PREPRINT

Qeios

18 February 2025, Preprint vi - CC-BY 4.0

Research Article

From Informal to Formal — Incorporating and Evaluating
LLMs on Natural Language Requirements to Verifiable Formal
Proofs

Jialun Cao?, Yaojie Lu?

1. Hong Kong University of Science and Technology, Hong Kong; 2. Institute of Software, Beijing, China

The research in Al-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical
competitions like IMO and have made significant progress. However, these studies intertwined multiple skills simultaneously—problem-solving,
reasoning, and writing formal specifications—making it hard to precisely identify the LLMs’ strengths and weaknesses in each task. This paper focuses
on formal verification, an immediate application scenario of formal reasoning, and breaks it down into sub-tasks. We constructed 18k high-quality
instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six tasks by distilling gpt-40
and evaluated against ten open-sourced LLMs, including recent popular DeepSeek-R1. We found that LLMs are good at writing proof segments when
given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most.
Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding capabilities. Fine-tuned models are

released to facilitate subsequent studies at https://huggingface.co/fm-universe.

1. Introduction

From Informal to Formal
!

Requirement

Informal Proof/Model in natural language

Verifiable Formal Proof/Model in formal specification

H Implements a binary search.

Given a sorted sequence and a target
value, returns the index of the target

i Start by modeling the algorithm’s behavior in a formal

Reasomng specification language, which involves defining

vanables like low and high, and detailing the search
i process and update conditions for these variables.
{ Next, specify the essential properties (i.e., accurate
! target index retrieval or correct non-existence
{ confirmation) for validation. |

EXTOS Integers, Sequences, TLAPS
CONSTANT Vatues
ASSME == Values \subseteq Int

== (55 \in SeqlVolues)
WAL, J \in Lten(ss

n
10 = sl =< s I\ NOHIGED << seq, val >

v, low, high, result, pe N wOwGED vars
seq, val, lov, high, result, pc >

seq \in Sortedseas /\ vl \in Volues
A o = 1A\ high eq)

I\ resutt = 0 A\ pe = o

Informal Implementation

i Problem solving
Informal Proof/Model Segment

Formal Proof/Model Segment

Start by setting low and high pointers at (in natural language) Formal Specification (in formal specification)
the beginning and end of the sequence. | Define a set that contains all sequences of integers Writing s gs == {ss \in Seq(Values) :

: \A i, 3 \in 1..len
Repeatedly adjust them until the target ; that are sorted in non-decreasing order. (32'5) o (saia) = 21310}

is found or return 0 if not found.

Init == /\ seq \in SortedSeas
A\ val \in Valves

é | Declare the initial state of the system. Initialize

| variables Jow and high pointing to the beginning and ‘

end indices of the sequence. ...

Executable Implementation (Code)

= A pc =
N IF Tow =< high /\ resutt = o

def bmary searchtarr target):

‘ Define the transition action. It calculates the middle

From Requirement to Implementation

w 1\2 luw c il i i pace limitations
T (IW Mgh) // 2 . index of low and high, and retrieves the value of »
if arr[mid] == targ 7\ UNCHANGED << low, high, result >>

return mic
elif arr[mid] < target:
low = mid + 1

\ UNCHANGED << seq, val >>

. middle index. ...

else:
high = mid - 1
return @

Relation: Formal proof verifies that code meets its specified requirements mathematically.

Formal Proof/Model Generation
Defines precise system behaviors formally.

Code Generation
Convert designs into executable code.

Figure 1. The Illustration of Formal Proof Generation and Its Relation with Code Generation.

As Al-based formal mathematical reasoning reached an inflection pointlll, significant attention and progress in this field have been observed.
AlphaProofl2] achieved silver medal level in the International Mathematical Olympiad (IMO), AlphaGeometry[3l specialized in proving Euclidean geometry
theorems. As reported, the number of publications in this field nearly doubled in 2023, indicating an unstoppable growth trend[4l As Fields Medalist
Terence Tao imagined, “In the future, instead of typing up our proofs, we would explain them to some GPT” (5],

However, most current benchmarks cannot precisely reflect the capability to convert informal proofs or requirements in natural language into formal

proofs. Most of these benchmarks take mathematical problems[2I31L6] or theorems to be solved[ZI8119] a5 input, and informal or formal proofs (or parts of

proofs) as output. However, these end-to-end benchmarks assess multiple capabilities (e.g., problem-solving, mathematical reasoning, formal

geios.com doi.org/10.32388/MLAOTG

https://huggingface.co/fm-universe
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

specification writing) in an intertwined manner, making it difficult to isolate and observe LLMs’ true capabilities in writing formal proofs or models for
verification.

Therefore, we break down the process from informal requirements to formal verifiable proof, as shown in Figure 1. Inspired by the code generation (shown
in blue) which translates a description of implementation into executable codel20l1l the formal reasoning process (shown in green) can be seen as
translating an informal requirement into a verifiable formal proof or checkable formal model®. Particularly, we decompose this process and formulate six
tasks (Figure 2). By doing so, the intertwined capabilities can be separated and individually assessed, providing a clearer understanding of LLMs’ strengths

and weaknesses in each task.

Scope and Targets — We focus on formal verificationmlumma because it is an immediate application scenario of formal mathematical reasoning and the
correctness of the output can be verified mechanically. In this paper, we mainly explore four research questions (RQs):

RQ1. How well do LLMs perform in various formal verification tasks? After decomposing the formal verification task into subtasks, we explore LLMs’ initial
performance in these tasks with zero-shot and few-shot, investigating the strengths and weaknesses that vary between LLMs and tasks.

RQ2. Do LLMs show variability in their capability across different formal specification languages? When mathematicians and proof engineers consider using
LLMs to assist in formal verification, they often face uncertainty about which formal specification language is best supported by LLMs. This RQ is designed

to provide hints on it.

RQ3. Can fine-tuning improve LLMs’ performance in formal verification? Although recent efforts have been made to fine-tune models26ll7], these LLMs are
typically fine-tuned with single formal languages instead of multi-lingual (e.g., combining Coq, Lean, etc.)lL. Therefore, we instruction fine-tuned2”1

[18] three base LLMs to see whether our constructed fine-tuning dataset FM-ALPACA could improve their capability in formal verification tasks.

RQ4. Can fine-tuning with formal verification data benefit other related tasks (mathematics, reasoning, code)? As recent works have shown LLMs’ potential
transferability of skills21 we thus extend our study to see if models fine-tuned on formal data could show enhanced capabilities in mathematics,
reasoning, and coding.

To facilitate the study, we constructed 18k high-quality instruction-response pairs across five formal specification languages (i.e., Coq, Lean, Dafny, ACSL,
and TLA+) in six formal-verification-related tasks by distilling gpt-40 inspired by prior work[1611201[211 then split them into 14k instruction fine-tuning
data (FM-ALPACA) and 4k benchmarking data (FM-BENCH). In particular, we provide executable contexts for all these formal specifications and automated
validation scripts to validate the correctness of the generated formal proofs inspired from the prior work’s artifact preparation22l, Finally, we release the

fine-tuned LLMs based on three base models at https://huggingface.co/fm-universe.

Interestingly, there has been recent discussion on the topic of domain transferlll, particularly the transfer of knowledge from other domains such as
coding and reasoning to formal domains in order to increase LLMs’ reliabilityl23l, and the anticipated potential of Al in enhancing formal verification
processes to support mathematical proofs[ﬂm*-l. Our experimental results could potentially provide empirical support for these hypotheses or offer

directions for further experimental inquiries.

The contribution of this paper includes:

= Problem Formulation: We decompose the formal verification process into six essential tasks. By doing so, the intertwined capabilities can be separated
and individually assessed, providing a clearer understanding of LLMs’ strengths and weaknesses in each task.

= Dataset and Benchmark: We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (i.e., Coq,
Leans, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling gpt-4o. They are split into a 14k+ fine-tuning dataset FM-ALPACA
and a 4k benchmark FM-BENCH.

= Executable context and automated validation mechanism: We provide a Docker container equipped with necessary scripts to facilitate the evaluation of
FM-BENCH, significantly lowering the entry barrier for this scenario and making subsequent contributions easier.

= Insight and Vision: We fine-tuned several models on FM-ALPACA and observed promising benefits to not only the formal verification tasks, but also
mathematics, reasoning, and coding. Our experimental results provide empirical support for the potential of LLMs’ capability transfer and hope to shed

some light on future research.

2. Task Formulation

Figure 2 illustrates the six sub-tasks. We elaborate on them in detail as follows.

geios.com doi.org/10.32388/MLAOTG

https://huggingface.co/fm-universe
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

Task 1. Requirement Analysis (abbrev. RegAna). Requirement analysisf—zf'l@lamﬁl is a critical and long-standing research area in software engineering. It
facilitates collecting, identifying, categorizing and modeling the users’ needs and expectations using various techniques22l301311(321[331[34] n this
paper, the requirements are the descriptions in natural language (English)[33-1 that details the requirements of the verification/modeling goal and an
overall description of the proofs/models. The task is to analyze and break down the final goal into detailed steps described in natural language. The natural
language used in this paper is English.

Task 2. Full Proof Generation (abbrev. ProofGen). This task formalizes a requirement in natural language into verifiable proofs or models written in formal
specification languages, similar task formulation to existing works[331[241(361,

Task 3. Proof Segment Generation (abbrev. SegGen). Unlike ProofGen, which requires generating complete proofs/models, SegGen provides more detailed
descriptions in natural language and requires LLMs to write less. Given a text description articulating how to implement the proofs/modeling, the task
outputs a segment written in the formal specification that serves as a component in the complete proof/model. This task formulation is similar to prior

workl261371(381 and similar to the formulation of code generation[32l[401(81(6]

Task 4. Proof Completion (abbrev. ProofComplete). Similar to code completionl41ll621431144] proofComplete suggests the suffix of the given prefix, similar
to prior workl42], Note that in order to prevent LLMs from deviating from the original verification goal, we also provide the requirement in our evaluation,
although it is not compulsory for this task formulation.

Task 5. Proof InFilling (abbrev. ProofInfill). Given a proof/model with a mask in the middle, the task requires LLMs to fill proper formal specifications so
that the completed proofs/models can pass the verifier. This formulation is the same as code infillingu‘ﬁl‘ Also, similar to ProofComplete, we provide the
requirement in our evaluation during the infilling to prevent LLMs from deviating from the original verification goal.

Task 6. Proof Generation from Code (abbrev. Code2Proof). In addition to generating formal specifications from natural languages, formal specifications can
also be generated from code if the verification goal is the property of a given program. In this paper, we focus mainly on specifications in form of code
annotationsl47148] expressing specifications (e.g., pre-/post-condition, loop invariants) that help one to verify that (part of) a program satisfies certain
properties. The task takes the code with properties to be verified as input and outputs the code with generated annotated formal specifications. Similar task

formulation can be found in recent works[421[501,

Requirement with Informal Specifica Informal Proof/Model Segment Formal Proof/Model Verifiable Formal Proof/Model
i Implements a binary search. o Define a set that contains all sequences of integers ' ‘ Sortadses = {as \in s;«\\::\:es s £B0S Integers, Sequencs, TS ‘
: | that are sorted in non-decreasing order. i ‘ (1<) = (ssli) =< ss(iD} ASSUME ValAssunp == Values \subseteq Int

Sortedseas == (55 \in Sea(Values) :
101t == /A seq \in Sortedseqs VA1, \in 1..Len(ss

To verify a binary search, it starts by
modeling the algorithm’s behavior in a
formal specification language, specify
the essential properties (i.e., accurate
target index retrieval or correct non-
existence confirmation) for validation.

Declare the initial state of the system. Initialize
variables Jow and high pointing to the beginning and
end indices of the sequence. ... E

L) = (ssl4) =< ssl3))

e Veri*y by
N ad seq, val, low, high, result, pc .
S, Yo v, rett, s vierifier/

hack

high /\ result = 0
\LET o0 + high) \div 2 0

\» Oni
EUSE /\ pe’
/N BIGHANGED << ow, high, result >>

I\ INCHNGED << seq, val >>

T @)

== pe = "Done” /\ INCHANGED vars
\/ Tersinating

Tnit A 1 iext]_uars
vors thex ‘E/

Executable Implementation (Code)

def binary_search(arr, target):
Tow, high = 0, len{arr) - 1
while low <= high:

= +

mi ow + high) // 2

if arrmid] = target:
return mid

elif arrimid] < target:
Tow = mid + 1

e

1se:
high = mid - 1
return 0

Incomplete Formal Proof/Model

H e Currently only support ACSL
§ o Requirement Analysis e Full Proof i e Proof i o Proof C i e Proof Infilling e Proof/Model Generation from 5
§ (RegAna) (ProofGen) (SegGen) (ProofComp) (Proofinfill) Code (Code2Proof) f

Figure 2. Six tasks towards Informal to Formal Verification

3. Data Construction

3.1. Formal Specification Language Selection

In this study, we consider five formal specification languages that can be used for formal verification, including Coglsll, Dafnylf'll, Leans[331 AcSL
(ANSI/ISO C Specification)l47] and TLA+[541[55] We selected them in order to cover various verification paradigms (i.e., theorem proving and model

checking) and verification scenarios (e.g., mathematical reasoning and program verification).

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

First, for interactive theorem provers which are suitable for developing rigorous mathematical proofs, we consider Coqlf'll and Lean4!33] because Coq has
been extensively used in academia and research for proving mathematical theorems and in formal verification of software for a long history, while Lean4
garnered considerable attention from the mathematical community[261[241(36] recently. Second, for programming languages with built-in specification, we
consider Dafny[ﬁ1 and ACSLL47157] ecause they seamlessly integrate specifications (e.g., pre-/post-conditions, loop invariants) within the code, ensuring
the correctness through embedded assertions and conditions. Lastly, for model checking[ﬁﬂi‘ﬂ, we consider TLA+[34] since it is a representative math-

based formal language for modeling algorithms and programs such as concurrent and distributed systems.

3.2. Data Preparation

The workflow of data preparation for FM-ALPACA and FM-BENCH is illustrated in Figure 3. The workflow begins with the data collection, where formal proofs
in the desired formal specification languages and related configurations and dependencies are gathered from open-source repositories in Github. Then,
formal proofs are extracted from the collected repositories. Next, the proofs go through the data quality assurance check by execution, the proofs that
cannot be verified successfully are filtered out. The remaining ones are split into segments (e.g., definition of functions or conditions).

Given the impracticality of manually writing descriptions for all the collected formal proofs, we leveraged distilled GPT4[69] to generate high-quality
informal proof descriptions via meticulous prompting. This alternative is well-established and frequently employed in prior literaturel221(16](20](61].
Specifically, for each formal specification language, we designated the model as an expert in that particular language, equipping it with comprehensive
domain knowledge about the language’s specifications, essential grammatical cues, and three-shot examples featuring proof segments in the formal
language as inputs and natural language descriptions as outputs. This approach ensures that the collected descriptions are of high quality and well-
organized. It’s important to note that we did not generate descriptions for proof segments shorter than two lines (such as package imports or constant

definitions) because their meaning is self-explained, with the exception of ACSL, whose proof segments are typically 1-2 lines.

After the descriptions for both full and segment proofs were prepared, we then prepared the data pairs for each task as shown in Task-wise Data Pairing in
Figure 3. Note that for Task 4, i.e., Proof Completion, to prepare the incomplete formal proof, we randomly choose a line number and delete the lines in the
proof after the line. For Task 5, i.e., Proof Infill, we randomly choose two line numbers and mask the lines between them. In case the remaining lines of

proof cannot provide sufficient information for the proof generation, we also provide the informal proof for these two tasks.

Extract 5 |t G at Constructed data
= xtra g pli enerate =
= segment - £
Open-source Proof/Model cgmen ‘ Informal Proof fm-alpaca
Repositories o Segment fm-alpaca
: for finetuning
Code H
% (if any) Generate =
Configuration & — o (T
. Informal
Dependeries = | e

Task-wise Data Pairing

Task 1. Requirement Analysis Task 2. Proof Generation Task 3. Segment Generation

-2 B-B -

Informal Informal Proof Informal Complete Informal Proof
Segment Proof Formal Proof Proof Segment Segment
Task 4. Proof Completion Task 5. Proof Infill T6. Code 2 Proof
d (P
" — &8
Informal Incomplete Complete Informal Incomplete Complete c°de Code with

Proof Formal Proof — Formal Proof Proof Formal Proof ~ Formal Proof Brcct

Figure 3. The Illustration of Data Preparation.

After pairing the instruction-response for different tasks, we manually designed five task instructions for each task and randomly assigned one for each

paired data to increase instruction diversity and avoid overfitting to certain instructionst621631[64]1

3.3. Data Statistics

The specification-language-wise and task-wise statistics are shown in Table 1 and Table 2. In particular, Table 1 presents a detailed breakdown of the

number of proofs and segments across five specification languages. Note that we split the prepared data for all the tasks and specification languages into

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

an 8:2 ratio, i.e., 80% for fine-tuning, named FM-ALPACA, 20% for benchmarking, named FM-BENCH, and show the separate statistics. In particular, there
are 4k+ verifiable proofs in total, with 249 ~ 2k proofs for each language. These proofs were split into 18k+ proof segments, with an average of 3.6k
segments for each language. The reason why the ratio of segments in FM-ALPACA and FM-BENCH is slightly less than 8:2 is that the train-test split was

applied to proofs, while the number of split segments in each proof varies.

Num of Proofs Num of Segments
Total FM-ALPACA FM-BENCH Total FM-ALPACA FM-BENCH

Coq 2126 1683 443 14939 11638 3301
Leans 1163 919 244 1578 1261 317
ACSL 544 426 18 765 598 167
Dafny 249 206 43 417 348 69
TLA+ 256 199 57 594 476 18

Total 4338 3433 905 18293 14321 3972
Average 868 687 181 3659 2864 794

Table 1. Formal-Specification-Language-wise Statistics of Formal Verification Data

Table 2 shows the task-wise statistics. There are 18k instructions across six tasks, with an average of 3k instructions for each task. After splitting the train-
test set, FM-ALPACA contains 14k, and FM-BENCH has nearly 4k instructions. It is clear that the number of instructions for the task Segment Proof
Generation (SegGen) is far more than that for Requirement Analysis (ReqAna) and Full Proof Generation (ProofGen) because one full proof can be split into
numerous pieces of proof segments, and one proof can contribute to only one instruction for ReqAna and ProofGen. Note that the number of RegAna (627)

and ProofGen (700) is unequal because we filtered out the instructions with more than 2048 tokens considering the context limits.

Task Total FM-ALPACA FM-BENCH
1 Requirement Analysis 627 496 131
2 Full Proof Generation 700 557 143
3 Segment Proof Generation 14843 11597 3246
4 Proof Complete 658 520 138
5 Proof Infill 1439 1146 293
6 Code2Proof 70 56 14
Total 18337 14372 3965
Average 3056 2395 661

Table 2. Task-wise Statistics of Formal Verification Data

3.4. Validation Mechanism

For the tasks whose outputs are written in formal specification languages, we verify the full proofs against the corresponding verifiers, i.e., Coq, Dafny,
Leans use their own proving environment; formal specification written in TLA+ can be checked by TLCl85); ¢ programs with ACSL specifications can be
checked by Frama-Cl57166], Also, for the proof segments that cannot be verified independently, for each extracted segment, we prepared a proof template
with a placeholder during data preparation. Whenever a generated segment is to be verified, we replace the placeholder in the template with the segment

and verify the completed formal proof.

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

For the task whose outputs are written in natural language (i.e., RegAna), we calculate the Bleu scorel87] between the descriptions in FM-BENCH with the

predicted outputs.
LLMs si Proof Generation Proof Segment Generation ProofComplete ProofInfill Cd2Prf A
"€ TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny TLA Coq Lean Dafny ACSL ACSL ¢
‘W/o Fine-tuning

Tlama3. 1-instruct 8B | 000 426 1.69 000 1429 | 143 119 606 833 000 000 357 556 2857|000 485 7.69 1333 5000 | 7143 11.11

Ilama3.1-instruct 70B | 7.69 638 10.17 2000 7.4 [22.86 4.86 13.64 1111 3968 | 2727 3.57 13.89 2857 | 0.00 727 2462 1333 2143 2143 | 1525

qwen2.5-instruct 7B | 000 213 508 000 2143 | 143 105 758 556 159 000 13.10 1944 2857 | 0.00 545 1846 1333 5000 57.14 | 12.57

qwen2.5-instruct 72B | 7.69 638 1864 2000 2143|1286 329 1212 2500 1270 | 000 1190 3333 2857 000 970 2462 2667 3571 5714|1839

qwen2.5-coder-instruct 7B 000 213 678 000 000 | 28 214 1212 1111 3.7 000 476 1111 1429 | 000 3.64 2308 20.00 5000 57.14 | 11.22

qwen2.5-coder-instruct 32B| 000 638 1186 000 2143|1286 407 985 2500 2698 | 2727 595 36.11 4286 294 7.88 33.85 2000 7143 5714 | 21.19

starcoder-instruct 15B | 7.69 2.13 847 3000 2857 |27.14 197 606 2778 000 2727 1429 30.56 4286 | 0.00 1152 27.69 2000 3571 | 2857 | 18.27

deepseek-coder-instruct-v1.5 7B‘ 000 213 678 000 7.14| 429 173 379 556 000 909 238 13.89 2857 | 000 3.03 1385 3333 7.14 1429 | 7.85

deepseek-coder-instruct 33B | 0.00 0.00 1.69 0.00 000 | 2.8 194 455 11.11 3.17 1 000 3.57 13.89 4286 000 242 23.08 6.67 21.43 714 | 732
deepseek-R1 671B | 1538 851 2542 30 3571|2286 107 21.21 2222 4921|4545 17.86 36.11 2857 | 588 13.33 40 6.67 4286 ‘ 64.29 | 27.11
Task-wise Average | 8.65 | 10.61 | 18.44 | 17.38 | 4357
W Fine-tuning
llama3.1-fma 8B | 0.00 638 847 20.00 57.14 | 4143 2998 21.97 2500 9048 ‘ 3636 833 11.11 2857 | 000 0.00 7.69 0.00 2143 ‘ 2143 | 21.79
llama3.1-ultrachat 8B | 0.00 0.00 1.69 0.00 714 | 0.00 000 3.79 0.00 0.00 000 595 1389 1429 000 485 923 0.00 1429 0.00 | 3.76
1llama3.1-ultrachat-fma B | 000 851 10.17 3000 5000|4143 3572 2955 3333 9524 18.18 833 1111 2857 294 000 7.69 000 2857 3571 | 23.75

llama3.1-tulu-fma 8B | 0.00 426 11.86 30.00 3571 | 4286 36.71 2727 36.11 9841 1818 1071 11.11 4286 294 242 615 000 3571 50.00 | 25.16
qwen2.5-fma 7B | 0.00 426 11.86 10.00 7143|3857 2795 2727 2222 8730 2727 9.52 1389 2857 000 000 769 000 3571 2143 | 2225
gqwen2.5-coder-fma 7B | 0.00 638 18.64 20.00 3571 | 4429 3650 3409 3333 9841 3636 952 1667 2857 588 182 1385 1333 4286 50.00 | 27.31
deepseek-coder-v1.5-fma 7B | 0.00 213 1695 000 2143|3429 2530 31.06 2500 84133636 833 1944 2857 | 000 182 7.69 6.67 21.43 3571 | 20.32

\
8B |
llama3.1-tulu 8B | 000 000 1.69 000 7.14| 000 071 606 000 000 000 595 833 2857|000 182 1077 0.00 57.14 50.00 | 891

Task-wise Average 12721 | 33.64 1 | 17.92 931 22.92 |

Table 3. RQ1-3: Pass@1 Accuracy of LLMs’ Performance Across Formal Verification Task and Formal Specification Languages with (w/) and without (w/o) fine-

tuning. The greener, the better.

* -fma: fine-tuned with FM-ALPACA.

* —ultrachat: fine-tuned with UltraChat.

* ~tulu: fine-tuned with Tulu3.

* -ultrachat-fma: fine-tuned with both UltraChat and FM-ALPACA.

* -tulu-fma: fine-tuned with both Tulu3 and FM-ALPACA.

LLMs Size TLA Coq Lean Dafny ACSL
w/o fine-tune
llama3.1-instruct 8B | 033 032 04 047 034
1lama3.1-instruct 70B | 0.38 031 043 05 0.37
gwen2.5-instruct 7B | 034 029 035 041 0.26
qwen2.5-instruct 72B | 035 031 036 036 024
qwen2.5-coder-instruct 7B | 037 034 042 044 0.31
gwen?2.5-coder-instruct 32B | 034 031 036 041 0.26
starcoder-instruct 15B | 0.39 0.36 0.46 0.33 0.37
deepseek-coder-instruct-v1.5 7B | 042 037 047 055 043
deepseek-coder-instruct 33B | 043 036 0.5 0.54 0.46
deepseek-R1 671B | 032 027 033 027 028
Average | 0.38
w/ fine-tune

llama3.1-fma 8B | 053 028 058 067 0.5

1lama3.1-ultrachat 8B | 044 034 047 057 0.5

llama3.1-ultrachat-fma 8B | 0.55 042 0.62 0.65 0.68
llama3.1-tulu 8B | 044 038 049 052 047
llama3.1-tulu-fma 8B | 0.64 041 0.64 0.7 0.76
qwen2.5-fma 7B | 057 024 061 063 0.57
gwen2.5-coder-fma 7B | 0.59 031 0.62 0.75 0.75
deepseek-coder-v1.5-fma 7B | 0.51 036 0.55 0.64 0.46

Average | 0.54 (41% 1)

Table 4. Evaluation on Requirement Analysis

* -fma: fine-tuned with FM-ALPACA.

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

4. Experiments

4.1. Experiment Setup

Studied LLMs. We selected ten LLMs as baselines without fine-tuning, including llama3.1—instruct—8B/7oB[@], qwenz.5—instruct—7B/72B[99-], qwen2.5-
coder-instruct-7B/-32Bl72], starcoder-instruct-15Bl72], deepseek-coder-instruct-7B-v1.5, deepseek-coder-instruct-33B72), and deepseek-Ri1l73], Note

that we avoid evaluating the GPT-series LLMs by OpenAl because the descriptions in FM-BENCH were generated by GPT-40, making the evaluation fairer.

Fine-tuning. Instruction fine-tuning{271181(201(74] aims to improve a model’s ability to effectively respond to human instructions and has shown strong
experimental potential in model enhancement. We select llama3.1-8Bl%8], qwen2.5-7Bl%2], and deepseek-coder-7B-v1.5[72! as base models for fine-
tuning. We selected these three models because they have shown promising capability in tasks such as coding, mathematics, and reasoning, and fine-
tuning models in their scale is relatively affordable compared with fine-tuning larger scale models. We fine-tuned the three aforementioned base models
over three epochs using a learning rate 2e-5, a warm-up ratio of 0.04, a batch size of 512, and a cosine learning rate scheduler.

Baseline Fine-tuning Datasets: To distinguish whether the capability improvement is simply because more instruction tuning is applied, we also include two
commonly used fine-tuning datasets for comparison. We select UltraChat(22] and Tulu-v3!73] as baseline fine-tuning datasets for their popularity. In
particular, UltraChat is a large-scale dataset of instructional conversations that contains 1.5 million high-quality multi-turn dialogues and covers a wide
range of topics and instructions. Tulu-v3[73] embraces new data that is either carefully manually curated for quality or generated from GPT models. It is an
enhancement of its previous versions74161] focusing more on core skills of knowledge recall, reasoning, mathematics, coding, instruction following,
general chat, and safety.

Benchmarks for Related Capabilities (RQ4). To comprehensively evaluate the model’s capabilities, we tested the fine-tuned models on a series of

benchmarks: Math!78} and GSM-8K(7Z! for mathematical reasoning, BBHL78] for general reasoning, HumanEvall22! and MBPPL79] for coding,

Inference Strategies. We adopt different settings for different RQs. In particular, We use (1) the greedy sampling strategy to generate one single greedy
sample with a temperature of 0.0 and calculate Pass@1, and (2) nucleus sampling[g—o], where five solution samples were randomly generated with a
temperature of 0.2 for RQ1 and RQ2. We also consider different in-context learning strategies, including zero-shot and few-shot (we used 3-shot in the
experiment). For RQ3, we use a zero-shot greedy search with a temperature of 0.0 and a few-shot nuclear search with a temperature of 0.2 for a fair

comparison.

Experiment Environment. The fine-tuning experiment was conducted on 32 Nvidia A100-40G GPUs, while inference was on a single Nvidia A100-80G GPU

with vLLM!E],

4.2. RQ1. Basic Performance across Formal Specification Tasks

To understand the current LLMs’ performance in six tasks, we evaluate 8 LLMs against FM-BENCH with model size ranges from 7B to 72B. The upper part of

Table 3 and the upper part of Table 4 show LLMs’ basic performance without fine-tuning.

Task-wise: LLMs perform the best in generating proof from code (Code2Proof), with an average of 43.57% Pass@1, followed by ProofComplete (18.44%)
and ProofInfill (17.38%). In contrast, LLMs fall short in generating both the entire formal proof (8.65%) and the proof segments (10.61%). We analyzed the
failures and found that syntax errors account for a large proportion, with 12.15% failures caused by syntax errors (Appendix B). The observation echoes the
motivation of prior work!26] and is reasonable due to the grammar difference between most formal specification languages and other programming
languages like Python. Regarding requirement analysis, as shown in the upper part of Table 4, the Bleu scores between the ground-truth description and
LLM-generated ones range from 0.24 to 0.55.

LLM-wise: Without fine-tuning, DeepSeek-R1 achieved the best average (27.11%), followed by qwen2.5-coder-instruct-32B (21.19%).

Model Size: Larger LLMs generally perform better than smaller LLMs. For example, llama3.1-8B only achieved 1.43% in generating TLA+ segments, while
llama3.1-70B boosts to 22.86% in the same task. However, there are several exceptions worth noticing, especially for ProofInfill and Code2Proof. For
example, llama-3.1-8B achieved 50% in ProofInfill (ACSL), yet the performance drops to 21.43% using the 70B model. Similar observations can be found in
qwen2.5-instruct. The decrease in performance is inherently due to the fine-tuning strategy of these instruction models: they are trained to excel in
generating rather than filling in the blanks[4), Also, we conducted a more detailed examination of generated segments and observed that larger LLMs tend
to fill in the proof segments that not only look more plausibly correct and well-organized but also include extra content. The additional content, yet, is either
redundant, as it repeats information that appears in the subsequent proof, or is incomplete. Promisingly, recent model developers have noticed such

conundrums and refined their fine-tuning strategy for fill-in-the-middle tasks(72),

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

TLA Coq Lean Dafny ACSL
LLMs Size Zero-shot Few-Shot Zero-shot Few-Shot Zero-shot Few-Shot Zero-shot Few-Shot Zero-shot Few-Shot
Pass@1 Pass@5 | Pass@1 | Pass@l Pass@5 | Pass@l | Pass@l Pass@5 | Pass@l | Pass@l Pass@5 | Pass@l | Pass@l Pass@5 | Pass@1
1lama3.1-instruct 8B 143 4.29 11.43 1.19 1.90 10.12 6.06 833 9.85 8.33 1111 19.44 0.00 33177} 38.10
1lama3.1-instruct 70B 22.86 27.14 38.57 4.86 6.01 3.46 13.64 17.42 1591 11.11 13.89 16.67 39.68 5238 76.19
qwen2.5-instruct 7B 143 2.86 5.71 1.05 139 12.80 7.58 9.09 9.85 5.56 5.56 13.89 1.59 3.17 66.67
qwen2.5-instruct 72B 12.86 17.14 24.29 3.29 3.80 21.05 12.12 14.39 19.70 25.00 25.00 25.00 12.70 15.87 90.48
qwen2.5-coder-instruct 7B 2.86 571 12.86 2.14 2.99 14.30 12.12 13.64 18.94 11.11 Ll 19.44 3.17 4.76 87.30
qwen2.5-coder-instruct 32B 12.86 15.71 30.00 4.07 4.96 18.40 9.85 15.15 13.64 25.00 27.78 30.56 26.98 SEIE) 96.83
deepseek-coder-instruct-vl.5 | 7B 429 8.57 4.29 1273 2.82 8.79 3.79 5.30 17.42 5.56 5.56 19.44 0.00 4.76 60.32
deepseek-coder-instruct 33B 2.86 2.86 18.57 1.94 3.23 11.27 4.55 6.82 2273 11.11 13.89 2222 3.17 25.40 92.06
Language-wise Average | 12.14 | 6.15 | 12.00 | 15.97 | 34.92
Average ‘ 7.68 10.54 1822 2.53 339 12.52 8.71 11.27 16.01 12.85 14.24 20.83 10.01 17.86 75.99
Improvement Ratio ‘ 37.15%1 99.98%71 33.70%t 360.58%% 29.31%1 54.37%1 10.82%t 51.33%% 63.64%1 532.83%%

Table 5. RQ2: Language-wise LLMs’ Performance. Pass@1 and Pass@5 Accuracy in Generating Proof Segments Across Formal Specification Languages Under

Zero/Few-shot without fine-tuning.

* The improvement ratios shown in “Pass@5” column are calculated by comparing with the scores in Pass@1, and the ratios shown in “Few-shot” column are

calculated by comparing with the scores in Pass@5.

Fine-tuning | MATH || Reasoning || Coding | Average
Dataset | MATH | GSM8K | Average || bbh | HumanEval | MBPP | Average || &
ultrachat 17.54 6133 39.44 62.64 19.51 364 27.96 39.48

UltraChat + fma | 16.16 7.87%] | 62.32 1.61% 1 | 3924 049%| | 6214 0.80%| || 3L71 6253%1 | 352 330%| |3346 19.67%1 || 4151 514% 1
tulu3 2736 75.82 51.59 62.47 64.02 488 56.41 55.01

tulu3 + fma 2948 775% 1 | 7544 050%| | 5246 1.69%1 || 63.16 110% 1 | 64.63 095% 1 |494 123% 1| 5702 1.07%1 || 5576 137% 1

Table 6. RQ4: Capability Migration from FM-ALPACA to Math, Reasoning, and Coding.

4.3. RQ2. Formal Specification Languages-wise Capability

Table 5 shows the LLMs’ performance across formal specification languages in the task of generating proof segments (SegGen). This task accounts for the
most instructions and serves as the basic capability for other proof generation tasks. We can see that LLMs perform the best in ACSL (average: 34.92%),
followed by Dafny (15.97%) while performing unsatisfactorily in other formal specification languages. The observation is reasonable because the syntax of
ACSL is basically an annotation of C language, while Dafny shares similar grammar as C# and Java. Thus, generating proof segments in ACSL and Dafny is

generally easier than generating other specification languages.

In addition, we explore whether increasing the attempts (1 — 5) with a higher temperature (0.0 —0.2) and in-context learning could bring about
improvement. The improvement ratios are shown in red in Table 5. The results of Pass@5 are better than those of Pass@1, with an average score increase
from 10.82% (Dafny) to 63.64% (ACSL) in different languages. Moreover, when using 3-shot, the performance increases dramatically, with 51.33% (Dafny)
to over five times (ACSL) improvement compared with zero-shot Pass@5. The results indicate the potential of in-context learning in generating correct

specification languages.

4.4 RQ3. Improvement by Fine-tuning

We further investigate whether FM-ALPACA could bring about improvement. The lower part of Table 3 and Table 4 shows the results. From Table 3,
dramatic improvements can be observed in generating full and segmental proofs after fine-tuning. Note that the model size of fine-tuned models is 7B
~ 8B, while the performance largely outperforms the 70B+ models without fine-tuning. Furthermore, after fine-tuning with formal data, the 7 ~ 8B fine-
tuned models can achieve comparable or slightly better performance than Deepseek-R1-671B, with 27.31% achieved by qwen2.5-coder-7B fine-tuned with FM-

ALPACA (R1-671B: 27.11%). It may suggest the possibility of distilling domain-specific small models for handier usage.

Task-wise: Improvements in generation tasks (i.e.,, ProofGen, SegGen, and ProofComplete) are substantial. ProofGen doubles the performance, and
SegGen more than triples. The dramatic increases happen in all models fine-tuned with FM-ALPACA in SegGen Task, from nearly all zeros to 29.98%
~ 90.48%. An increase of 41% can also be observed in Table 4. The experimental improvements make evident the effectiveness of fine-tuning in formal

verification tasks.

Yet, drops can be observed in fill-in-the-middle tasks (i.e., ProofInfill and Code2Proof). The results echo the observation made in RQ1 (Section 4.2), where
the large LLMs perform worse than small LLMs in fill-in-the-middle tasks. The results also indicate the necessity of adopting different fine-tuning

strategies other than instruction tuning only.

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

Fine-tuning Datasets: Take a closer look at the LLMs fine-tuned with general-purpose datasets (i.e., llama3.1-ultrachat and llama3.1-tulu) in Table 3, with
them only, no or opposite effects can be observed. The results indicate the complementarity of FM-ALPACA and existing general-purpose fine-tuning
datasets. Additionally, by combining with general-purpose datasets, the performance can be further improved (e.g., llama3.1-tulu-fma).

Comparison with Few-shot: Compared with the best results in Table 5 achieved by 3-shot, the results after fine-tuning (Table 3) still generally
outperform the 3-shot results. The results indicate that although in-context learning can improve LLMs’ performance, the enhancement is limited.
Further significant improvements still require fine-tuning with formal data. This may also suggest that in-context learning alone cannot adequately address

capability deficits in formal verification tasks but rather stem from a lack of knowledge.

4.5. RQ4. Capability Migration from Formal Verification to Related Tasks

Finally, we explore whether fine-tuning with FM-ALPACA could benefit related capabilities. Table 6 shows the results. The base model is llama3.1-8B, fine-
tuned under two base fine-tuned datasets with and without FM-ALPACA. On average, with FM-ALPACA, an increase of 1.37% to 5.15% can be observed.
Interestingly, a dramatic increase (62.53%) can be observed in HumanEval compared with the performance of the model that is only fine-tuned with

UltraChat. The experiment may indicate that feeding more formal data may improve LLMs’ coding, reasoning, and math capabilities.

5. Conclusion

This paper contributes a comprehensive assessment and formulation to understand LLMs’ capability in formal verification. We constructed 18k high-
quality instruction-response pairs across five formal specification languages in six tasks. The fine-tuned models, fine-tuning data, and the benchmark are

released to facilitate subsequent studies.

Limitations

This paper has two primary limitations that offer avenues for future research. First, the primary limitation of our work is that our benchmark relies on
model-generated data. While this approach effectively reduces manual efforts; it may introduce biases and data leakage issues in the dataset towards the
models that generated the data. To address this limitation, we use gpt-40 to generate the natural language descriptions, while during the evaluation, we
use other LLMs for evaluation. Second, another limitation of our work lies in the validation design. When creating ProofInfill and ProofComplete data, it is
possible that the properties to be verified or theorems to be proven are masked. If LLMs happened not to generate these properties/theorems, the
generated “proofs/models” could escape the verifier/checker, mistakenly labeling the output as correct. To avoid this scenario, we include the requirement

descriptions as part of the input, guiding LLMs to generate the necessary properties or theorems without omission.

Appendix A. Related Work

The formal specification datasets or benchmarks offer a standard, well-defined set of problems, providing a shared challenge that helps build a
community of practice among researchers. According to different verification techniques, the existing benchmarks mainly fall into two categories; we

discuss them separately.

A.1. Theorem Proving Datasets

Formal theorem proving represents theorems and proofs in a machine-verifiable format[82l, ensuring their correctness using rigorous logical rules. A
recent surveyl4l summarized the existing datasets for theorem proving. In particular, the informal benchmarks craft the proofs from various sources such
as ProofWiki, textbooks, and public corpus. NL-PSI83l first builds a natural language premise selection dataset source from ProofWiki. Similarly,
NaturalProofst® further incorporates data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it, NaturalProofs-
Genl8l contains around 14.5k theorems for informal proof generation. Moreover, MATCHI84] constructs over 180k statement-proof pairs for matching
using the MREC corpus?.

For formal datasets, a line of efforts focuses on extracting and cleaning theorems and proofs written in various specification languages (e.g., Coq, Isabelle,
Lean) from established formal libraries and verification projects. For example, LeanDojol”] extracts over 98k theorems and proofs with 130k premises
from Lean mathlibl83l, Besides extracting data from existing projects, several works manually annotate or formalize the problems in natural language. For
example, MiniF2FL861 manually formalizes 488 Olympiad-level problems across 4 proof systems and equally splits them into a validation set and a test set.

FIMOL87 and ProofNet!88] formalize the theorem statements of the International Mathematical Olympiad and undergraduate-level problems in Lean. In

geios.com doi.org/10.32388/MLAOTG

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

addition, datasets for Dafny also attract research contributions because industries like Amazon adopted Dafny to verify cryptographic libraries,

authorization protocols, a random number generator, and the Ethereum virtual machine. Dafny datasets such as CloverBench!42l and DafnyGym![82l,

A.2. Model checking datasets

Model checking is an automated technique used in computer science and formal methods to verify the correctness of systems, particularly those with finite
state spaces. It systematically checks whether a system’s model satisfies a given specification, usually expressed in formal specification languages. The

basic idea is to explore all possible system states to ensure the desired properties hold in every conceivable scenario.

Model checking benchmarks are less than that for theorem proving. Currently, there are few model-checking benchmarks for proving, while several
model-checking subjects are going with specific model-checking languages such as CMurphi[-QQ] and TLA+(%], In particular, CMurphi is a software tool
used to verify concurrent and distributed systems through explicit state enumeration. It implements the Murphi verification language, which allows users
to describe finite-state systems in a procedural style. The core principle behind CMurphi is to explore the state space of a system exhaustively to check for
violations of specified invariants or properties. Another example is TLA+ (Temporal Logic of Actions), a high-level language for modeling programs and

systems suitable for concurrent and distributed systems.

Appendix B. Proportion of Failures Caused by Syntax Error

We listed the proportions of failures caused by syntax errors for each LLM and each task in Table 8. We used a set of pre-defined keywords (summarized in
Table 7 to identify if a verification failure is caused by syntax errors. Specifically, we consider a failure caused by syntax error if its error message contains

at least one keyword in Table 7.

Language Keywords
1 Coq “Syntax Error:”
2 Leans “unexpected token ”, “unknown identifier”, “type mismatch”
3 ACSL “unexpected token”
4 Dafny “type errors detected”
5 TLA+ (kxparse Error***” “Unknown operator”

Table 7. Keywords for identifying syntax error raised by each language’s verifier.

geios.com doi.org/10.32388/MLAOTG 10

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

ProofGen SegGen ProofComplete ProofInfill Code2P
LLMs | Size
TLA | Coq | Lean |Dafny|ACSL| TLA Coq Lean |Dafny|ACSL | TLA| Coq | Lean |Dafny| TLA | Coq | Lean |Dafny|ACSL ACSI
llama3.1-
8B | 0/13 | 1/45|33/58 | 0/10 | 1/12 | 43/69 | 746/2910 | 78/124 | 433 | 4/63 | 4/11 | 45/81 [16/34| 1/5 |16/34 | 44/157 [27/60| 0/13 | 1/7 0/4
instruct
llama3.1-
70B | 2/12 |0/44|38/53 | 1/8 | 1/13 | 43/54 | 71/2802 | 75/114 | 16/32 | 5/38 | 6/8 | 44/81|10/31| 1/5 |15/34|39/153|22/49| 0/13 | 2/11 3/1
instruct
qwen2.5-
7B |10/13 | 1/46 | 30/56 | 1/10 | 0/11 | 26/69 | 303/2914 | 53/122 | 5/34 | 6/62 | 9/11 | 35/73 | 8/29 | 1/5 |14/34|66/156| 31/53 | 0/13 | 4/7 3/6
instruct
qwen2.5-
72B | 7/12 |0/44| 25/48 | 1/8 | 9/11 | 47/61 | 40/2848 | 54/116 | 11/27 | 0/55 | 7/11 |35/74 | 8/24 | 1/5 |13/34 |59/149|20/49| o/11 | 0/9 1/6
instruct
qwen2.5-
coder- 7B | 9/13 |0/46|32/55 | 0/10 | 0/14 [60/68 | 22/2882 | 72/116 | 6/32 | 53/61 |10/11| 12/80 | 8/32 | 2/6 |17/34 |34/159 |26/50| 1/12 | 0/7 0/6
instruct
qwen2.5-
coder- | 32B| 7/13 |0/44|26/52| 1/10 | 2/11 | 50/61 | 31/2825 | 68/119 | 9/27 |25/46| 5/8 | 24/79| 6/23 | 3/4 |17/33 | 51/152 | 16/43 | 0/12 | 0/4 0/6
instruct
deepseek-
coder- 7B |10/13|0/46 | 29/55 | 0/10 | 0/13 | 35/67 | 9/2894 | 62/127 | 3/34 |43/63 | 9/10 | 14/82 | 11/31 | 2/5 |22/34|18/160 | 23/56 | 0/10 | 1/13 1/12
instruct
deepseek-
coder- 33B [12/13 [0/47 | 43/58 | 4/10 | 0/14 [66/68 | 52/2888 | 81/126 | 8/32 | 45/61 |10/11| 3/81 | 6/31 | 2/4 |19/34 | 6/161 | 23/50 | 0/14 | 0/11 1/13
instruct
starcoder-
15B | 8/12 [0/46|24/54 | 2/7 | 3/10 | 36/51 | 10/2887 |67/124 | 12/26 | 1/63 | 6/8 | 4/74 | 7/27 | 1/4 |20[34| 6/149 [23/49| 0/12 | 0/9 1/10
instruct
Table 8. Proportion of Verification Failures Caused by Syntax Errors
1 Denominator represents the total number of failures.
Appendix C. Example Specifications in FM-ALPACA and FM-BENCH
The examples of the five formal specification languages are shown in Figure 4.
Coq Leand ACSL
Proo s B R H. theoren ged_dvd_left {a b : Int} : (ged a b : Int) 1a t=by ginclude <stdio.h>
destruct (EM (R true false)). have := Nat.gcd_dvd_left a.natAbs b.natAbs
- exists (fun _ => true). rw [« Int.ofNat_dvd] at this
intros [1; firstorder. exact Int.dvd_trans this natAbs_dvd_self /*@ B -
- exists (fun b = b). Eraures \resalt o= Sota(aerold(b);
i"f_;?lguiﬂ;t th:orem gcdidvd,right {a. b : Int}: (ged a b : Int) | b := by :2::;:2 ::Zi:mg:‘ '
+ destruct b, y; intros HR; ave := Nat.gcd_dvd_right a.natAbs b.natAbs %/
easy || now symmetry in HR. nw [Int.ofNat_dvd] at this int mul(int a, int b) {
Qed. exact Int.dvd_trans this natAbs_dvd_self }né x =a, y=b, prod = 0;
*
loop invariant prod == (a-x)y;
Dafny TLA+ loop assigns prod, x;
*/
method factorial(n: nat) returns (res: nat) PickDifferentColor == while(x >= 0) {
[oures res = fact(n) /\ BeanCount > 1 prod = prod + y;
- /\ can.black >= 1 X
i:; 1 ,1’ /\ can.white >= 1 ,).emm prod;
while i <n + 1 /\ can' = [can EXCEPT !.black = @ - 1] }
invariant @ < i <=n+1
invariant res == fact(i - 1) TerminationHypothesis ==
{ IF can.white % 2 = @ int main() { .
. int pdt = mul(2, 5);
THEN <>(can.black = 1 /\ can.white = @) //@ assert pdt == 10;
¥ ELSE <>(can.black = 0 /\ can.white = 1) }
}
Figure 4. Formal Specification Languages in FM-bench
geios.com doi.org/10.32388/ MLAOTG 11

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

Appendix D. Collected Repositories

We listed the repositories that were collected for data construction in the following. Note that one can easily add more repositories into FM-ALPACA and FM-

BENCH.

For ACSL:

For TLA+:

« https://github.com/tlaplus/Examples

For Lean4:

« https://github.com/leanprover/leans

For Coq:

« https://github.com/coq/coq

For Dafny:

« https://github.com/vladstejeroiu/Dafny-programs

https://github.com/manavpatnaik/frama-c-problems
https://github.com/fraunhoferfokus/acsl-by-example

Appendix E. Complete Evaluation Result

The Pass@1 and Pass@5 are shown in Table 9. It is a completed version of Table 3.

Pass@1
LLMs Size ProofGen SegGen ProofComplete ProofInfill Code2Sepc
TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny TLA Coq Lean Dafny ACSL ACSL
‘W/o Fine-tuning
llama3 8B 000 426 169 000 1429 143 119 606 833 000 000 357 556 2857 000 485 7.69 1333 5000 71.43
Tlama3 70B 7.69 638 1017 20.00 7.14 22.86 4.86 13.64 11.11 39.68 2727 357 13.89 28.57 0.00 727 2462 1333 2143 2143
qwen2.5-instruct 7B 000 213 508 000 2143 143 105 758 556 159 000 13.10 19.44 2857 000 545 1846 1333 5000 57.14
qwen2.5-instruct 72B 769 638 18.64 20.00 2143 1286 3.29 1212 2500 1270 0.00 1190 33.33 2857 0.00 970 2462 26.67 3571 57.14
qwen2.5-coder-instruct 7B 000 213 678 0.00 0.00 2.86 2.14 RNIDNOERIISNE 3.17 000 476 1111 1429 000 3.64 2308 20.00 50.00 57.14
gwen2.5-coder-instruct 32B 0.00 638 11.86 0.00 2143 1286 4.07 9.85 2500 2698 2727 595 3611 42.86 294 7.88 3385 20.00 7143 57.14
deepseek-coder-instruct 7B 0.00 213 678 0.00 7.14 429 173 379 556 000 9.09 238 1389 2857 0.00 303 1385 3333 7.14 1429
deepseek-coder-instruct 33B 0.00 000 1.69 0.00 0.00 286 1.94 455 1111 3.17 000 357 13.89 4286 000 242 2308 667 2143 714
star-coder-instruct 15B 7.69 213 847 30.00 2857 2714 197 606 2778 0.00 2727 1190 2500 42.86 0.00 970 2462 20.00 3571 28.57
'W/ Fine-tuning
llama3.1-fma 8B 0.00 638 847 2000 57.14 4143 2998 2197 2500 9048 3636 833 1111 2857 000 000 7.69 000 2143 2143
Ilama3. 1-ultrachat 88 0.00 000 1.69 000 7.14 000 000 379 000 000 000 595 1389 1429 000 485 923 0.00 1429 0.00
llama3.1-ultrachat-fma 8B 0.00 851 10.17 30.00 50.00 4143 3572 29.55 33.33 9524 18.18 833 11.11 2857 294 000 7.69 000 2857 3571
llama3. 1-tulu 88 0.00 000 1.69 000 7.14 000 071 606 000 000 000 595 833 2857 000 182 1077 0.00 57.14 50.00
Ilama3.1-tulu-fma 8B 000 426 1186 3000 3571 4286 3671 2727 36.11 9841 18.18 1071 11.11 4286 294 242 615 000 3571 50.00
qwen2.5-fma 7B 0.00 426 11.86 10.00 7143 3857 2795 2727 2222 8730 2727 952 1389 2857 0.00 000 7.69 000 3571 2143
qwen2.5-coder-fma 7B 0.00 638 1864 2000 3571 4429 3650 34.09 3333 9841 3636 9.52 1667 2857 588 1.82 1385 1333 4286 50.00
deepseek-coder-fma 7B 0.00 213 1695 000 2143 3429 2530 31.06 2500 84.13 3636 833 1944 2857 000 1.82 769 667 2143 3571
Pass@5
LLMs Size ProofGen SegGen ProofComplete ProofInfill Code2Sepc
TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny TLA Coq Lean Dafny ACSL ACSL

‘W/o Fine-tuning

88 000 213 508 000 3571 429 190 833 1111 3.17 000 357 833 2857 000 7.88 20.00 2000 7143 8571

70B 7.69 851 1356 20.00 3571 27.14 601 1742 1389 5238 3636 1190 27.78 2857 0.00 1030 3077 20.00 3571 57.14

7B 000 213 508 000 2857 28 139 9.09 556 317 000 16.67 2222 2857 0.00 545 2000 20.00 7143 7857
qwen2.5-instruct 72B 1538 638 2203 30.00 2143 17.14 3.80 1439 2500 1587 9.09 16.67 3889 2857 0.00 1152 26.15 3333 57.14 92.86
qwen2.5-coder-instruct 7B 0.00 426 1017 0.00 7.14 571 299 1364 1111 476 0.00 1190 1944 2857 0.00 424 3077 20.00 8571 92.86
qwen2.5-coder-instruct 32B 0.00 638 1525 10.00 2857 1571 4.96 1515 27.78 3333 3636 1071 4722 4286 294 1091 3385 20.00 9286 7143
deepseek-coder-instruct 7B 7.69 2.13 847 0.00 7.14 857 2.82 530 556 476 1818 952 1667 28.57 0.00 424 1846 33.33 57.14 64.29
deepseek-coder-instruct 33B 0.00 638 678 20.00 7.14 286 323 682 1389 2540 0.00 1190 1944 4286 000 1030 40.00 26.67 2857 1429
star-coder-instruct 15B 1538 426 1017 30.00 50.00 3429 346 7.58 2778 0.00 4545 16.67 41.67 57.14 0.00 1697 3846 26.67 4286 42.86
W/ Fine-tuning
llama3.1-fma 8B 000 638 1525 20.00 57.14 4143 3457 2652 2778 9048 3636 9.52 11.11 2857 294 000 1385 000 4286 57.14
Ilama3. 1-ultrachat 8B 0.00 000 339 000 1429 000 007 758 000 159 000 476 2222 1429 000 485 923 6.67 1429 0.00
llama3.1-ultrachat-fma 8B 0.00 1064 1525 30.00 57.14 4286 39.86 31.06 3889 96.83 18.18 952 13.89 2857 1176 0.00 1077 0.00 4286 64.29
llama3. 1-tulu 8B 0.00 213 1.69 000 2143 000 143 606 000 3.17 000 13.10 30.56 2857 0.00 667 21.54 1333 7857 64.29
Tlama3.1-tulu-fma 8B 0.00 638 11.86 3000 3571 4429 4020 3258 38.89 9841 18.18 13.10 11.11 4286 294 424 923 000 7143 64.29
qwen2.5-fma 7B 0.00 426 1356 10.00 7143 40.00 3277 3030 27.78 8889 4545 1071 19.44 2857 294 121 1231 000 57.14 50.00
qwen2.5-coder-fma 7B 0.00 851 2203 30.00 50.00 4429 4081 3561 36.11 9841 5455 1071 19.44 4286 8.82 424 2000 1333 6429 6429
deepseek-coder-fma 7B 000 426 1695 000 3571 3571 3070 3636 2500 8571 4545 13.10 16.67 2857 294 424 923 667 2143 57.14

Table 9. Full Experiment Results on Pass@1 and Pass@5
geios.com doi.org/10.32388/MLAOTG

12

https://github.com/manavpatnaik/frama-c-problems
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/tlaplus/Examples
https://github.com/leanprover/lean4
https://github.com/coq/coq
https://github.com/vladstejeroiu/Dafny-programs
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

Appendix F. Prompt Design

We listed the prompts that are used for data preparation and inference in the following. For data preparation, as shown in Figure 5, to generate
descriptions for the given proof segments, the prompt template consists of five parts: (1) Role description, (2) Domain knowledge of TLA+, (3) Task

description, (4) Few-shot examples (we show one example in the figure, while three-shots were used in RQ2), (5) The proof or proof segment to be

summarized.

For the inference, for each task, we designed five different instructions to avoid overfitting. The prompts for each task are shown in Figure 6 ~ Figure 10.

For each task, we first randomly choose one instruction and concat the inputs.

geios.com

Prompt for Description Generation. Take TLA+ as an example.

Role description
As an expert in TLA+, you are good at understanding and writing TLA+. TLA+ is a formal
specification language used for modeling and verifying concurrent and distributed systems.

Domain knowledge

1. The logical operators supported by TLA+ include: /\ (and), \/ (or), ~ (not), => (Implication),
<=> (Bidirectional implication), TRUE, FALSE, \A (Universal Quantification), \E (Existential
Quantification)

2. The sets operators supported by TLA+ include: = (Equality), # (not equal), \union
(Union), \intersect (Intersection), \in (Membership), \notin (Not in), \subseteq (Subset Equal),
\ (Difference).

3. The temporal Operators supported by TLA+ include [] x > @, which is an example of []
(Always). It means that at all times, the value of variable x is greater than 0. <> x = @is an
example of <> (Eventually). It means that at some point in time, the value of variable x becomes 0.
4. Built-in keywords and operators in TLA+ include: ‘MODULE, ‘EXTENDS’, ‘CONSTANT’,
‘INSTANCE’, ‘VARIABLE’, ‘ASSUME’, ‘PROVE’, ‘INIT’, ‘NEXT’, ‘ACTION’, ‘SPECIFI-
CATION’, ‘IF’, ‘ELSE’, ‘WITH’, ‘CASE’, ‘THEN’, ‘LET’, ‘IN’, ‘CHOOSE’, ‘ENABLED’,
‘UNCHANGED’, ‘DOMAIN’.

Task description
Given a TLA+ code snippet, you need to summarize the given TLA+ in several sentences in detail.

Example Input and Output

Code

Return(c,S) ==

/\ S#{} /\ S \subseteq alloc[c]

/\ alloc’ = [alloc EXCEPT ![c] = \ S]

/\ UNCHANGED unsat

Description:

An operation ‘Return(c,S)’ that represents the return of a set of resources by a client. It satisfies
the following conditions:

- The set ‘S’ is not empty and ‘S’ must be a subset of the set of allocated resources to the client ‘c’.
- The ‘alloc’ is updated by assigning the difference between the current set of allocated resources
and the set ‘S’ to the ‘c’ index of ‘alloc’ except ‘c’.

- The ‘unsat’ remains unchanged.

Code to be described:
<A proof segment>

Figure 5. Prompt for generating TLA+ description. The prompt templates for other formal specification

languages are in the same structure.

doi.org/10.32388/MLAOTG

13

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

geios.com

Prompt for SegGen Task (lang: a placeholder to be replaced by each formal specification
language name.)

Task Description (SegGen)

1. Translate the given natural language into {lang} syntax.

2. Model the intention written in natural language using {lang}.

3. Express the requirement using {lang}.

4. Model the given natural language into {lang}.

5. Translate the given requirement using {lang}’s syntax and semantics.

(Randomly choose one of the above.)
You only need to return the {lang} formal specification without explanation.

Input
<Input goes here>

Figure 6. Prompt for SegGen Task.

Prompt for ProofGen Task (lang: a placeholder to be replaced by each formal specification
language name.)

Task Description (ProofGen)

1. Translate the given requirements into lang syntax.

2. Model the given requirements written in natural language using lang.
3. Express the requirements using lang.

4. Model the given requirements written in natural language into lang.
5. Translate the given requir into lang’s syntax and semantics.

(Randomly choose one of the above.)

(For ACSL): You only need to return the lang formal specification with the code without explana-
tion.
(For others): You only need to return the lang formal specification without explanation.

Input
<Input goes here>

Figure 7. Prompt for ProofGen Task.

Prompt for ProofComplete Task (lang: a placeholder to be replaced by each formal specifica-
tion language name.)

Task Description (ProofComplete)

1. Please complete the following formal proof in formal specification language lang according to
the given requirement.

2. Please complete the following formal proof in lang according to the given requirement.

3. Please complete the given formal proof in lang following the requirement below.

4. Please complete the following formal proof in lang according to the requirement below.

5. Please complete the following formal proof in lang according to the given requirement.

(Randomly choose one of the above.)

You only need to return the completed lang formal specification (together with the provided formal
specification) without explanation.

Input
<Input goes here>

Figure 8. Prompt for ProofComplete Task.

doi.org/10.32388/MLAOTG

14

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

Prompt for ProofComplete Task (lang: a placeholder to be replaced by each formal specifica-
tion language name.)

Task Description (ProofInfill)

1. Please fill in the [MASK] in the following formal proof in formal specification language lang
according to the given requirement.

2. Please fill in the [MASK] in the following formal proof in lang according to the given
requirement.

3. Please complete the given formal proof in lang following the requirement below by filling in the
[MASK].

4. Please fill in the [MASK] in the following formal proof in lang according to the requirements
below.

5. Please fill in the [MASK] in the following formal proof in lang according to the given
requirement.

(Randomly choose one of the above.)

You only need to return the completed lang formal specification (together with the provided formal
specification) without explanation.

Input
<Input goes here>

Figure 9. Prompt for ProofInfill Task.

Prompt for ProofComplete Task

Task Description (Code2Proof)

1. Please fill in the [MASK] in ACSL according to the given requirement and ACSL specification.
2. Please fill in the [MASK] in ACSL according to the given requirement.

3. Please fill in the [MASK] in ACSL according to the given ACSL specification.

4. Please fill in the [MASK] in ACSL according to the given requirement and ACSL specification.
5. Please infill the [MASK] in ACSL according to the given requirement.

(Randomly choose one of the above.)

You only need to return the completed ACSL formal specification (together with the provided
formal specifications and C programs) without explanation.

Input
<Input goes here>

Figure 10. Prompt for Code2Proof Task.

Footnotes

1 For ease of expression, we generally refer to verifiable formal proofs and checkable models as “proofs” for the sake of presentation simplification.

2 https://mir.fi. muni.cz/MREC/

References

1.ab €Yang K, Poesia G, He J, Li W, Lauter K, Chaudhuri S, Song D (2024). "Formal Mathematical Reasoning: A New Frontier in AI". arXiv preprint arXiv:2412.16
075.

2.3 llAlphaProof, DeepMind and Teams, AlphaGeometry (2024). "Al achieves silver-medal standard solving International Mathematical Olympiad problems.B25
July 2024."

3.2 bTyrinh TH, Wu 'Y, Le QV, He H, Luong T (2024). ""Solving olympiad geometry without human demonstrations". Nature. 625 (7995): 476—482.

4. 30p Z, Sun J, Murphy L, Su Q, Li Z, Zhang X, Yang K, Si X (2024). "A Survey on Deep Learning for Theorem Proving". arXiv preprint arXiv:2404.09939.

5.2 brgo T (2024). "AI Will Become Mathematicians' 'Co-Pilot"". https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/.

(=2

.3 b CWelleck S, Liu J, Le Bras R, Hajishirzi H, Choi Y, Cho K (2021). "NaturalProofs: Mathematical Theorem Proving in Natural Language". Preprint, arXiv:2104,

01112,

ab £Yang K, Swope AM, Gu A, Chalamala R, Song P, Yu S, Godil S, Prenger R, Anandkumar A (2023). "Leandojo: Theorem proving with retrieval-augmented la

<

nguage models". arXiv preprint arXiv:2306.15626.

geios.com doi.org/10.32388/MLAOTG

15

https://mir.fi.muni.cz/MREC/
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

oo

.3 b Selleck S, Liu J, Lu X, Hajishirzi H, Choi Y (2022). "Naturalprover: Grounded mathematical proof generation with language models". Advances in Neural I
nformation Processing Systems. 35: 4913—4927.

.Xyang K, Deng J (2019). "Learning to prove theorems via interacting with proof assistants." In: International Conference on Machine Learning. PMLR. pp. 6984

O

—-6994.

10.2bchen M, Tworek], Jun H, Yuan Q, Ponde de Oliveira Pinto H, Kaplan J, Edwards H, Burda Y, Joseph N, Brockman G, Ray A, Puri R, Krueger G, Petrov M, Khlaaf
H, Sastry G, Mishkin P, Chan B, Gray S, Ryder N, Pavlov M, Power A, Kaiser L, Bavarian M, Winter C, Tillet P, Petroski Such F, Cummings D, Plappert M, Chantzis
F, Barnes E, Herbert-Voss A, Hebgen Guss W, Nichol A, Paino A, Tezak N, Tang], Babuschkin I, Balaji S, Jain S, Saunders W, Hesse C, Carr AN, Leike], Achiam J,
Misra V, Morikawa E, Radford A, Knight M, Brundage M, Murati M, Mayer K, Welinder P, McGrew B, Amodei D, McCandlish S, Sutskever I, Zaremba W (2021).
"Evaluating large language models trained on code". arXiv. ¢s.LG: 2107.03374.

11. Austin J, 0dena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q, et al. (2021). "Program Synthesis with Large Language Models". ar
Xiv preprint arXiv:2108.07732.

12. MAppel AW. "Verified Software Toolchain". In: Barthe G, editor. Programming Languages and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 1

N

-17. ISBN 978-3-642-19718-5.

13. XKlein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S (2009). "seL4: f
ormal verification of an 0S kernel". Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 'o9, New York, NY, USA: Associatio
n for Computing Machinery. p. 207—-220. d0i:10.1145/1629575.1629596.

14. 2Leroy X, Blazy S, Ke4stner D, Schommer B, Pister M, Ferdinand C (2016). "CompCert-a formally verified optimizing compiler". In: ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress.

15. *Hawblitzel C, Howell], Lorch JR, Narayan A, Parno B, Zhang D, Zill B (2014). "Ironclad apps: End-to-End security via automated Full-System verification." In:
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 165-181.

16,3 de iWang R, Zhang], Jia Y, Pan R, Diao S, Pi R, Zhang T (2024). "Theoremllama: Transforming general-purpose llms into leans experts". arXiv preprint
arXiv:2407.03203.

17.2 PWei J, Bosma M, Zhao VY, Guu K, Yu AW, Lester B, Du N, Dai AM, Le QV (2021). "Finetuned language models are zero-shot learners". arXiv preprint arXiv:210
9.01652.

18.2 2Sanh V, Webson A, Raffel C, Bach SH, Sutawika L, Alyafeai Z, Chaffin A, Stiegler A, Le Scao T, Raja A, et al. (2021). "Multitask prompted training enables zero
-shot task generalization". arXiv preprint arXiv:2110.08207.

19. Mihanyi N, Jain R, Charalambous Y, Ferrag MA, Sun Y, Cordeiro LC (2023). "A new era in software security: Towards self-healing software via large language
models and formal verification". arXiv preprint arXiv:2305.14752.

20.232,6.dping N, Chen Y, Xu B, Qin Y, Hu S, Liu Z, Sun M, Zhou B (2023). "Enhancing chat language models by scaling high-quality instructional conversations".
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics. pp. 3029-30

51. doi:10.18653/v1/2023.emnlp-main.183. Available from: https://aclanthology.org/2023.emnlp-main.183/.

21.2 DWang Y, Kordi Y, Mishra S, Liu A, Smith NA, Khashabi D, Hajishirzi H (2022). "Self-instruct: Aligning language models with self-generated instructions". ar
Xiv preprint arXiv:2212.10560.

22. Yjimenez CE, Yang J, Wettig A, Yao S, Pei K, Press 0, Narasimhan K (2023). "Swe-bench: Can language models resolve real-world github issues?" arXiv preprint
arXiv:2310.06770.

23.Spiess C, Gros D, Pai KS, Pradel M, Rabin MRI, Alipour A, Jha S, Devanbu P, Ahmed T (2024). "Calibration and correctness of language models for code". arXiv

preprint arXiv:2402.02047. Available from: https://arxiv.org/abs/2402.02047.

24.3PTao T, Dillies Y, Mehta B (2023). "Formalizing the proof of PFR in Lean using Blueprint: a short tour". Blog post, November.

25. 2Davis AM. Software requirements: analysis and specification. Prentice Hall Press; 1990.

26.2Anton Al (1996). "Goal-based requirements analysis." In: Proceedings of the second international conference on requirements engineering. IEEE. pp. 136 -144.
27.2Grady JO. System requirements analysis. Elsevier; 2010.

28.%in Z. Environment modeling-based requirements engineering for software intensive systems. Morgan Kaufmann; 2017.

29. XTaggart jr W, Tharp MO (1977). "A survey of information requirements analysis techniques". ACM Computing Surveys (CSUR). 9 (4): 273-290.

30. 2Deeptimahanti DK, Babar MA (2009). "An automated tool for generating UML models from natural language requirements." In: 2009 IEEE/ACM Internationa

[Conference on Automated Software Engineering. IEEE. pp. 680-682.

geios.com doi.org/10.32388/MLAOTG 16

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://aclanthology.org/2023.emnlp-main.183/
https://arxiv.org/abs/2402.02047
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

31.Yaved M, Lin Y (2021). "iMER: Iterative process of entity relationship and business process model extraction from the requirements". Information and Software
Technology. 135: 106558.

32. 2Wang Y, Chen JW, Xia X, Jiang B (2021). "Intelligent requirements elicitation and modeling: A literature review". Journal of Computer Research and Developme
nt. 58 (4): 683-705.

33.2Yin D, Zhao S, Jin Z, Chen X, Wang C, Fang Z, Xiao H (2024). "An Evaluation of Requirements Modeling for Cyber-Physical Systems via LLMs". arXiv preprint
arXiv:2408.02450.

34.2B7hou Q, Li T, Wang Y (2022). "Assisting in requirements goal modeling: a hybrid approach based on machine learning and logical reasoning." In: Proceedin
gs of the 25th International Conference on Model Driven Engineering Languages and Systems, pp. 199—209.

35. AFatwanto A (2012). "Translating software requirements from natural language to formal specification." In: 2012 IEEE International Conference on Computati

onal Intelligence and Cybernetics (CyberneticsCom). IEEE. pp. 148—152.

(=

36. 2Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013). "Feature model extraction from large collections of informal product description

s". Proceedings of the 2013 gth Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, New York, NY, USA: Association for Computing Machiner

V. p- 290-300. d0i:10.1145/2491411.24,91455.

37.MWu Y, Jiang AQ, Li W, Rabe M, Staats C, Jamnik M, Szegedy C (2022). "Autoformalization with large language models". Advances in Neural Information Proces

sing Systems. 35: 32353-32368.

oo

38. Yiang AQ, Welleck S, Zhou JP, Li W, Liu J, Jamnik M, Lacroix T, Wu Y, Lample G (2022). "Draft, sketch, and prove: Guiding formal theorem provers with informal
proofs". arXiv preprint arXiv:2210.12283.

39. 2Chaudhary S (2023). "Code Alpaca: An Instruction-following LLaMA model for code generation". GitHub repository. Available from: https://github.com/sahil2

8o114/codealpaca.
£40.2YSun ¢, Sheng Y, Padon 0, Barrett C (2024). "Clover: Closed-loop verifiable code generation". Preprint, arXiv:2310.17807. Available from: https://arxiv.org/ab

5/2310.17807.

£41.2Raychev V, Vechev M, Yahav E (2014). "Code completion with statistical language models". In: Proceedings of the 35th ACM SIGPLAN conference on programm
ing language design and implementation. pp. 419-428.

£42. 2Husein RA, Aburajouh H, Catal C (2024). "Large language models for code completion: A systematic literature review". Computer Standards & Interfaces. Page
103917.

43.2svyatkovskiy A, Zhao Y, Fu S, Sundaresan N (2019). "Pythia: Ai-assisted code completion system." In: Proceedings of the 25th ACM SIGKDD international confe
rence on knowledge discovery & data mining, pp. 2727-2735.

44, “Dakhel AM, Majdinasab V, Nikanjam A, Khomh F, Desmarais MC, Jiang ZMJ (2023). "Github copilot ai pair programmer: Asset or liability?" Journal of Systems
and Software. 203: 111734.

45.2Song P, Yang K, Anandkumar A (2024). "Towards large language models as copilots for theorem proving in lean". arXiv preprint arXiv:2404.12534.

46.2 PFried D, Aghajanyan A, Lin], Wang S, Wallace E, Shi F, Zhong R, Yih W, Zettlemoyer L, Lewis M (2022). "Incoder: A generative model for code infilling and sy
nthesis". arXiv preprint arXiv:2204.05999.

47.2% SBaudin P, Filliatre JC, Marche C, Monate B, Moy Y, Prevosto V (2021). "ACSL: ANSI/ISO C Specification". Citeseer.

oo

48. 2Hatcliff], Leavens GT, Leino KRM, M\uoofcller P, Parkinson M (2012). "Behavioral interface specification languages". ACM Comput. Surv.. 44 (3): Article 16, 5
8 pages.
49.Wen C, Cao J, Su J, Xu Z, Qin S, He M, Li H, Cheung S, Tian C (2024). "Enchanting program specification synthesis by large language models using static analysi

s and program verification." In: International Conference on Computer Aided Verification. Springer. pp. 302-328.

50.2Ma L, Liu S, Li Y, Xie X, Bu L (2024). "SpecGen: Automated Generation of Formal Program Specifications via Large Language Models". Preprint, arXiv:2401.08

807.

51.2 PHyet G. The calculus of constructions. PhD thesis. INRIA; 1986.

52.2 PLeino KRM (2010). "Dafny: An automatic program verifier for functional correctness.” In: International conference on logic for programming artificial intelli
gence and reasoning. Springer. pp. 348-370.

53.% byMoura L de, Ullrich S (2021). "The Lean 4 Theorem Prover and Programming Language". In Automated Deduction — CADE 28: 28th International Conferenc

e on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, Berlin, Heidelberg: Springer-Verlag. p. 625-635. doi:10.1007/978-3-030-79876-5 3

7

geios.com doi.org/10.32388/MLAOTG 17

https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1145/2491411.2491455
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2310.17807
https://arxiv.org/abs/2310.17807
https://frama-c.com/html/acsl.html
https://arxiv.org/abs/2401.08807
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

54.2 5 &yy Y, Manolios P, Lamport L. Model checking TLA+ specifications. In: Advanced research working conference on correct hardware design and verification
methods. Springer; 1999. p. 54-66.

55. 2Lamport L (2002). "Specifying systems: the TLA+ language and tools for hardware and software engineers."

[

(=2

56.2Avigad J, Buzzard K, Lewis RY, Massot P (2020). "Mathematics in Lean". Technical report, Lean community. En https://leanprover-community,

57.% l—’Cuoq P, Kirchner F, Kosmatov N, Prevosto V, Signoles], Yakobowski B (2012). "Frama-C: A software analysis perspective." In: International conference on so

<

ftware engineering and formal methods. Springer. pp. 233-247.
58. Yhala R, Majumdar R (2009). "Software model checking". ACM Computing Surveys (CSUR). 41 (4): 1-54.
59. XClarke EM. Model checking. In: Foundations of Software Technology and Theoretical Computer Science: 17th Conference Kharagpur, India, December 18--20,

1997 Proceedings 17. Springer; 1997. p. 54--56.

60.AGPT—4 and GPT-4-turbo Preview (2023). Available from: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4

—turbo-preview.

619 hWang Y, Ivison H, Dasigi P, Hessel J, Khot T, Chandu K, Wadden D, MacMillan K, Smith NA, Beltagy I, et al. (2023). "How far can camels go? exploring the sta
te of instruction tuning on open resources". Advances in Neural Information Processing Systems. 36: 74764 —74786.

62.2Lu Y, Liu J, Zhang Y, Liu Y, Tian X (2022). "Prompt distribution learning". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio

)

n. 5206-5215.

63.Feng CM, Yu K, Liu Y, Khan S, Zuo W (2023). "Diverse data augmentation with diffusions for effective test-time prompt tuning." In: Proceedings of the IEEE/CV
F International Conference on Computer Vision. pp. 2704—2714.

64.2Sanh V, Webson A, Raffel C, Bach SH, Sutawika L, Alyafeai Z, Chaffin A, Stiegler A, Le Scao T, Raja A, Dey M, Bari MS, Xu C, Thakker U, Sharma SS, Szczechla E,
Kim T, Chhablani G, Nayak N, Datta D, Chang J, Jiang MTJ], Wang H, Manica M, Shen S, Yong ZX, Pandey H, Bawden R, Wang T, Neeraj T, Rozen], Sharma A, Sa

ntilli A, Fevry T, Fries JA, Teehan R, Bers T, Biderman S, Gao L, Wolf T, Rush AM (2022). "Multitask prompted training enables zero-shot task generalization". P

reprint, arXiv:2110.08207.

65.2Yu Y, Kuppe M. TLC Model Checker. Available from: https://tla.msr-inria.inria.fr/tlatoolbox/doc/model/executing-tic.html.

66.2Carvalho N, da Silva Sousa C, Pinto JS, Tomb A. Formal Verification of KLIBC with the WP Frama-C Plug-in. In: NASA Formal Methods: 6th International Symp
osium, NFM 2014, Houston, TX, USA, April 29--May 1, 2014. Proceedings 6. Springer; 2014. p. 343--358.

67. 2Papineni K, Roukos S, Ward T, Zhu WJ. (2002). "Bleu: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computational Linguistics; p. 311-318. doi:10.3115/1073083.1

073135. Available from: https://aclanthology.org/Po2-1040/.

68.2 bieta AT (2024). "Introducing meta llama 3: The most capable openly available lIm to date”. Blog. https://ai.meta.com/blog/meta-llama-3/. Online; accesse
d 15-January-2024.

69.2 llYangA, Yang B, Zhang B, Hui B, Zheng B, Yu B, Li C, Liu D, Huang F, Wei H, et al. (2024). "Qwen2.5 Technical Report". arXiv preprint arXiv:2412.15115.

70. 2Hui B, Yang J, Cui Z, Yang J, Liu D, Zhang L, Liu T, Zhang J, Yu B, Lu K, et al. (2024). ""Qwenz2. 5-coder technical report". arXiv preprint arXiv:2409.12186.

71. 2Lozhkov A, Li R, Ben Allal L, Cassano F, Lamy-Poirier J, Tazi N, Tang A, Pykhtar D, Liu J, Wei Y, et al. (2024). "'Starcoder 2 and the stack v2: The next generatio
n". arXiv preprint arXiv:2402.19173. Available from: https://arxiv.org/abs/2402.19173.

72.22cGuo D, Zhu Q, Yang D, Xie Z, Dong K, Zhang W, Chen G, Bi X, Wu Y, Li YK, et al. (2024). "DeepSeek-Coder: When the Large Language Model Meets Program
ming--The Rise of Code Intelligence". arXiv preprint arXiv:2401.14196.

73.2Guo D, Yang D, Zhang H, Song J, Zhang R, Xu R, Zhu Q, Ma S, Wang P, Bi X, et al. (2025). "Deepseek-r1: Incentivizing reasoning capability in llms via reinforce
ment learning". arXiv preprint arXiv:2501.12948.

74.2 Plvison H, Wang Y, Pyatkin V, Lambert N, Peters M, Dasigi P, Jang], Wadden D, Smith NA, Beltagy I, et al. (2023). "Camels in a changing climate: Enhancing |
m adaptation with tulu 2". arXiv preprint arXiv:2311.10702.

75.2 BLambert N, Morrison], Pyatkin V, Huang S, Ivison H, Brahman F, Miranda LJV, Liu A, Dziri N, Lyu S, et al. 2024. "T\" ulu 3: Pushing frontiers in open langua
ge model post-training". arXiv preprint arXiv:2411.15124.

76. *Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D, Steinhardt J (2021). "Measuring Mathematical Problem Solving With the MATH Datase
t". NeurIPS.

77.Cobbe K, Kosaraju V, Bavarian M, Chen M, Jun H, Kaiser L, Plappert M, Tworek J, Hilton J, Nakano R, Hesse C, Schulman J (2021). "Training Verifiers to Solve M

ath Word Problems". arXiv preprint arXiv:2110.14168.

geios.com doi.org/10.32388/MLAOTG 18

https://leanprover-community/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4-turbo-preview
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4-turbo-preview
https://arxiv.org/abs/2110.08207
https://tla.msr-inria.inria.fr/tlatoolbox/doc/model/executing-tlc.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2402.19173
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

78.2Suzgun M, Scales N, Schdrli N, Gehrmann S, Tay Y, Chung HW, Chowdhery A, Le QV, Chi EH, Zhou D, Wei] (2022). "Challenging BIG-Bench Tasks and Whether
Chain-of-Thought Can Solve Them". arXiv preprint arXiv:2210.09261.

79. 2Austin J, 0Odena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q, et al. (2021). "Program Synthesis with Large Language Models". ar
Xiv preprint arXiv:2108.07732.

80. 2Holtzman A, Buys J, Du L, Forbes M, Choi Y (2020). "The Curious Case of Neural Text Degeneration”. In: 8th International Conference on Learning Representat
ions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

81. 2Kwon W, Li Z, Zhuang S, Sheng Y, Zheng L, Yu CH, Gonzalez JE, Zhang H, Stoica I (2023). "Efficient Memory Management for Large Language Model Serving

with PagedAttention". Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles.

82. 2Cook SA (2023). "The complexity of theorem-proving procedures." In: Logic, automata, and computational complexity: The works of Stephen A. Cook, pp. 143
-152.
83. MFerreira D, Freitas A (2020). "Natural language premise selection: Finding supporting statements for mathematical text". arXiv preprint arXiv:2004.14959.

84.2Li WW, Ziser Y, Coavoux M, Cohen SB (2023). "BERT is not the count: Learning to match mathematical statements with proofs". arXiv preprint arXiv:2302.093

50.

85. “The mathlib Community (2020). "The lean mathematical library". In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs an
d Proofs, POPL'20. ACM. doi:10.1145/3372885.3373824.

86.2Zheng K, Han JM, Polu S (2021). "MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics". arXiv preprint arXiv:2109.00110.

87.Liu C, Shen J, Xin H, Liu Z, Yuan Y, Wang H, Ju W, Zheng C, Yin Y, Li L, Zhang M, Liu Q (2023). "FIMO: A Challenge Formal Dataset for Automated Theorem Pro
ving". Preprint, arXiv: 2309.04295.

88.2Azerbayev Z, Piotrowski B, Schoelkopf H, Ayers EW, Radev D, Avigad] (2023). "ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathe

matics". Preprint, arXiv:2302.12433. Available from: https://arxiv.org/abs/2302.12433.
89. 2Mugnier E, Anaya Gonzalez E, Jhala R, Polikarpova N, Zhou Y (2024). "Laurel: Generating Dafny Assertions Using Large Language Models". Preprint, arXiv:24

05.16792. Available from: https://arxiv.org/abs/2405.16792.

90. 2Della Penna G, Intrigila B, Magazzeni D, Melatti I, Tronci E (2013). "Cgmurphi: Automatic synthesis of numerical controllers for nonlinear hybrid systems". Eur

o

opean Journal of Control. 19 (1): 14-36.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

geios.com doi.org/10.32388/MLAOTG 19

https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2405.16792
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

