louvre Museum to Ei�el Tower by car?"

and assign it to "Routing" category (see Fig. 27).

qeios.com doi.org/10.32388/MI3WH4 33

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 27. Example question creation (1)

Then we need to provide answer to the question. For our example question, we can get the answer

from the context, which is "15 mins" (see Fig. 26). We can choose the answer type and provide the

ground truth (see Fig. 28).

qeios.com doi.org/10.32388/MI3WH4 34

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 28. Example answer creation (1)

Upto this point, only the annotator knows which information in the context is used to derive the

ground truth. To maintain traceability we need to link the QA pair with relevant information in the

context. In this example, only the routing information from Louvre Museum to Ei�el Tower is

relevant. Nearby Restaurants of Ei�el Tower is irrelevant. So, we will select "Driving route from

Louvre Museum to Ei�el Tower" in "References" �eld (see Fig. 29).

qeios.com doi.org/10.32388/MI3WH4 35

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 29. Choosing relevant informations (1)

Similarly, we can add a second question "Nearby restaurant of Ei�el Tower with over 2000 user

ratings and at least 4.5* rating" (see Fig. 30), provide answer (see Fig. 31) and link relevant

informations (see Fig. 32).

Figure 30. Example question creation (2)

qeios.com doi.org/10.32388/MI3WH4 36

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 31. Example answer creation (2)

Figure 32. Choosing relevant informations (2)

Finally, we can review the context and QA pairs (see Fig. 33) and download the dataset in JSON format

(see Fig. 34). Downloaded dataset format is shown in Figure 35.

qeios.com doi.org/10.32388/MI3WH4 37

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 33. Review context and QA pairs

qeios.com doi.org/10.32388/MI3WH4 38

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 34. Download dataset as JSON

qeios.com doi.org/10.32388/MI3WH4 39

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


qeios.com doi.org/10.32388/MI3WH4 40

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


Figure 35. Example dataset where each QA pair is linked with

relevant api calls

Footnotes

1 https://mapsplatform.google.com/

2 https://www.apple.com/au/maps/

3 https://github.com/mapqator/

4 https://developers.google.com/maps/documentation/javascript/overview

5 https://developers.google.com/maps/documentation/utilities/polylinealgorithm

References

1. ^Liu X, Yu H, Zhang H, Xu Y, Lei X, Lai H, Gu Y, Ding H, Men K, Yang K, et al. (2023). "Agentbench: Evalu

ating llms as agents". arXiv preprint arXiv:2308.03688.

2. a, b, cQin Y, Liang S, Ye Y, Zhu K, Yan L, Lu Y, Lin Y, Cong X, Tang X, Qian B, et al. (2023). "Toolllm: Facil

itating large language models to master 16000+ real-world apis". arXiv preprint arXiv:2307.16789.

3. ^Zhou S, Xu FF, Zhu H, Zhou X, Lo R, Sridhar A, Cheng X, Bisk Y, Fried D, Alon U, et al. (2023). "WebAren

a: A Realistic Web Environment for Building Autonomous Agents". arXiv preprint arXiv:2307.13854.

4. ^Koh JY, Lo R, Jang L, Duvvur V, Lim MC, Huang PY, Neubig G, Zhou S, Salakhutdinov R, Fried D (2024).

"VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks". arXiv preprint arXiv:2

401.13649.

5. a, bXie J, Zhang K, Chen J, Zhu T, Lou R, Tian Y, Xiao Y, Su Y (2024). "Travelplanner: A benchmark for re

al-world planning with language agents". arXiv preprint arXiv:2402.01622.

6. ^Zheng HS, Mishra S, Zhang H, Chen X, Chen M, Nova A, Hou L, Cheng HT, Le QV, Chi EH, et al. (2024).

"NATURAL PLAN: Benchmarking LLMs on Natural Language Planning". arXiv preprint arXiv:2406.045

20.

7. ^Guo Z, Cheng S, Wang H, Liang S, Qin Y, Li P, Liu Z, Sun M, Liu Y (2024). "StableToolBench: Towards St

able Large-Scale Benchmarking on Tool Learning of Large Language Models". arXiv preprint arXiv:240

3.07714.

qeios.com doi.org/10.32388/MI3WH4 41

https://mapsplatform.google.com/
https://www.apple.com/au/maps/
https://github.com/mapqator/
https://developers.google.com/maps/documentation/javascript/overview
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://webarena.dev/
https://webarena.dev/
https://www.qeios.com/
https://doi.org/10.32388/MI3WH4


8. ^Choimeun S, Phumejaya N, Pomnakchim S, Chantrapornchai C. Tool for collecting spatial data with G

oogle Maps API. In: U-and E-Service, Science and Technology: International Conference UNESST 2010,

Held as Part of the Future Generation Information Technology Conference, FGIT 2010, Jeju Island, Kore

a, December 13-15, 2010. Proceedings. Springer; 2010. p. 107-113.

9. ^Cai C, Hovy E (2010). "Summarizing textual information about locations in a geo-spatial information

display system". In: Proceedings of the NAACL HLT 2010 Demonstration Session. pp. 5-8.

10. ^Zheng Y, Bao Z, Shou L, Tung AKH (2014). "MESA: A map service to support fuzzy type-ahead search o

ver geo-textual data". Proceedings of the VLDB Endowment. 7 (13): 1545–1548.

11. ^Li M, Zhao Y, Yu B, Song F, Li H, Yu H, Li Z, Huang F, Li Y (2023). "Api-bank: A comprehensive benchm

ark for tool-augmented llms". arXiv preprint arXiv:2304.08244.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/MI3WH4 42

https://www.qeios.com/
https://doi.org/10.32388/MI3WH4

