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The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical

competitions like IMO and have made signi�cant progress. However, these studies intertwined multiple skills simultaneously—problem-solving,

reasoning, and writing formal speci�cations—making it hard to precisely identify the LLMs’ strengths and weaknesses in each task. This paper focuses

on formal veri�cation, an immediate application scenario of formal reasoning, and breaks it down into sub-tasks. We constructed 18k high-quality

instruction-response pairs across �ve mainstream formal speci�cation languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six tasks by distilling gpt-4o

and evaluated against ten open-sourced LLMs, including recent popular DeepSeek-R1. We found that LLMs are good at writing proof segments when

given either the code, or the detailed description of proof steps. Also, the �ne-tuning brought about a nearly threefold improvement at most.

Interestingly, we observed that �ne-tuning with formal data also enhances mathematics, reasoning, and coding capabilities. Fine-tuned models are

released to facilitate subsequent studies at https://huggingface.co/fm-universe.

1. Introduction

Figure 1. The Illustration of Formal Proof Generation and Its Relation with Code Generation.

As AI-based formal mathematical reasoning reached an in�ection point[1], signi�cant attention and progress in this �eld have been observed.

AlphaProof[2] achieved silver medal level in the International Mathematical Olympiad (IMO), AlphaGeometry[3] specialized in proving Euclidean geometry

theorems. As reported, the number of publications in this �eld nearly doubled in 2023, indicating an unstoppable growth trend[4]. As Fields Medalist

Terence Tao imagined, “In the future, instead of typing up our proofs, we would explain them to some GPT”[5].

However, most current benchmarks cannot precisely re�ect the capability to convert informal proofs or requirements in natural language into formal

proofs. Most of these benchmarks take mathematical problems[2][3][6] or theorems to be solved[7][8][9] as input, and informal or formal proofs (or parts of

proofs) as output. However, these end-to-end benchmarks assess multiple capabilities (e.g., problem-solving, mathematical reasoning, formal
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speci�cation writing) in an intertwined manner, making it di�cult to isolate and observe LLMs’ true capabilities in writing formal proofs or models for

veri�cation.

Therefore, we break down the process from informal requirements to formal veri�able proof, as shown in Figure 1. Inspired by the code generation (shown

in blue) which translates a description of implementation into executable code[10][11], the formal reasoning process (shown in green) can be seen as

translating an informal requirement into a veri�able formal proof or checkable formal model1. Particularly, we decompose this process and formulate six

tasks (Figure 2). By doing so, the intertwined capabilities can be separated and individually assessed, providing a clearer understanding of LLMs’ strengths

and weaknesses in each task.

Scope and Targets – We focus on formal veri�cation[12][13][14][15] because it is an immediate application scenario of formal mathematical reasoning and the

correctness of the output can be veri�ed mechanically. In this paper, we mainly explore four research questions (RQs):

RQ1. How well do LLMs perform in various formal veri�cation tasks? After decomposing the formal veri�cation task into subtasks, we explore LLMs’ initial

performance in these tasks with zero-shot and few-shot, investigating the strengths and weaknesses that vary between LLMs and tasks.

RQ2. Do LLMs show variability in their capability across di�erent formal speci�cation languages? When mathematicians and proof engineers consider using

LLMs to assist in formal veri�cation, they often face uncertainty about which formal speci�cation language is best supported by LLMs. This RQ is designed

to provide hints on it.

RQ3. Can �ne-tuning improve LLMs’ performance in formal veri�cation? Although recent e�orts have been made to �ne-tune models[16][7], these LLMs are

typically �ne-tuned with single formal languages instead of multi-lingual (e.g., combining Coq, Lean, etc.)[1]. Therefore, we instruction �ne-tuned[17]

[18] three base LLMs to see whether our constructed �ne-tuning dataset FM-ALPACA could improve their capability in formal veri�cation tasks.

RQ4. Can �ne-tuning with formal veri�cation data bene�t other related tasks (mathematics, reasoning, code)? As recent works have shown LLMs’ potential

transferability of skills[19]  we thus extend our study to see if models �ne-tuned on formal data could show enhanced capabilities in mathematics,

reasoning, and coding.

To facilitate the study, we constructed 18k high-quality instruction-response pairs across �ve formal speci�cation languages (i.e., Coq, Lean4, Dafny, ACSL,

and TLA+) in six formal-veri�cation-related tasks by distilling gpt-4o inspired by prior work[16][20][21], then split them into 14k instruction �ne-tuning

data (FM-ALPACA) and 4k benchmarking data (FM-BENCH). In particular, we provide executable contexts for all these formal speci�cations and automated

validation scripts to validate the correctness of the generated formal proofs inspired from the prior work’s artifact preparation[22]. Finally, we release the

�ne-tuned LLMs based on three base models at https://huggingface.co/fm-universe.

Interestingly, there has been recent discussion on the topic of domain transfer[1], particularly the transfer of knowledge from other domains such as

coding and reasoning to formal domains in order to increase LLMs’ reliability[23], and the anticipated potential of AI in enhancing formal veri�cation

processes to support mathematical proofs[5][24]. Our experimental results could potentially provide empirical support for these hypotheses or o�er

directions for further experimental inquiries.

The contribution of this paper includes:

Problem Formulation: We decompose the formal veri�cation process into six essential tasks. By doing so, the intertwined capabilities can be separated

and individually assessed, providing a clearer understanding of LLMs’ strengths and weaknesses in each task.

Dataset and Benchmark: We constructed 18k high-quality instruction-response pairs across �ve mainstream formal speci�cation languages (i.e., Coq,

Lean4, Dafny, ACSL, and TLA+) in six formal-veri�cation-related tasks by distilling gpt-4o. They are split into a 14k+ �ne-tuning dataset FM-ALPACA

and a 4k benchmark FM-BENCH.

Executable context and automated validation mechanism: We provide a Docker container equipped with necessary scripts to facilitate the evaluation of

FM-BENCH, signi�cantly lowering the entry barrier for this scenario and making subsequent contributions easier.

Insight and Vision: We �ne-tuned several models on FM-ALPACA and observed promising bene�ts to not only the formal veri�cation tasks, but also

mathematics, reasoning, and coding. Our experimental results provide empirical support for the potential of LLMs’ capability transfer and hope to shed

some light on future research.

2. Task Formulation

Figure 2 illustrates the six sub-tasks. We elaborate on them in detail as follows.
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Task 1. Requirement Analysis (abbrev. ReqAna). Requirement analysis[25][26][27][28] is a critical and long-standing research area in software engineering. It

facilitates collecting, identifying, categorizing and modeling the users’ needs and expectations using various techniques[29][30][31][32][33][34]. In this

paper, the requirements are the descriptions in natural language (English)[33]  that details the requirements of the veri�cation/modeling goal and an

overall description of the proofs/models. The task is to analyze and break down the �nal goal into detailed steps described in natural language. The natural

language used in this paper is English.

Task 2. Full Proof Generation (abbrev. ProofGen). This task formalizes a requirement in natural language into veri�able proofs or models written in formal

speci�cation languages, similar task formulation to existing works[35][34][36].

Task 3. Proof Segment Generation (abbrev. SegGen). Unlike ProofGen, which requires generating complete proofs/models, SegGen provides more detailed

descriptions in natural language and requires LLMs to write less. Given a text description articulating how to implement the proofs/modeling, the task

outputs a segment written in the formal speci�cation that serves as a component in the complete proof/model. This task formulation is similar to prior

work[16][37][38] and similar to the formulation of code generation[39][40][8][6].

Task 4. Proof Completion (abbrev. ProofComplete). Similar to code completion[41][42][43][44], ProofComplete suggests the su�x of the given pre�x, similar

to prior work[45]. Note that in order to prevent LLMs from deviating from the original veri�cation goal, we also provide the requirement in our evaluation,

although it is not compulsory for this task formulation.

Task 5. Proof InFilling (abbrev. ProofIn�ll). Given a proof/model with a mask in the middle, the task requires LLMs to �ll proper formal speci�cations so

that the completed proofs/models can pass the veri�er. This formulation is the same as code in�lling[46]. Also, similar to ProofComplete, we provide the

requirement in our evaluation during the in�lling to prevent LLMs from deviating from the original veri�cation goal.

Task 6. Proof Generation from Code (abbrev. Code2Proof). In addition to generating formal speci�cations from natural languages, formal speci�cations can

also be generated from code if the veri�cation goal is the property of a given program. In this paper, we focus mainly on speci�cations in form of code

annotations[47][48], expressing speci�cations (e.g., pre-/post-condition, loop invariants) that help one to verify that (part of) a program satis�es certain

properties. The task takes the code with properties to be veri�ed as input and outputs the code with generated annotated formal speci�cations. Similar task

formulation can be found in recent works[49][50].

Figure 2. Six tasks towards Informal to Formal Veri�cation

3. Data Construction

3.1. Formal Speci�cation Language Selection

In this study, we consider �ve formal speci�cation languages that can be used for formal veri�cation, including Coq[51], Dafny[52], Lean4[53], ACSL

(ANSI/ISO C Speci�cation)[47]  and TLA+[54][55]. We selected them in order to cover various veri�cation paradigms (i.e., theorem proving and model

checking) and veri�cation scenarios (e.g., mathematical reasoning and program veri�cation).
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First, for interactive theorem provers which are suitable for developing rigorous mathematical proofs, we consider Coq[51] and Lean4[53] because Coq has

been extensively used in academia and research for proving mathematical theorems and in formal veri�cation of software for a long history, while Lean4

garnered considerable attention from the mathematical community[16][24][56] recently. Second, for programming languages with built-in speci�cation, we

consider Dafny[52] and ACSL[47][57] because they seamlessly integrate speci�cations (e.g., pre-/post-conditions, loop invariants) within the code, ensuring

the correctness through embedded assertions and conditions. Lastly, for model checking[58][59], we consider TLA+[54] since it is a representative math-

based formal language for modeling algorithms and programs such as concurrent and distributed systems.

3.2. Data Preparation

The work�ow of data preparation for FM-ALPACA and FM-BENCH is illustrated in Figure 3. The work�ow begins with the data collection, where formal proofs

in the desired formal speci�cation languages and related con�gurations and dependencies are gathered from open-source repositories in Github. Then,

formal proofs are extracted from the collected repositories. Next, the proofs go through the data quality assurance check by execution, the proofs that

cannot be veri�ed successfully are �ltered out. The remaining ones are split into segments (e.g., de�nition of functions or conditions).

Given the impracticality of manually writing descriptions for all the collected formal proofs, we leveraged distilled GPT4[60]  to generate high-quality

informal proof descriptions via meticulous prompting. This alternative is well-established and frequently employed in prior literature[21][16][20][61].

Speci�cally, for each formal speci�cation language, we designated the model as an expert in that particular language, equipping it with comprehensive

domain knowledge about the language’s speci�cations, essential grammatical cues, and three-shot examples featuring proof segments in the formal

language as inputs and natural language descriptions as outputs. This approach ensures that the collected descriptions are of high quality and well-

organized. It’s important to note that we did not generate descriptions for proof segments shorter than two lines (such as package imports or constant

de�nitions) because their meaning is self-explained, with the exception of ACSL, whose proof segments are typically 1-2 lines.

After the descriptions for both full and segment proofs were prepared, we then prepared the data pairs for each task as shown in Task-wise Data Pairing in

Figure 3. Note that for Task 4, i.e., Proof Completion, to prepare the incomplete formal proof, we randomly choose a line number and delete the lines in the

proof after the line. For Task 5, i.e., Proof In�ll, we randomly choose two line numbers and mask the lines between them. In case the remaining lines of

proof cannot provide su�cient information for the proof generation, we also provide the informal proof for these two tasks.

Figure 3. The Illustration of Data Preparation.

After pairing the instruction-response for di�erent tasks, we manually designed �ve task instructions for each task and randomly assigned one for each

paired data to increase instruction diversity and avoid over�tting to certain instructions[62][63][64].

3.3. Data Statistics

The speci�cation-language-wise and task-wise statistics are shown in Table  1 and Table  2. In particular, Table  1 presents a detailed breakdown of the

number of proofs and segments across �ve speci�cation languages. Note that we split the prepared data for all the tasks and speci�cation languages into
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an 8:2 ratio, i.e., 80% for �ne-tuning, named FM-ALPACA, 20% for benchmarking, named FM-BENCH, and show the separate statistics. In particular, there

are 4k+ veri�able proofs in total, with 249    2k proofs for each language. These proofs were split into 18k+ proof segments, with an average of 3.6k

segments for each language. The reason why the ratio of segments in FM-ALPACA and FM-BENCH is slightly less than 8:2 is that the train-test split was

applied to proofs, while the number of split segments in each proof varies.

 

Num of Proofs Num of Segments

Total FM-ALPACA FM-BENCH Total FM-ALPACA FM-BENCH

Coq 2126 1683 443 14939 11638 3301

Lean4 1163 919 244 1578 1261 317

ACSL 544 426 118 765 598 167

Dafny 249 206 43 417 348 69

TLA+ 256 199 57 594 476 118

Total 4338 3433 905 18293 14321 3972

Average 868 687 181 3659 2864 794

Table 1. Formal-Speci�cation-Language-wise Statistics of Formal Veri�cation Data

Table 2 shows the task-wise statistics. There are 18k instructions across six tasks, with an average of 3k instructions for each task. After splitting the train-

test set, FM-ALPACA contains 14k, and FM-BENCH has nearly 4k instructions. It is clear that the number of instructions for the task Segment Proof

Generation (SegGen) is far more than that for Requirement Analysis (ReqAna) and Full Proof Generation (ProofGen) because one full proof can be split into

numerous pieces of proof segments, and one proof can contribute to only one instruction for ReqAna and ProofGen. Note that the number of ReqAna (627)

and ProofGen (700) is unequal because we �ltered out the instructions with more than 2048 tokens considering the context limits.

  Task Total FM-ALPACA FM-BENCH

1 Requirement Analysis 627 496 131

2 Full Proof Generation 700 557 143

3 Segment Proof Generation 14843 11597 3246

4 Proof Complete 658 520 138

5 Proof In�ll 1439 1146 293

6 Code2Proof 70 56 14

 

Total 18337 14372 3965

Average 3056 2395 661

Table 2. Task-wise Statistics of Formal Veri�cation Data

3.4. Validation Mechanism

For the tasks whose outputs are written in formal speci�cation languages, we verify the full proofs against the corresponding veri�ers, i.e., Coq, Dafny,

Lean4 use their own proving environment; formal speci�cation written in TLA+ can be checked by TLC[65]; C programs with ACSL speci�cations can be

checked by Frama-C[57][66]. Also, for the proof segments that cannot be veri�ed independently, for each extracted segment, we prepared a proof template

with a placeholder during data preparation. Whenever a generated segment is to be veri�ed, we replace the placeholder in the template with the segment

and verify the completed formal proof.

∼
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For the task whose outputs are written in natural language (i.e., ReqAna), we calculate the Bleu score[67] between the descriptions in FM-BENCH with the

predicted outputs.

Table 3. RQ1-3: Pass@1 Accuracy of LLMs’ Performance Across Formal Veri�cation Task and Formal Speci�cation Languages with (w/) and without (w/o) �ne-

tuning. The greener, the better.

* -fma: �ne-tuned with FM-ALPACA.

* -ultrachat: �ne-tuned with UltraChat.

* -tulu: �ne-tuned with Tulu3.

* -ultrachat-fma: �ne-tuned with both UltraChat and FM-ALPACA.

* -tulu-fma: �ne-tuned with both Tulu3 and FM-ALPACA.

Table 4. Evaluation on Requirement Analysis

* -fma: �ne-tuned with FM-ALPACA.
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4. Experiments

4.1. Experiment Setup

Studied LLMs. We selected ten LLMs as baselines without �ne-tuning, including llama3.1-instruct-8B/70B[68], qwen2.5-instruct-7B/72B[69], qwen2.5-

coder-instruct-7B/-32B[70], starcoder-instruct-15B[71], deepseek-coder-instruct-7B-v1.5, deepseek-coder-instruct-33B[72], and deepseek-R1[73]. Note

that we avoid evaluating the GPT-series LLMs by OpenAI because the descriptions in FM-BENCH were generated by GPT-4o, making the evaluation fairer.

Fine-tuning. Instruction �ne-tuning[17][18][20][74] aims to improve a model’s ability to e�ectively respond to human instructions and has shown strong

experimental potential in model enhancement. We select llama3.1-8B[68], qwen2.5-7B[69], and deepseek-coder-7B-v1.5[72]  as base models for �ne-

tuning. We selected these three models because they have shown promising capability in tasks such as coding, mathematics, and reasoning, and �ne-

tuning models in their scale is relatively a�ordable compared with �ne-tuning larger scale models. We �ne-tuned the three aforementioned base models

over three epochs using a learning rate 2e-5, a warm-up ratio of 0.04, a batch size of 512, and a cosine learning rate scheduler.

Baseline Fine-tuning Datasets: To distinguish whether the capability improvement is simply because more instruction tuning is applied, we also include two

commonly used �ne-tuning datasets for comparison. We select UltraChat[20]  and Tulu-V3[75]  as baseline �ne-tuning datasets for their popularity. In

particular, UltraChat is a large-scale dataset of instructional conversations that contains 1.5 million high-quality multi-turn dialogues and covers a wide

range of topics and instructions. Tulu-v3[75] embraces new data that is either carefully manually curated for quality or generated from GPT models. It is an

enhancement of its previous versions[74][61], focusing more on core skills of knowledge recall, reasoning, mathematics, coding, instruction following,

general chat, and safety.

Benchmarks for Related Capabilities (RQ4). To comprehensively evaluate the model’s capabilities, we tested the �ne-tuned models on a series of

benchmarks: Math[76] and GSM-8K[77] for mathematical reasoning, BBH[78] for general reasoning, HumanEval[10] and MBPP[79] for coding.

Inference Strategies. We adopt di�erent settings for di�erent RQs. In particular, We use (1) the greedy sampling strategy to generate one single greedy

sample with a temperature of 0.0 and calculate Pass@1, and (2) nucleus sampling[80], where �ve solution samples were randomly generated with a

temperature of 0.2 for RQ1 and RQ2. We also consider di�erent in-context learning strategies, including zero-shot and few-shot (we used 3-shot in the

experiment). For RQ3, we use a zero-shot greedy search with a temperature of 0.0 and a few-shot nuclear search with a temperature of 0.2 for a fair

comparison.

Experiment Environment. The �ne-tuning experiment was conducted on 32 Nvidia A100-40G GPUs, while inference was on a single Nvidia A100-80G GPU

with vLLM[81].

4.2. RQ1. Basic Performance across Formal Speci�cation Tasks

To understand the current LLMs’ performance in six tasks, we evaluate 8 LLMs against FM-BENCH with model size ranges from 7B to 72B. The upper part of

Table 3 and the upper part of Table 4 show LLMs’ basic performance without �ne-tuning.

Task-wise: LLMs perform the best in generating proof from code (Code2Proof), with an average of 43.57% Pass@1, followed by ProofComplete (18.44%)

and ProofIn�ll (17.38%). In contrast, LLMs fall short in generating both the entire formal proof (8.65%) and the proof segments (10.61%). We analyzed the

failures and found that syntax errors account for a large proportion, with 12.15% failures caused by syntax errors (Appendix B). The observation echoes the

motivation of prior work[16]  and is reasonable due to the grammar di�erence between most formal speci�cation languages and other programming

languages like Python. Regarding requirement analysis, as shown in the upper part of Table 4, the Bleu scores between the ground-truth description and

LLM-generated ones range from 0.24 to 0.55.

LLM-wise: Without �ne-tuning, DeepSeek-R1 achieved the best average (27.11%), followed by qwen2.5-coder-instruct-32B (21.19%).

Model Size: Larger LLMs generally perform better than smaller LLMs. For example, llama3.1-8B only achieved 1.43% in generating TLA+ segments, while

llama3.1-70B boosts to 22.86% in the same task. However, there are several exceptions worth noticing, especially for ProofIn�ll and Code2Proof. For

example, llama-3.1-8B achieved 50% in ProofIn�ll (ACSL), yet the performance drops to 21.43% using the 70B model. Similar observations can be found in

qwen2.5-instruct. The decrease in performance is inherently due to the �ne-tuning strategy of these instruction models: they are trained to excel in

generating rather than �lling in the blanks[46]. Also, we conducted a more detailed examination of generated segments and observed that larger LLMs tend

to �ll in the proof segments that not only look more plausibly correct and well-organized but also include extra content. The additional content, yet, is either

redundant, as it repeats information that appears in the subsequent proof, or is incomplete. Promisingly, recent model developers have noticed such

conundrums and re�ned their �ne-tuning strategy for �ll-in-the-middle tasks[72].
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Table 5. RQ2: Language-wise LLMs’ Performance. Pass@1 and Pass@5 Accuracy in Generating Proof Segments Across Formal Speci�cation Languages Under

Zero/Few-shot without �ne-tuning.

* The improvement ratios shown in “Pass@5” column are calculated by comparing with the scores in Pass@1, and the ratios shown in “Few-shot” column are

calculated by comparing with the scores in Pass@5.

Table 6. RQ4: Capability Migration from FM-ALPACA to Math, Reasoning, and Coding.

4.3. RQ2. Formal Speci�cation Languages-wise Capability

Table 5 shows the LLMs’ performance across formal speci�cation languages in the task of generating proof segments (SegGen). This task accounts for the

most instructions and serves as the basic capability for other proof generation tasks. We can see that LLMs perform the best in ACSL (average: 34.92%),

followed by Dafny (15.97%) while performing unsatisfactorily in other formal speci�cation languages. The observation is reasonable because the syntax of

ACSL is basically an annotation of C language, while Dafny shares similar grammar as C# and Java. Thus, generating proof segments in ACSL and Dafny is

generally easier than generating other speci�cation languages.

In addition, we explore whether increasing the attempts (1    5) with a higher temperature (0.0  0.2) and in-context learning could bring about

improvement. The improvement ratios are shown in red in Table 5. The results of Pass@5 are better than those of Pass@1, with an average score increase

from 10.82% (Dafny) to 63.64% (ACSL) in di�erent languages. Moreover, when using 3-shot, the performance increases dramatically, with 51.33% (Dafny)

to over �ve times (ACSL) improvement compared with zero-shot Pass@5. The results indicate the potential of in-context learning in generating correct

speci�cation languages.

4.4. RQ3. Improvement by Fine-tuning

We further investigate whether FM-ALPACA could bring about improvement. The lower part of Table  3 and Table  4 shows the results. From Table  3,

dramatic improvements can be observed in generating full and segmental proofs after �ne-tuning. Note that the model size of �ne-tuned models is 7B 

 8B, while the performance largely outperforms the 70B+ models without �ne-tuning. Furthermore, after �ne-tuning with formal data, the 7   8B �ne-

tuned models can achieve comparable or slightly better performance than Deepseek-R1-671B, with 27.31% achieved by qwen2.5-coder-7B �ne-tuned with FM-

ALPACA (R1-671B: 27.11%). It may suggest the possibility of distilling domain-speci�c small models for handier usage.

Task-wise: Improvements in generation tasks (i.e., ProofGen, SegGen, and ProofComplete) are substantial. ProofGen doubles the performance, and

SegGen more than triples. The dramatic increases happen in all models �ne-tuned with FM-ALPACA in SegGen Task, from nearly all zeros to 29.98% 

 90.48%. An increase of 41% can also be observed in Table 4. The experimental improvements make evident the e�ectiveness of �ne-tuning in formal

veri�cation tasks.

Yet, drops can be observed in �ll-in-the-middle tasks (i.e., ProofIn�ll and Code2Proof). The results echo the observation made in RQ1 (Section 4.2), where

the large LLMs perform worse than small LLMs in �ll-in-the-middle tasks. The results also indicate the necessity of adopting di�erent �ne-tuning

strategies other than instruction tuning only.

→ →

∼ ∼

∼
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Fine-tuning Datasets: Take a closer look at the LLMs �ne-tuned with general-purpose datasets (i.e., llama3.1-ultrachat and llama3.1-tulu) in Table 3, with

them only, no or opposite e�ects can be observed. The results indicate the complementarity of FM-ALPACA and existing general-purpose �ne-tuning

datasets. Additionally, by combining with general-purpose datasets, the performance can be further improved (e.g., llama3.1-tulu-fma).

Comparison with Few-shot: Compared with the best results in Table  5 achieved by 3-shot, the results after �ne-tuning (Table  3) still generally

outperform the 3-shot results. The results indicate that although in-context learning can improve LLMs’ performance, the enhancement is limited.

Further signi�cant improvements still require �ne-tuning with formal data. This may also suggest that in-context learning alone cannot adequately address

capability de�cits in formal veri�cation tasks but rather stem from a lack of knowledge.

4.5. RQ4. Capability Migration from Formal Veri�cation to Related Tasks

Finally, we explore whether �ne-tuning with FM-ALPACA could bene�t related capabilities. Table 6 shows the results. The base model is llama3.1-8B, �ne-

tuned under two base �ne-tuned datasets with and without FM-ALPACA. On average, with FM-ALPACA, an increase of 1.37% to 5.15% can be observed.

Interestingly, a dramatic increase (62.53%) can be observed in HumanEval compared with the performance of the model that is only �ne-tuned with

UltraChat. The experiment may indicate that feeding more formal data may improve LLMs’ coding, reasoning, and math capabilities.

5. Conclusion

This paper contributes a comprehensive assessment and formulation to understand LLMs’ capability in formal veri�cation. We constructed 18k high-

quality instruction-response pairs across �ve formal speci�cation languages in six tasks. The �ne-tuned models, �ne-tuning data, and the benchmark are

released to facilitate subsequent studies.

Limitations

This paper has two primary limitations that o�er avenues for future research. First, the primary limitation of our work is that our benchmark relies on

model-generated data. While this approach e�ectively reduces manual e�orts; it may introduce biases and data leakage issues in the dataset towards the

models that generated the data. To address this limitation, we use gpt-4o to generate the natural language descriptions, while during the evaluation, we

use other LLMs for evaluation. Second, another limitation of our work lies in the validation design. When creating ProofIn�ll and ProofComplete data, it is

possible that the properties to be veri�ed or theorems to be proven are masked. If LLMs happened not to generate these properties/theorems, the

generated “proofs/models” could escape the veri�er/checker, mistakenly labeling the output as correct. To avoid this scenario, we include the requirement

descriptions as part of the input, guiding LLMs to generate the necessary properties or theorems without omission.

Appendix A. Related Work

The formal speci�cation datasets or benchmarks o�er a standard, well-de�ned set of problems, providing a shared challenge that helps build a

community of practice among researchers. According to di�erent veri�cation techniques, the existing benchmarks mainly fall into two categories; we

discuss them separately.

A.1. Theorem Proving Datasets

Formal theorem proving represents theorems and proofs in a machine-veri�able format[82], ensuring their correctness using rigorous logical rules. A

recent survey[4] summarized the existing datasets for theorem proving. In particular, the informal benchmarks craft the proofs from various sources such

as ProofWiki, textbooks, and public corpus. NL-PS[83]  �rst builds a natural language premise selection dataset source from ProofWiki. Similarly,

NaturalProofs[6] further incorporates data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it, NaturalProofs-

Gen[8]  contains around 14.5k theorems for informal proof generation. Moreover, MATcH[84]  constructs over 180k statement-proof pairs for matching

using the MREC corpus2.

For formal datasets, a line of e�orts focuses on extracting and cleaning theorems and proofs written in various speci�cation languages (e.g., Coq, Isabelle,

Lean) from established formal libraries and veri�cation projects. For example, LeanDojo[7]  extracts over 98k theorems and proofs with 130k premises

from Lean mathlib[85]. Besides extracting data from existing projects, several works manually annotate or formalize the problems in natural language. For

example, MiniF2F[86] manually formalizes 488 Olympiad-level problems across 4 proof systems and equally splits them into a validation set and a test set.

FIMO[87] and ProofNet[88] formalize the theorem statements of the International Mathematical Olympiad and undergraduate-level problems in Lean. In
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addition, datasets for Dafny also attract research contributions because industries like Amazon adopted Dafny to verify cryptographic libraries,

authorization protocols, a random number generator, and the Ethereum virtual machine. Dafny datasets such as CloverBench[40] and DafnyGym[89].

A.2. Model checking datasets

Model checking is an automated technique used in computer science and formal methods to verify the correctness of systems, particularly those with �nite

state spaces. It systematically checks whether a system’s model satis�es a given speci�cation, usually expressed in formal speci�cation languages. The

basic idea is to explore all possible system states to ensure the desired properties hold in every conceivable scenario.

Model checking benchmarks are less than that for theorem proving. Currently, there are few model-checking benchmarks for proving, while several

model-checking subjects are going with speci�c model-checking languages such as CMurphi[90] and TLA+[54]. In particular, CMurphi is a software tool

used to verify concurrent and distributed systems through explicit state enumeration. It implements the Murphi veri�cation language, which allows users

to describe �nite-state systems in a procedural style. The core principle behind CMurphi is to explore the state space of a system exhaustively to check for

violations of speci�ed invariants or properties. Another example is TLA+ (Temporal Logic of Actions), a high-level language for modeling programs and

systems suitable for concurrent and distributed systems.

Appendix B. Proportion of Failures Caused by Syntax Error

We listed the proportions of failures caused by syntax errors for each LLM and each task in Table 8. We used a set of pre-de�ned keywords (summarized in

Table 7 to identify if a veri�cation failure is caused by syntax errors. Speci�cally, we consider a failure caused by syntax error if its error message contains

at least one keyword in Table 7.

  Language Keywords

1 Coq “Syntax Error:”

2 Lean4 “unexpected token ”, “unknown identi�er”, “type mismatch”

3 ACSL “unexpected token”

4 Dafny “type errors detected”

5 TLA+ “***Parse Error***”, “Unknown operator”

Table 7. Keywords for identifying syntax error raised by each language’s veri�er.
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LLMs Size

ProofGen SegGen ProofComplete ProofIn�ll Code2Pr

TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny TLA Coq Lean Dafny ACSL ACSL

llama3.1-

instruct
8B 0/13 1/45 33/58 0/10 1/12 43/69 746/2910 78/124 4/33 4/63 4/11 45/81 16/34 1/5 16/34 44/157 27/60 0/13 1/7 0/4

llama3.1-

instruct
70B 2/12 0/44 38/53 1/8 1/13 43/54 71/2802 75/114 16/32 5/38 6/8 44/81 10/31 1/5 15/34 39/153 22/49 0/13 2/11 3/11

qwen2.5-

instruct
7B 10/13 1/46 30/56 1/10 0/11 26/69 303/2914 53/122 5/34 6/62 9/11 35/73 8/29 1/5 14/34 66/156 31/53 0/13 4/7 3/6

qwen2.5-

instruct
72B 7/12 0/44 25/48 1/8 9/11 47/61 40/2848 54/116 11/27 0/55 7/11 35/74 8/24 1/5 13/34 59/149 20/49 0/11 0/9 1/6

qwen2.5-

coder-

instruct

7B 9/13 0/46 32/55 0/10 0/14 60/68 22/2882 72/116 6/32 53/61 10/11 12/80 8/32 2/6 17/34 34/159 26/50 1/12 0/7 0/6

qwen2.5-

coder-

instruct

32B 7/13 0/44 26/52 1/10 2/11 50/61 31/2825 68/119 9/27 25/46 5/8 24/79 6/23 3/4 17/33 51/152 16/43 0/12 0/4 0/6

deepseek-

coder-

instruct

7B 10/13 0/46 29/55 0/10 0/13 35/67 9/2894 62/127 3/34 43/63 9/10 14/82 11/31 2/5 22/34 18/160 23/56 0/10 1/13 1/12

deepseek-

coder-

instruct

33B 12/13 0/47 43/58 4/10 0/14 66/68 52/2888 81/126 8/32 45/61 10/11 3/81 6/31 2/4 19/34 6/161 23/50 0/14 0/11 1/13

starcoder-

instruct
15B 8/12 0/46 24/54 2/7 3/10 36/51 10/2887 67/124 12/26 1/63 6/8 4/74 7/27 1/4 20/34 6/149 23/49 0/12 0/9 1/10

Table 8. Proportion of Veri�cation Failures Caused by Syntax Errors

1 Denominator represents the total number of failures.

Appendix C. Example Speci�cations in FM-ALPACA and FM-BENCH

The examples of the �ve formal speci�cation languages are shown in Figure 4.

Figure 4. Formal Speci�cation Languages in FM-bench
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Appendix D. Collected Repositories

We listed the repositories that were collected for data construction in the following. Note that one can easily add more repositories into FM-ALPACA and FM-

BENCH.

For ACSL:

https://github.com/manavpatnaik/frama-c-problems

https://github.com/fraunhoferfokus/acsl-by-example

For TLA+:

https://github.com/tlaplus/Examples

For Lean4:

https://github.com/leanprover/lean4

For Coq:

https://github.com/coq/coq

For Dafny:

https://github.com/vladstejeroiu/Dafny-programs

Appendix E. Complete Evaluation Result

The Pass@1 and Pass@5 are shown in Table 9. It is a completed version of Table 3.

Table 9. Full Experiment Results on Pass@1 and Pass@5
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Appendix F. Prompt Design

We listed the prompts that are used for data preparation and inference in the following. For data preparation, as shown in Figure 5, to generate

descriptions for the given proof segments, the prompt template consists of �ve parts: (1) Role description, (2) Domain knowledge of TLA+, (3) Task

description, (4) Few-shot examples (we show one example in the �gure, while three-shots were used in RQ2), (5) The proof or proof segment to be

summarized.

For the inference, for each task, we designed �ve di�erent instructions to avoid over�tting. The prompts for each task are shown in Figure 6 ∼ Figure 10.

For each task, we �rst randomly choose one instruction and concat the inputs.

Figure 5. Prompt for generating TLA+ description. The prompt templates for other formal speci�cation

languages are in the same structure.
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Figure 6. Prompt for SegGen Task.

Figure 7. Prompt for ProofGen Task.

Figure 8. Prompt for ProofComplete Task.
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Figure 9. Prompt for ProofIn�ll Task.

Figure 10. Prompt for Code2Proof Task.

Footnotes

1 For ease of expression, we generally refer to veri�able formal proofs and checkable models as “proofs” for the sake of presentation simpli�cation.

2 https://mir.�.muni.cz/MREC/
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