
18 February 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

From Informal to Formal – Incorporating and Evaluating
LLMs on Natural Language Requirements to Verifiable Formal
Proofs

Jialun Cao1, Yaojie Lu2

1. Hong Kong University of Science and Technology, Hong Kong; 2. Institute of Software, Beijing, China

The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical

competitions like IMO and have made significant progress. However, these studies intertwined multiple skills simultaneously—problem-solving,

reasoning, and writing formal specifications—making it hard to precisely identify the LLMs’ strengths and weaknesses in each task. This paper focuses

on formal verification, an immediate application scenario of formal reasoning, and breaks it down into sub-tasks. We constructed 18k high-quality

instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six tasks by distilling gpt-4o

and evaluated against ten open-sourced LLMs, including recent popular DeepSeek-R1. We found that LLMs are good at writing proof segments when

given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most.

Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding capabilities. Fine-tuned models are

released to facilitate subsequent studies at https://huggingface.co/fm-universe.

1. Introduction

Figure 1. The Illustration of Formal Proof Generation and Its Relation with Code Generation.

As AI-based formal mathematical reasoning reached an inflection point[1], significant attention and progress in this field have been observed.

AlphaProof[2] achieved silver medal level in the International Mathematical Olympiad (IMO), AlphaGeometry[3] specialized in proving Euclidean geometry

theorems. As reported, the number of publications in this field nearly doubled in 2023, indicating an unstoppable growth trend[4]. As Fields Medalist

Terence Tao imagined, “In the future, instead of typing up our proofs, we would explain them to some GPT”[5].

However, most current benchmarks cannot precisely reflect the capability to convert informal proofs or requirements in natural language into formal

proofs. Most of these benchmarks take mathematical problems[2][3][6] or theorems to be solved[7][8][9] as input, and informal or formal proofs (or parts of

proofs) as output. However, these end-to-end benchmarks assess multiple capabilities (e.g., problem-solving, mathematical reasoning, formal

Qeios

qeios.com doi.org/10.32388/MLAOTG 1

https://huggingface.co/fm-universe
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


specification writing) in an intertwined manner, making it difficult to isolate and observe LLMs’ true capabilities in writing formal proofs or models for

verification.

Therefore, we break down the process from informal requirements to formal verifiable proof, as shown in Figure 1. Inspired by the code generation (shown

in blue) which translates a description of implementation into executable code[10][11], the formal reasoning process (shown in green) can be seen as

translating an informal requirement into a verifiable formal proof or checkable formal model1. Particularly, we decompose this process and formulate six

tasks (Figure 2). By doing so, the intertwined capabilities can be separated and individually assessed, providing a clearer understanding of LLMs’ strengths

and weaknesses in each task.

Scope and Targets – We focus on formal verification[12][13][14][15] because it is an immediate application scenario of formal mathematical reasoning and the

correctness of the output can be verified mechanically. In this paper, we mainly explore four research questions (RQs):

RQ1. How well do LLMs perform in various formal verification tasks? After decomposing the formal verification task into subtasks, we explore LLMs’ initial

performance in these tasks with zero-shot and few-shot, investigating the strengths and weaknesses that vary between LLMs and tasks.

RQ2. Do LLMs show variability in their capability across different formal specification languages? When mathematicians and proof engineers consider using

LLMs to assist in formal verification, they often face uncertainty about which formal specification language is best supported by LLMs. This RQ is designed

to provide hints on it.

RQ3. Can fine-tuning improve LLMs’ performance in formal verification? Although recent efforts have been made to fine-tune models[16][7], these LLMs are

typically fine-tuned with single formal languages instead of multi-lingual (e.g., combining Coq, Lean, etc.)[1]. Therefore, we instruction fine-tuned[17]

[18] three base LLMs to see whether our constructed fine-tuning dataset FM-ALPACA could improve their capability in formal verification tasks.

RQ4. Can fine-tuning with formal verification data benefit other related tasks (mathematics, reasoning, code)? As recent works have shown LLMs’ potential

transferability of skills[19]  we thus extend our study to see if models fine-tuned on formal data could show enhanced capabilities in mathematics,

reasoning, and coding.

To facilitate the study, we constructed 18k high-quality instruction-response pairs across five formal specification languages (i.e., Coq, Lean4, Dafny, ACSL,

and TLA+) in six formal-verification-related tasks by distilling gpt-4o inspired by prior work[16][20][21], then split them into 14k instruction fine-tuning

data (FM-ALPACA) and 4k benchmarking data (FM-BENCH). In particular, we provide executable contexts for all these formal specifications and automated

validation scripts to validate the correctness of the generated formal proofs inspired from the prior work’s artifact preparation[22]. Finally, we release the

fine-tuned LLMs based on three base models at https://huggingface.co/fm-universe.

Interestingly, there has been recent discussion on the topic of domain transfer[1], particularly the transfer of knowledge from other domains such as

coding and reasoning to formal domains in order to increase LLMs’ reliability[23], and the anticipated potential of AI in enhancing formal verification

processes to support mathematical proofs[5][24]. Our experimental results could potentially provide empirical support for these hypotheses or offer

directions for further experimental inquiries.

The contribution of this paper includes:

Problem Formulation: We decompose the formal verification process into six essential tasks. By doing so, the intertwined capabilities can be separated

and individually assessed, providing a clearer understanding of LLMs’ strengths and weaknesses in each task.

Dataset and Benchmark: We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (i.e., Coq,

Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling gpt-4o. They are split into a 14k+ fine-tuning dataset FM-ALPACA

and a 4k benchmark FM-BENCH.

Executable context and automated validation mechanism: We provide a Docker container equipped with necessary scripts to facilitate the evaluation of

FM-BENCH, significantly lowering the entry barrier for this scenario and making subsequent contributions easier.

Insight and Vision: We fine-tuned several models on FM-ALPACA and observed promising benefits to not only the formal verification tasks, but also

mathematics, reasoning, and coding. Our experimental results provide empirical support for the potential of LLMs’ capability transfer and hope to shed

some light on future research.

2. Task Formulation

Figure 2 illustrates the six sub-tasks. We elaborate on them in detail as follows.

qeios.com doi.org/10.32388/MLAOTG 2

https://huggingface.co/fm-universe
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Task 1. Requirement Analysis (abbrev. ReqAna). Requirement analysis[25][26][27][28] is a critical and long-standing research area in software engineering. It

facilitates collecting, identifying, categorizing and modeling the users’ needs and expectations using various techniques[29][30][31][32][33][34]. In this

paper, the requirements are the descriptions in natural language (English)[33]  that details the requirements of the verification/modeling goal and an

overall description of the proofs/models. The task is to analyze and break down the final goal into detailed steps described in natural language. The natural

language used in this paper is English.

Task 2. Full Proof Generation (abbrev. ProofGen). This task formalizes a requirement in natural language into verifiable proofs or models written in formal

specification languages, similar task formulation to existing works[35][34][36].

Task 3. Proof Segment Generation (abbrev. SegGen). Unlike ProofGen, which requires generating complete proofs/models, SegGen provides more detailed

descriptions in natural language and requires LLMs to write less. Given a text description articulating how to implement the proofs/modeling, the task

outputs a segment written in the formal specification that serves as a component in the complete proof/model. This task formulation is similar to prior

work[16][37][38] and similar to the formulation of code generation[39][40][8][6].

Task 4. Proof Completion (abbrev. ProofComplete). Similar to code completion[41][42][43][44], ProofComplete suggests the suffix of the given prefix, similar

to prior work[45]. Note that in order to prevent LLMs from deviating from the original verification goal, we also provide the requirement in our evaluation,

although it is not compulsory for this task formulation.

Task 5. Proof InFilling (abbrev. ProofInfill). Given a proof/model with a mask in the middle, the task requires LLMs to fill proper formal specifications so

that the completed proofs/models can pass the verifier. This formulation is the same as code infilling[46]. Also, similar to ProofComplete, we provide the

requirement in our evaluation during the infilling to prevent LLMs from deviating from the original verification goal.

Task 6. Proof Generation from Code (abbrev. Code2Proof). In addition to generating formal specifications from natural languages, formal specifications can

also be generated from code if the verification goal is the property of a given program. In this paper, we focus mainly on specifications in form of code

annotations[47][48], expressing specifications (e.g., pre-/post-condition, loop invariants) that help one to verify that (part of) a program satisfies certain

properties. The task takes the code with properties to be verified as input and outputs the code with generated annotated formal specifications. Similar task

formulation can be found in recent works[49][50].

Figure 2. Six tasks towards Informal to Formal Verification

3. Data Construction

3.1. Formal Specification Language Selection

In this study, we consider five formal specification languages that can be used for formal verification, including Coq[51], Dafny[52], Lean4[53], ACSL

(ANSI/ISO C Specification)[47]  and TLA+[54][55]. We selected them in order to cover various verification paradigms (i.e., theorem proving and model

checking) and verification scenarios (e.g., mathematical reasoning and program verification).

qeios.com doi.org/10.32388/MLAOTG 3

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


First, for interactive theorem provers which are suitable for developing rigorous mathematical proofs, we consider Coq[51] and Lean4[53] because Coq has

been extensively used in academia and research for proving mathematical theorems and in formal verification of software for a long history, while Lean4

garnered considerable attention from the mathematical community[16][24][56] recently. Second, for programming languages with built-in specification, we

consider Dafny[52] and ACSL[47][57] because they seamlessly integrate specifications (e.g., pre-/post-conditions, loop invariants) within the code, ensuring

the correctness through embedded assertions and conditions. Lastly, for model checking[58][59], we consider TLA+[54] since it is a representative math-

based formal language for modeling algorithms and programs such as concurrent and distributed systems.

3.2. Data Preparation

The workflow of data preparation for FM-ALPACA and FM-BENCH is illustrated in Figure 3. The workflow begins with the data collection, where formal proofs

in the desired formal specification languages and related configurations and dependencies are gathered from open-source repositories in Github. Then,

formal proofs are extracted from the collected repositories. Next, the proofs go through the data quality assurance check by execution, the proofs that

cannot be verified successfully are filtered out. The remaining ones are split into segments (e.g., definition of functions or conditions).

Given the impracticality of manually writing descriptions for all the collected formal proofs, we leveraged distilled GPT4[60]  to generate high-quality

informal proof descriptions via meticulous prompting. This alternative is well-established and frequently employed in prior literature[21][16][20][61].

Specifically, for each formal specification language, we designated the model as an expert in that particular language, equipping it with comprehensive

domain knowledge about the language’s specifications, essential grammatical cues, and three-shot examples featuring proof segments in the formal

language as inputs and natural language descriptions as outputs. This approach ensures that the collected descriptions are of high quality and well-

organized. It’s important to note that we did not generate descriptions for proof segments shorter than two lines (such as package imports or constant

definitions) because their meaning is self-explained, with the exception of ACSL, whose proof segments are typically 1-2 lines.

After the descriptions for both full and segment proofs were prepared, we then prepared the data pairs for each task as shown in Task-wise Data Pairing in

Figure 3. Note that for Task 4, i.e., Proof Completion, to prepare the incomplete formal proof, we randomly choose a line number and delete the lines in the

proof after the line. For Task 5, i.e., Proof Infill, we randomly choose two line numbers and mask the lines between them. In case the remaining lines of

proof cannot provide sufficient information for the proof generation, we also provide the informal proof for these two tasks.

Figure 3. The Illustration of Data Preparation.

After pairing the instruction-response for different tasks, we manually designed five task instructions for each task and randomly assigned one for each

paired data to increase instruction diversity and avoid overfitting to certain instructions[62][63][64].

3.3. Data Statistics

The specification-language-wise and task-wise statistics are shown in Table  1 and Table  2. In particular, Table  1 presents a detailed breakdown of the

number of proofs and segments across five specification languages. Note that we split the prepared data for all the tasks and specification languages into

qeios.com doi.org/10.32388/MLAOTG 4

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


an 8:2 ratio, i.e., 80% for fine-tuning, named FM-ALPACA, 20% for benchmarking, named FM-BENCH, and show the separate statistics. In particular, there

are 4k+ verifiable proofs in total, with 249    2k proofs for each language. These proofs were split into 18k+ proof segments, with an average of 3.6k

segments for each language. The reason why the ratio of segments in FM-ALPACA and FM-BENCH is slightly less than 8:2 is that the train-test split was

applied to proofs, while the number of split segments in each proof varies.

 

Num of Proofs Num of Segments

Total FM-ALPACA FM-BENCH Total FM-ALPACA FM-BENCH

Coq 2126 1683 443 14939 11638 3301

Lean4 1163 919 244 1578 1261 317

ACSL 544 426 118 765 598 167

Dafny 249 206 43 417 348 69

TLA+ 256 199 57 594 476 118

Total 4338 3433 905 18293 14321 3972

Average 868 687 181 3659 2864 794

Table 1. Formal-Specification-Language-wise Statistics of Formal Verification Data

Table 2 shows the task-wise statistics. There are 18k instructions across six tasks, with an average of 3k instructions for each task. After splitting the train-

test set, FM-ALPACA contains 14k, and FM-BENCH has nearly 4k instructions. It is clear that the number of instructions for the task Segment Proof

Generation (SegGen) is far more than that for Requirement Analysis (ReqAna) and Full Proof Generation (ProofGen) because one full proof can be split into

numerous pieces of proof segments, and one proof can contribute to only one instruction for ReqAna and ProofGen. Note that the number of ReqAna (627)

and ProofGen (700) is unequal because we filtered out the instructions with more than 2048 tokens considering the context limits.

  Task Total FM-ALPACA FM-BENCH

1 Requirement Analysis 627 496 131

2 Full Proof Generation 700 557 143

3 Segment Proof Generation 14843 11597 3246

4 Proof Complete 658 520 138

5 Proof Infill 1439 1146 293

6 Code2Proof 70 56 14

 

Total 18337 14372 3965

Average 3056 2395 661

Table 2. Task-wise Statistics of Formal Verification Data

3.4. Validation Mechanism

For the tasks whose outputs are written in formal specification languages, we verify the full proofs against the corresponding verifiers, i.e., Coq, Dafny,

Lean4 use their own proving environment; formal specification written in TLA+ can be checked by TLC[65]; C programs with ACSL specifications can be

checked by Frama-C[57][66]. Also, for the proof segments that cannot be verified independently, for each extracted segment, we prepared a proof template

with a placeholder during data preparation. Whenever a generated segment is to be verified, we replace the placeholder in the template with the segment

and verify the completed formal proof.

∼

qeios.com doi.org/10.32388/MLAOTG 5

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


For the task whose outputs are written in natural language (i.e., ReqAna), we calculate the Bleu score[67] between the descriptions in FM-BENCH with the

predicted outputs.

Table 3. RQ1-3: Pass@1 Accuracy of LLMs’ Performance Across Formal Verification Task and Formal Specification Languages with (w/) and without (w/o) fine-

tuning. The greener, the better.

* -fma: fine-tuned with FM-ALPACA.

* -ultrachat: fine-tuned with UltraChat.

* -tulu: fine-tuned with Tulu3.

* -ultrachat-fma: fine-tuned with both UltraChat and FM-ALPACA.

* -tulu-fma: fine-tuned with both Tulu3 and FM-ALPACA.

Table 4. Evaluation on Requirement Analysis

* -fma: fine-tuned with FM-ALPACA.

qeios.com doi.org/10.32388/MLAOTG 6

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


4. Experiments

4.1. Experiment Setup

Studied LLMs. We selected ten LLMs as baselines without fine-tuning, including llama3.1-instruct-8B/70B[68], qwen2.5-instruct-7B/72B[69], qwen2.5-

coder-instruct-7B/-32B[70], starcoder-instruct-15B[71], deepseek-coder-instruct-7B-v1.5, deepseek-coder-instruct-33B[72], and deepseek-R1[73]. Note

that we avoid evaluating the GPT-series LLMs by OpenAI because the descriptions in FM-BENCH were generated by GPT-4o, making the evaluation fairer.

Fine-tuning. Instruction fine-tuning[17][18][20][74] aims to improve a model’s ability to effectively respond to human instructions and has shown strong

experimental potential in model enhancement. We select llama3.1-8B[68], qwen2.5-7B[69], and deepseek-coder-7B-v1.5[72]  as base models for fine-

tuning. We selected these three models because they have shown promising capability in tasks such as coding, mathematics, and reasoning, and fine-

tuning models in their scale is relatively affordable compared with fine-tuning larger scale models. We fine-tuned the three aforementioned base models

over three epochs using a learning rate 2e-5, a warm-up ratio of 0.04, a batch size of 512, and a cosine learning rate scheduler.

Baseline Fine-tuning Datasets: To distinguish whether the capability improvement is simply because more instruction tuning is applied, we also include two

commonly used fine-tuning datasets for comparison. We select UltraChat[20]  and Tulu-V3[75]  as baseline fine-tuning datasets for their popularity. In

particular, UltraChat is a large-scale dataset of instructional conversations that contains 1.5 million high-quality multi-turn dialogues and covers a wide

range of topics and instructions. Tulu-v3[75] embraces new data that is either carefully manually curated for quality or generated from GPT models. It is an

enhancement of its previous versions[74][61], focusing more on core skills of knowledge recall, reasoning, mathematics, coding, instruction following,

general chat, and safety.

Benchmarks for Related Capabilities (RQ4). To comprehensively evaluate the model’s capabilities, we tested the fine-tuned models on a series of

benchmarks: Math[76] and GSM-8K[77] for mathematical reasoning, BBH[78] for general reasoning, HumanEval[10] and MBPP[79] for coding.

Inference Strategies. We adopt different settings for different RQs. In particular, We use (1) the greedy sampling strategy to generate one single greedy

sample with a temperature of 0.0 and calculate Pass@1, and (2) nucleus sampling[80], where five solution samples were randomly generated with a

temperature of 0.2 for RQ1 and RQ2. We also consider different in-context learning strategies, including zero-shot and few-shot (we used 3-shot in the

experiment). For RQ3, we use a zero-shot greedy search with a temperature of 0.0 and a few-shot nuclear search with a temperature of 0.2 for a fair

comparison.

Experiment Environment. The fine-tuning experiment was conducted on 32 Nvidia A100-40G GPUs, while inference was on a single Nvidia A100-80G GPU

with vLLM[81].

4.2. RQ1. Basic Performance across Formal Specification Tasks

To understand the current LLMs’ performance in six tasks, we evaluate 8 LLMs against FM-BENCH with model size ranges from 7B to 72B. The upper part of

Table 3 and the upper part of Table 4 show LLMs’ basic performance without fine-tuning.

Task-wise: LLMs perform the best in generating proof from code (Code2Proof), with an average of 43.57% Pass@1, followed by ProofComplete (18.44%)

and ProofInfill (17.38%). In contrast, LLMs fall short in generating both the entire formal proof (8.65%) and the proof segments (10.61%). We analyzed the

failures and found that syntax errors account for a large proportion, with 12.15% failures caused by syntax errors (Appendix B). The observation echoes the

motivation of prior work[16]  and is reasonable due to the grammar difference between most formal specification languages and other programming

languages like Python. Regarding requirement analysis, as shown in the upper part of Table 4, the Bleu scores between the ground-truth description and

LLM-generated ones range from 0.24 to 0.55.

LLM-wise: Without fine-tuning, DeepSeek-R1 achieved the best average (27.11%), followed by qwen2.5-coder-instruct-32B (21.19%).

Model Size: Larger LLMs generally perform better than smaller LLMs. For example, llama3.1-8B only achieved 1.43% in generating TLA+ segments, while

llama3.1-70B boosts to 22.86% in the same task. However, there are several exceptions worth noticing, especially for ProofInfill and Code2Proof. For

example, llama-3.1-8B achieved 50% in ProofInfill (ACSL), yet the performance drops to 21.43% using the 70B model. Similar observations can be found in

qwen2.5-instruct. The decrease in performance is inherently due to the fine-tuning strategy of these instruction models: they are trained to excel in

generating rather than filling in the blanks[46]. Also, we conducted a more detailed examination of generated segments and observed that larger LLMs tend

to fill in the proof segments that not only look more plausibly correct and well-organized but also include extra content. The additional content, yet, is either

redundant, as it repeats information that appears in the subsequent proof, or is incomplete. Promisingly, recent model developers have noticed such

conundrums and refined their fine-tuning strategy for fill-in-the-middle tasks[72].

qeios.com doi.org/10.32388/MLAOTG 7

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Table 5. RQ2: Language-wise LLMs’ Performance. Pass@1 and Pass@5 Accuracy in Generating Proof Segments Across Formal Specification Languages Under

Zero/Few-shot without fine-tuning.

* The improvement ratios shown in “Pass@5” column are calculated by comparing with the scores in Pass@1, and the ratios shown in “Few-shot” column are

calculated by comparing with the scores in Pass@5.

Table 6. RQ4: Capability Migration from FM-ALPACA to Math, Reasoning, and Coding.

4.3. RQ2. Formal Specification Languages-wise Capability

Table 5 shows the LLMs’ performance across formal specification languages in the task of generating proof segments (SegGen). This task accounts for the

most instructions and serves as the basic capability for other proof generation tasks. We can see that LLMs perform the best in ACSL (average: 34.92%),

followed by Dafny (15.97%) while performing unsatisfactorily in other formal specification languages. The observation is reasonable because the syntax of

ACSL is basically an annotation of C language, while Dafny shares similar grammar as C# and Java. Thus, generating proof segments in ACSL and Dafny is

generally easier than generating other specification languages.

In addition, we explore whether increasing the attempts (1    5) with a higher temperature (0.0  0.2) and in-context learning could bring about

improvement. The improvement ratios are shown in red in Table 5. The results of Pass@5 are better than those of Pass@1, with an average score increase

from 10.82% (Dafny) to 63.64% (ACSL) in different languages. Moreover, when using 3-shot, the performance increases dramatically, with 51.33% (Dafny)

to over five times (ACSL) improvement compared with zero-shot Pass@5. The results indicate the potential of in-context learning in generating correct

specification languages.

4.4. RQ3. Improvement by Fine-tuning

We further investigate whether FM-ALPACA could bring about improvement. The lower part of Table  3 and Table  4 shows the results. From Table  3,

dramatic improvements can be observed in generating full and segmental proofs after fine-tuning. Note that the model size of fine-tuned models is 7B 

 8B, while the performance largely outperforms the 70B+ models without fine-tuning. Furthermore, after fine-tuning with formal data, the 7   8B fine-

tuned models can achieve comparable or slightly better performance than Deepseek-R1-671B, with 27.31% achieved by qwen2.5-coder-7B fine-tuned with FM-

ALPACA (R1-671B: 27.11%). It may suggest the possibility of distilling domain-specific small models for handier usage.

Task-wise: Improvements in generation tasks (i.e., ProofGen, SegGen, and ProofComplete) are substantial. ProofGen doubles the performance, and

SegGen more than triples. The dramatic increases happen in all models fine-tuned with FM-ALPACA in SegGen Task, from nearly all zeros to 29.98% 

 90.48%. An increase of 41% can also be observed in Table 4. The experimental improvements make evident the effectiveness of fine-tuning in formal

verification tasks.

Yet, drops can be observed in fill-in-the-middle tasks (i.e., ProofInfill and Code2Proof). The results echo the observation made in RQ1 (Section 4.2), where

the large LLMs perform worse than small LLMs in fill-in-the-middle tasks. The results also indicate the necessity of adopting different fine-tuning

strategies other than instruction tuning only.

→ →

∼ ∼

∼

qeios.com doi.org/10.32388/MLAOTG 8

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Fine-tuning Datasets: Take a closer look at the LLMs fine-tuned with general-purpose datasets (i.e., llama3.1-ultrachat and llama3.1-tulu) in Table 3, with

them only, no or opposite effects can be observed. The results indicate the complementarity of FM-ALPACA and existing general-purpose fine-tuning

datasets. Additionally, by combining with general-purpose datasets, the performance can be further improved (e.g., llama3.1-tulu-fma).

Comparison with Few-shot: Compared with the best results in Table  5 achieved by 3-shot, the results after fine-tuning (Table  3) still generally

outperform the 3-shot results. The results indicate that although in-context learning can improve LLMs’ performance, the enhancement is limited.

Further significant improvements still require fine-tuning with formal data. This may also suggest that in-context learning alone cannot adequately address

capability deficits in formal verification tasks but rather stem from a lack of knowledge.

4.5. RQ4. Capability Migration from Formal Verification to Related Tasks

Finally, we explore whether fine-tuning with FM-ALPACA could benefit related capabilities. Table 6 shows the results. The base model is llama3.1-8B, fine-

tuned under two base fine-tuned datasets with and without FM-ALPACA. On average, with FM-ALPACA, an increase of 1.37% to 5.15% can be observed.

Interestingly, a dramatic increase (62.53%) can be observed in HumanEval compared with the performance of the model that is only fine-tuned with

UltraChat. The experiment may indicate that feeding more formal data may improve LLMs’ coding, reasoning, and math capabilities.

5. Conclusion

This paper contributes a comprehensive assessment and formulation to understand LLMs’ capability in formal verification. We constructed 18k high-

quality instruction-response pairs across five formal specification languages in six tasks. The fine-tuned models, fine-tuning data, and the benchmark are

released to facilitate subsequent studies.

Limitations

This paper has two primary limitations that offer avenues for future research. First, the primary limitation of our work is that our benchmark relies on

model-generated data. While this approach effectively reduces manual efforts; it may introduce biases and data leakage issues in the dataset towards the

models that generated the data. To address this limitation, we use gpt-4o to generate the natural language descriptions, while during the evaluation, we

use other LLMs for evaluation. Second, another limitation of our work lies in the validation design. When creating ProofInfill and ProofComplete data, it is

possible that the properties to be verified or theorems to be proven are masked. If LLMs happened not to generate these properties/theorems, the

generated “proofs/models” could escape the verifier/checker, mistakenly labeling the output as correct. To avoid this scenario, we include the requirement

descriptions as part of the input, guiding LLMs to generate the necessary properties or theorems without omission.

Appendix A. Related Work

The formal specification datasets or benchmarks offer a standard, well-defined set of problems, providing a shared challenge that helps build a

community of practice among researchers. According to different verification techniques, the existing benchmarks mainly fall into two categories; we

discuss them separately.

A.1. Theorem Proving Datasets

Formal theorem proving represents theorems and proofs in a machine-verifiable format[82], ensuring their correctness using rigorous logical rules. A

recent survey[4] summarized the existing datasets for theorem proving. In particular, the informal benchmarks craft the proofs from various sources such

as ProofWiki, textbooks, and public corpus. NL-PS[83]  first builds a natural language premise selection dataset source from ProofWiki. Similarly,

NaturalProofs[6] further incorporates data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it, NaturalProofs-

Gen[8]  contains around 14.5k theorems for informal proof generation. Moreover, MATcH[84]  constructs over 180k statement-proof pairs for matching

using the MREC corpus2.

For formal datasets, a line of efforts focuses on extracting and cleaning theorems and proofs written in various specification languages (e.g., Coq, Isabelle,

Lean) from established formal libraries and verification projects. For example, LeanDojo[7]  extracts over 98k theorems and proofs with 130k premises

from Lean mathlib[85]. Besides extracting data from existing projects, several works manually annotate or formalize the problems in natural language. For

example, MiniF2F[86] manually formalizes 488 Olympiad-level problems across 4 proof systems and equally splits them into a validation set and a test set.

FIMO[87] and ProofNet[88] formalize the theorem statements of the International Mathematical Olympiad and undergraduate-level problems in Lean. In

qeios.com doi.org/10.32388/MLAOTG 9

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


addition, datasets for Dafny also attract research contributions because industries like Amazon adopted Dafny to verify cryptographic libraries,

authorization protocols, a random number generator, and the Ethereum virtual machine. Dafny datasets such as CloverBench[40] and DafnyGym[89].

A.2. Model checking datasets

Model checking is an automated technique used in computer science and formal methods to verify the correctness of systems, particularly those with finite

state spaces. It systematically checks whether a system’s model satisfies a given specification, usually expressed in formal specification languages. The

basic idea is to explore all possible system states to ensure the desired properties hold in every conceivable scenario.

Model checking benchmarks are less than that for theorem proving. Currently, there are few model-checking benchmarks for proving, while several

model-checking subjects are going with specific model-checking languages such as CMurphi[90] and TLA+[54]. In particular, CMurphi is a software tool

used to verify concurrent and distributed systems through explicit state enumeration. It implements the Murphi verification language, which allows users

to describe finite-state systems in a procedural style. The core principle behind CMurphi is to explore the state space of a system exhaustively to check for

violations of specified invariants or properties. Another example is TLA+ (Temporal Logic of Actions), a high-level language for modeling programs and

systems suitable for concurrent and distributed systems.

Appendix B. Proportion of Failures Caused by Syntax Error

We listed the proportions of failures caused by syntax errors for each LLM and each task in Table 8. We used a set of pre-defined keywords (summarized in

Table 7 to identify if a verification failure is caused by syntax errors. Specifically, we consider a failure caused by syntax error if its error message contains

at least one keyword in Table 7.

  Language Keywords

1 Coq “Syntax Error:”

2 Lean4 “unexpected token ”, “unknown identifier”, “type mismatch”

3 ACSL “unexpected token”

4 Dafny “type errors detected”

5 TLA+ “***Parse Error***”, “Unknown operator”

Table 7. Keywords for identifying syntax error raised by each language’s verifier.

qeios.com doi.org/10.32388/MLAOTG 10

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


LLMs Size

ProofGen SegGen ProofComplete ProofInfill Code2Pr

TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny ACSL TLA Coq Lean Dafny TLA Coq Lean Dafny ACSL ACSL

llama3.1-

instruct
8B 0/13 1/45 33/58 0/10 1/12 43/69 746/2910 78/124 4/33 4/63 4/11 45/81 16/34 1/5 16/34 44/157 27/60 0/13 1/7 0/4

llama3.1-

instruct
70B 2/12 0/44 38/53 1/8 1/13 43/54 71/2802 75/114 16/32 5/38 6/8 44/81 10/31 1/5 15/34 39/153 22/49 0/13 2/11 3/11

qwen2.5-

instruct
7B 10/13 1/46 30/56 1/10 0/11 26/69 303/2914 53/122 5/34 6/62 9/11 35/73 8/29 1/5 14/34 66/156 31/53 0/13 4/7 3/6

qwen2.5-

instruct
72B 7/12 0/44 25/48 1/8 9/11 47/61 40/2848 54/116 11/27 0/55 7/11 35/74 8/24 1/5 13/34 59/149 20/49 0/11 0/9 1/6

qwen2.5-

coder-

instruct

7B 9/13 0/46 32/55 0/10 0/14 60/68 22/2882 72/116 6/32 53/61 10/11 12/80 8/32 2/6 17/34 34/159 26/50 1/12 0/7 0/6

qwen2.5-

coder-

instruct

32B 7/13 0/44 26/52 1/10 2/11 50/61 31/2825 68/119 9/27 25/46 5/8 24/79 6/23 3/4 17/33 51/152 16/43 0/12 0/4 0/6

deepseek-

coder-

instruct

7B 10/13 0/46 29/55 0/10 0/13 35/67 9/2894 62/127 3/34 43/63 9/10 14/82 11/31 2/5 22/34 18/160 23/56 0/10 1/13 1/12

deepseek-

coder-

instruct

33B 12/13 0/47 43/58 4/10 0/14 66/68 52/2888 81/126 8/32 45/61 10/11 3/81 6/31 2/4 19/34 6/161 23/50 0/14 0/11 1/13

starcoder-

instruct
15B 8/12 0/46 24/54 2/7 3/10 36/51 10/2887 67/124 12/26 1/63 6/8 4/74 7/27 1/4 20/34 6/149 23/49 0/12 0/9 1/10

Table 8. Proportion of Verification Failures Caused by Syntax Errors

1 Denominator represents the total number of failures.

Appendix C. Example Specifications in FM-ALPACA and FM-BENCH

The examples of the five formal specification languages are shown in Figure 4.

Figure 4. Formal Specification Languages in FM-bench

qeios.com doi.org/10.32388/MLAOTG 11

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Appendix D. Collected Repositories

We listed the repositories that were collected for data construction in the following. Note that one can easily add more repositories into FM-ALPACA and FM-

BENCH.

For ACSL:

https://github.com/manavpatnaik/frama-c-problems

https://github.com/fraunhoferfokus/acsl-by-example

For TLA+:

https://github.com/tlaplus/Examples

For Lean4:

https://github.com/leanprover/lean4

For Coq:

https://github.com/coq/coq

For Dafny:

https://github.com/vladstejeroiu/Dafny-programs

Appendix E. Complete Evaluation Result

The Pass@1 and Pass@5 are shown in Table 9. It is a completed version of Table 3.

Table 9. Full Experiment Results on Pass@1 and Pass@5

qeios.com doi.org/10.32388/MLAOTG 12

https://github.com/manavpatnaik/frama-c-problems
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/tlaplus/Examples
https://github.com/leanprover/lean4
https://github.com/coq/coq
https://github.com/vladstejeroiu/Dafny-programs
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Appendix F. Prompt Design

We listed the prompts that are used for data preparation and inference in the following. For data preparation, as shown in Figure 5, to generate

descriptions for the given proof segments, the prompt template consists of five parts: (1) Role description, (2) Domain knowledge of TLA+, (3) Task

description, (4) Few-shot examples (we show one example in the figure, while three-shots were used in RQ2), (5) The proof or proof segment to be

summarized.

For the inference, for each task, we designed five different instructions to avoid overfitting. The prompts for each task are shown in Figure 6 ∼ Figure 10.

For each task, we first randomly choose one instruction and concat the inputs.

Figure 5. Prompt for generating TLA+ description. The prompt templates for other formal specification

languages are in the same structure.

qeios.com doi.org/10.32388/MLAOTG 13

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Figure 6. Prompt for SegGen Task.

Figure 7. Prompt for ProofGen Task.

Figure 8. Prompt for ProofComplete Task.

qeios.com doi.org/10.32388/MLAOTG 14

https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


Figure 9. Prompt for ProofInfill Task.

Figure 10. Prompt for Code2Proof Task.

Footnotes

1 For ease of expression, we generally refer to verifiable formal proofs and checkable models as “proofs” for the sake of presentation simplification.

2 https://mir.fi.muni.cz/MREC/

References

1. a, b, cYang K, Poesia G, He J, Li W, Lauter K, Chaudhuri S, Song D (2024). "Formal Mathematical Reasoning: A New Frontier in AI". arXiv preprint arXiv:2412.16

075.

2. a, bAlphaProof, DeepMind and Teams, AlphaGeometry (2024). "AI achieves silver-medal standard solving International Mathematical Olympiad problems.�25

July 2024."

3. a, bTrinh TH, Wu Y, Le QV, He H, Luong T (2024). "Solving olympiad geometry without human demonstrations". Nature. 625 (7995): 476–482.

4. a, bLi Z, Sun J, Murphy L, Su Q, Li Z, Zhang X, Yang K, Si X (2024). "A Survey on Deep Learning for Theorem Proving". arXiv preprint arXiv:2404.09939.

5. a, bTao T (2024). "AI Will Become Mathematicians' 'Co-Pilot'". https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/.

6. a, b, cWelleck S, Liu J, Le Bras R, Hajishirzi H, Choi Y, Cho K (2021). "NaturalProofs: Mathematical Theorem Proving in Natural Language". Preprint, arXiv:2104.

01112.

7. a, b, cYang K, Swope AM, Gu A, Chalamala R, Song P, Yu S, Godil S, Prenger R, Anandkumar A (2023). "Leandojo: Theorem proving with retrieval-augmented la

nguage models". arXiv preprint arXiv:2306.15626.

qeios.com doi.org/10.32388/MLAOTG 15

https://mir.fi.muni.cz/MREC/
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


8. a, b, cWelleck S, Liu J, Lu X, Hajishirzi H, Choi Y (2022). "Naturalprover: Grounded mathematical proof generation with language models". Advances in Neural I

nformation Processing Systems. 35: 4913–4927.

9. ^Yang K, Deng J (2019). "Learning to prove theorems via interacting with proof assistants." In: International Conference on Machine Learning. PMLR. pp. 6984

–6994.

10. a, bChen M, Tworek J, Jun H, Yuan Q, Ponde de Oliveira Pinto H, Kaplan J, Edwards H, Burda Y, Joseph N, Brockman G, Ray A, Puri R, Krueger G, Petrov M, Khlaaf

H, Sastry G, Mishkin P, Chan B, Gray S, Ryder N, Pavlov M, Power A, Kaiser L, Bavarian M, Winter C, Tillet P, Petroski Such F, Cummings D, Plappert M, Chantzis

F, Barnes E, Herbert-Voss A, Hebgen Guss W, Nichol A, Paino A, Tezak N, Tang J, Babuschkin I, Balaji S, Jain S, Saunders W, Hesse C, Carr AN, Leike J, Achiam J,

Misra V, Morikawa E, Radford A, Knight M, Brundage M, Murati M, Mayer K, Welinder P, McGrew B, Amodei D, McCandlish S, Sutskever I, Zaremba W (2021).

"Evaluating large language models trained on code". arXiv. cs.LG: 2107.03374.

11. ^Austin J, Odena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q, et al. (2021). "Program Synthesis with Large Language Models". ar

Xiv preprint arXiv:2108.07732.

12. ^Appel AW. "Verified Software Toolchain". In: Barthe G, editor. Programming Languages and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 1

-17. ISBN 978-3-642-19718-5.

13. ^Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S (2009). "seL4: f

ormal verification of an OS kernel". Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP '09, New York, NY, USA: Associatio

n for Computing Machinery. p. 207–220. doi:10.1145/1629575.1629596.

14. ^Leroy X, Blazy S, Ke4stner D, Schommer B, Pister M, Ferdinand C (2016). "CompCert-a formally verified optimizing compiler". In: ERTS 2016: Embedded Real

Time Software and Systems, 8th European Congress.

15. ^Hawblitzel C, Howell J, Lorch JR, Narayan A, Parno B, Zhang D, Zill B (2014). "Ironclad apps: End-to-End security via automated Full-System verification." In:

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 165–181.

16. a, b, c, d, e, fWang R, Zhang J, Jia Y, Pan R, Diao S, Pi R, Zhang T (2024). "Theoremllama: Transforming general-purpose llms into lean4 experts". arXiv preprint

arXiv:2407.03203.

17. a, bWei J, Bosma M, Zhao VY, Guu K, Yu AW, Lester B, Du N, Dai AM, Le QV (2021). "Finetuned language models are zero-shot learners". arXiv preprint arXiv:210

9.01652.

18. a, bSanh V, Webson A, Raffel C, Bach SH, Sutawika L, Alyafeai Z, Chaffin A, Stiegler A, Le Scao T, Raja A, et al. (2021). "Multitask prompted training enables zero

-shot task generalization". arXiv preprint arXiv:2110.08207.

19. ^Tihanyi N, Jain R, Charalambous Y, Ferrag MA, Sun Y, Cordeiro LC (2023). "A new era in software security: Towards self-healing software via large language

models and formal verification". arXiv preprint arXiv:2305.14752.

20. a, b, c, dDing N, Chen Y, Xu B, Qin Y, Hu S, Liu Z, Sun M, Zhou B (2023). "Enhancing chat language models by scaling high-quality instructional conversations".

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics. pp. 3029–30

51. doi:10.18653/v1/2023.emnlp-main.183. Available from: https://aclanthology.org/2023.emnlp-main.183/.

21. a, bWang Y, Kordi Y, Mishra S, Liu A, Smith NA, Khashabi D, Hajishirzi H (2022). "Self-instruct: Aligning language models with self-generated instructions". ar

Xiv preprint arXiv:2212.10560.

22. ^Jimenez CE, Yang J, Wettig A, Yao S, Pei K, Press O, Narasimhan K (2023). "Swe-bench: Can language models resolve real-world github issues?" arXiv preprint

arXiv:2310.06770.

23. ^Spiess C, Gros D, Pai KS, Pradel M, Rabin MRI, Alipour A, Jha S, Devanbu P, Ahmed T (2024). "Calibration and correctness of language models for code". arXiv

preprint arXiv:2402.02047. Available from: https://arxiv.org/abs/2402.02047.

24. a, bTao T, Dillies Y, Mehta B (2023). "Formalizing the proof of PFR in Lean4 using Blueprint: a short tour". Blog post, November.

25. ^Davis AM. Software requirements: analysis and specification. Prentice Hall Press; 1990.

26. ^Anton AI (1996). "Goal-based requirements analysis." In: Proceedings of the second international conference on requirements engineering. IEEE. pp. 136–144.

27. ^Grady JO. System requirements analysis. Elsevier; 2010.

28. ^Jin Z. Environment modeling-based requirements engineering for software intensive systems. Morgan Kaufmann; 2017.

29. ^Taggart Jr W, Tharp MO (1977). "A survey of information requirements analysis techniques". ACM Computing Surveys (CSUR). 9 (4): 273–290.

30. ^Deeptimahanti DK, Babar MA (2009). "An automated tool for generating UML models from natural language requirements." In: 2009 IEEE/ACM Internationa

l Conference on Automated Software Engineering. IEEE. pp. 680–682.

qeios.com doi.org/10.32388/MLAOTG 16

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://aclanthology.org/2023.emnlp-main.183/
https://arxiv.org/abs/2402.02047
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


31. ^Javed M, Lin Y (2021). "iMER: Iterative process of entity relationship and business process model extraction from the requirements". Information and Software

Technology. 135: 106558.

32. ^Wang Y, Chen JW, Xia X, Jiang B (2021). "Intelligent requirements elicitation and modeling: A literature review". Journal of Computer Research and Developme

nt. 58 (4): 683–705.

33. a, bJin D, Zhao S, Jin Z, Chen X, Wang C, Fang Z, Xiao H (2024). "An Evaluation of Requirements Modeling for Cyber-Physical Systems via LLMs". arXiv preprint

arXiv:2408.02450.

34. a, bZhou Q, Li T, Wang Y (2022). "Assisting in requirements goal modeling: a hybrid approach based on machine learning and logical reasoning." In: Proceedin

gs of the 25th International Conference on Model Driven Engineering Languages and Systems, pp. 199–209.

35. ^Fatwanto A (2012). "Translating software requirements from natural language to formal specification." In: 2012 IEEE International Conference on Computati

onal Intelligence and Cybernetics (CyberneticsCom). IEEE. pp. 148–152.

36. ^Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013). "Feature model extraction from large collections of informal product description

s". Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, New York, NY, USA: Association for Computing Machiner

y. p. 290–300. doi:10.1145/2491411.2491455.

37. ^Wu Y, Jiang AQ, Li W, Rabe M, Staats C, Jamnik M, Szegedy C (2022). "Autoformalization with large language models". Advances in Neural Information Proces

sing Systems. 35: 32353–32368.

38. ^Jiang AQ, Welleck S, Zhou JP, Li W, Liu J, Jamnik M, Lacroix T, Wu Y, Lample G (2022). "Draft, sketch, and prove: Guiding formal theorem provers with informal

proofs". arXiv preprint arXiv:2210.12283.

39. ^Chaudhary S (2023). "Code Alpaca: An Instruction-following LLaMA model for code generation". GitHub repository. Available from: https://github.com/sahil2

80114/codealpaca.

40. a, bSun C, Sheng Y, Padon O, Barrett C (2024). "Clover: Closed-loop verifiable code generation". Preprint, arXiv:2310.17807. Available from: https://arxiv.org/ab

s/2310.17807.

41. ^Raychev V, Vechev M, Yahav E (2014). "Code completion with statistical language models". In: Proceedings of the 35th ACM SIGPLAN conference on programm

ing language design and implementation. pp. 419–428.

42. ^Husein RA, Aburajouh H, Catal C (2024). "Large language models for code completion: A systematic literature review". Computer Standards & Interfaces. Page

103917.

43. ^Svyatkovskiy A, Zhao Y, Fu S, Sundaresan N (2019). "Pythia: Ai-assisted code completion system." In: Proceedings of the 25th ACM SIGKDD international confe

rence on knowledge discovery & data mining, pp. 2727–2735.

44. ^Dakhel AM, Majdinasab V, Nikanjam A, Khomh F, Desmarais MC, Jiang ZMJ (2023). "Github copilot ai pair programmer: Asset or liability?" Journal of Systems

and Software. 203: 111734.

45. ^Song P, Yang K, Anandkumar A (2024). "Towards large language models as copilots for theorem proving in lean". arXiv preprint arXiv:2404.12534.

46. a, bFried D, Aghajanyan A, Lin J, Wang S, Wallace E, Shi F, Zhong R, Yih W, Zettlemoyer L, Lewis M (2022). "Incoder: A generative model for code infilling and sy

nthesis". arXiv preprint arXiv:2204.05999.

47. a, b, cBaudin P, Filliatre JC, Marche C, Monate B, Moy Y, Prevosto V (2021). "ACSL: ANSI/ISO C Specification". Citeseer.

48. ^Hatcliff J, Leavens GT, Leino KRM, M\u00fcller P, Parkinson M (2012). "Behavioral interface specification languages". ACM Comput. Surv.. 44 (3): Article 16, 5

8 pages.

49. ^Wen C, Cao J, Su J, Xu Z, Qin S, He M, Li H, Cheung S, Tian C (2024). "Enchanting program specification synthesis by large language models using static analysi

s and program verification." In: International Conference on Computer Aided Verification. Springer. pp. 302–328.

50. ^Ma L, Liu S, Li Y, Xie X, Bu L (2024). "SpecGen: Automated Generation of Formal Program Specifications via Large Language Models". Preprint, arXiv:2401.08

807.

51. a, bHuet G. The calculus of constructions. PhD thesis. INRIA; 1986.

52. a, bLeino KRM (2010). "Dafny: An automatic program verifier for functional correctness." In: International conference on logic for programming artificial intelli

gence and reasoning. Springer. pp. 348–370.

53. a, bMoura L de, Ullrich S (2021). "The Lean 4 Theorem Prover and Programming Language". In Automated Deduction – CADE 28: 28th International Conferenc

e on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, Berlin, Heidelberg: Springer-Verlag. p. 625–635. doi:10.1007/978-3-030-79876-5_3

7.

qeios.com doi.org/10.32388/MLAOTG 17

https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1145/2491411.2491455
https://doi.org/10.1145/2491411.2491455
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2310.17807
https://arxiv.org/abs/2310.17807
https://frama-c.com/html/acsl.html
https://arxiv.org/abs/2401.08807
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


54. a, b, cYu Y, Manolios P, Lamport L. Model checking TLA+ specifications. In: Advanced research working conference on correct hardware design and verification

methods. Springer; 1999. p. 54-66.

55. ^Lamport L (2002). "Specifying systems: the TLA+ language and tools for hardware and software engineers."

56. ^Avigad J, Buzzard K, Lewis RY, Massot P (2020). "Mathematics in Lean". Technical report, Lean community. En https://leanprover-community.

57. a, bCuoq P, Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2012). "Frama-C: A software analysis perspective." In: International conference on so

ftware engineering and formal methods. Springer. pp. 233–247.

58. ^Jhala R, Majumdar R (2009). "Software model checking". ACM Computing Surveys (CSUR). 41 (4): 1–54.

59. ^Clarke EM. Model checking. In: Foundations of Software Technology and Theoretical Computer Science: 17th Conference Kharagpur, India, December 18--20,

1997 Proceedings 17. Springer; 1997. p. 54--56.

60. ^GPT-4 and GPT-4-turbo Preview (2023). Available from: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4

-turbo-preview.

61. a, bWang Y, Ivison H, Dasigi P, Hessel J, Khot T, Chandu K, Wadden D, MacMillan K, Smith NA, Beltagy I, et al. (2023). "How far can camels go? exploring the sta

te of instruction tuning on open resources". Advances in Neural Information Processing Systems. 36: 74764–74786.

62. ^Lu Y, Liu J, Zhang Y, Liu Y, Tian X (2022). "Prompt distribution learning". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio

n. 5206–5215.

63. ^Feng CM, Yu K, Liu Y, Khan S, Zuo W (2023). "Diverse data augmentation with diffusions for effective test-time prompt tuning." In: Proceedings of the IEEE/CV

F International Conference on Computer Vision. pp. 2704–2714.

64. ^Sanh V, Webson A, Raffel C, Bach SH, Sutawika L, Alyafeai Z, Chaffin A, Stiegler A, Le Scao T, Raja A, Dey M, Bari MS, Xu C, Thakker U, Sharma SS, Szczechla E,

Kim T, Chhablani G, Nayak N, Datta D, Chang J, Jiang MTJ, Wang H, Manica M, Shen S, Yong ZX, Pandey H, Bawden R, Wang T, Neeraj T, Rozen J, Sharma A, Sa

ntilli A, Fevry T, Fries JA, Teehan R, Bers T, Biderman S, Gao L, Wolf T, Rush AM (2022). "Multitask prompted training enables zero-shot task generalization". P

reprint, arXiv:2110.08207.

65. ^Yu Y, Kuppe M. TLC Model Checker. Available from: https://tla.msr-inria.inria.fr/tlatoolbox/doc/model/executing-tlc.html.

66. ^Carvalho N, da Silva Sousa C, Pinto JS, Tomb A. Formal Verification of kLIBC with the WP Frama-C Plug-in. In: NASA Formal Methods: 6th International Symp

osium, NFM 2014, Houston, TX, USA, April 29--May 1, 2014. Proceedings 6. Springer; 2014. p. 343--358.

67. ^Papineni K, Roukos S, Ward T, Zhu WJ. (2002). "Bleu: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computational Linguistics; p. 311-318. doi:10.3115/1073083.1

073135. Available from: https://aclanthology.org/P02-1040/.

68. a, bMeta AI (2024). "Introducing meta llama 3: The most capable openly available llm to date". Blog. https://ai.meta.com/blog/meta-llama-3/. Online; accesse

d 15-January-2024.

69. a, bYang A, Yang B, Zhang B, Hui B, Zheng B, Yu B, Li C, Liu D, Huang F, Wei H, et al. (2024). "Qwen2.5 Technical Report". arXiv preprint arXiv:2412.15115.

70. ^Hui B, Yang J, Cui Z, Yang J, Liu D, Zhang L, Liu T, Zhang J, Yu B, Lu K, et al. (2024). "Qwen2. 5-coder technical report". arXiv preprint arXiv:2409.12186.

71. ^Lozhkov A, Li R, Ben Allal L, Cassano F, Lamy-Poirier J, Tazi N, Tang A, Pykhtar D, Liu J, Wei Y, et al. (2024). "Starcoder 2 and the stack v2: The next generatio

n". arXiv preprint arXiv:2402.19173. Available from: https://arxiv.org/abs/2402.19173.

72. a, b, cGuo D, Zhu Q, Yang D, Xie Z, Dong K, Zhang W, Chen G, Bi X, Wu Y, Li YK, et al. (2024). "DeepSeek-Coder: When the Large Language Model Meets Program

ming--The Rise of Code Intelligence". arXiv preprint arXiv:2401.14196.

73. ^Guo D, Yang D, Zhang H, Song J, Zhang R, Xu R, Zhu Q, Ma S, Wang P, Bi X, et al. (2025). "Deepseek-r1: Incentivizing reasoning capability in llms via reinforce

ment learning". arXiv preprint arXiv:2501.12948.

74. a, bIvison H, Wang Y, Pyatkin V, Lambert N, Peters M, Dasigi P, Jang J, Wadden D, Smith NA, Beltagy I, et al. (2023). "Camels in a changing climate: Enhancing l

m adaptation with tulu 2". arXiv preprint arXiv:2311.10702.

75. a, bLambert N, Morrison J, Pyatkin V, Huang S, Ivison H, Brahman F, Miranda LJV, Liu A, Dziri N, Lyu S, et al. 2024. "T\" ulu 3: Pushing frontiers in open langua

ge model post-training". arXiv preprint arXiv:2411.15124.

76. ^Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D, Steinhardt J (2021). "Measuring Mathematical Problem Solving With the MATH Datase

t". NeurIPS.

77. ^Cobbe K, Kosaraju V, Bavarian M, Chen M, Jun H, Kaiser L, Plappert M, Tworek J, Hilton J, Nakano R, Hesse C, Schulman J (2021). "Training Verifiers to Solve M

ath Word Problems". arXiv preprint arXiv:2110.14168.

qeios.com doi.org/10.32388/MLAOTG 18

https://leanprover-community/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4-turbo-preview
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#-gpt-4-and-gpt-4-turbo-preview
https://arxiv.org/abs/2110.08207
https://tla.msr-inria.inria.fr/tlatoolbox/doc/model/executing-tlc.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2402.19173
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG


78. ^Suzgun M, Scales N, Schärli N, Gehrmann S, Tay Y, Chung HW, Chowdhery A, Le QV, Chi EH, Zhou D, Wei J (2022). "Challenging BIG-Bench Tasks and Whether

Chain-of-Thought Can Solve Them". arXiv preprint arXiv:2210.09261.

79. ^Austin J, Odena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q, et al. (2021). "Program Synthesis with Large Language Models". ar

Xiv preprint arXiv:2108.07732.

80. ^Holtzman A, Buys J, Du L, Forbes M, Choi Y (2020). "The Curious Case of Neural Text Degeneration". In: 8th International Conference on Learning Representat

ions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

81. ^Kwon W, Li Z, Zhuang S, Sheng Y, Zheng L, Yu CH, Gonzalez JE, Zhang H, Stoica I (2023). "Efficient Memory Management for Large Language Model Serving

with PagedAttention". Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles.

82. ^Cook SA (2023). "The complexity of theorem-proving procedures." In: Logic, automata, and computational complexity: The works of Stephen A. Cook, pp. 143

–152.

83. ^Ferreira D, Freitas A (2020). "Natural language premise selection: Finding supporting statements for mathematical text". arXiv preprint arXiv:2004.14959.

84. ^Li WW, Ziser Y, Coavoux M, Cohen SB (2023). "BERT is not the count: Learning to match mathematical statements with proofs". arXiv preprint arXiv:2302.093

50.

85. ^The mathlib Community (2020). "The lean mathematical library". In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs an

d Proofs, POPL'20. ACM. doi:10.1145/3372885.3373824.

86. ^Zheng K, Han JM, Polu S (2021). "MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics". arXiv preprint arXiv:2109.00110.

87. ^Liu C, Shen J, Xin H, Liu Z, Yuan Y, Wang H, Ju W, Zheng C, Yin Y, Li L, Zhang M, Liu Q (2023). "FIMO: A Challenge Formal Dataset for Automated Theorem Pro

ving". Preprint, arXiv: 2309.04295.

88. ^Azerbayev Z, Piotrowski B, Schoelkopf H, Ayers EW, Radev D, Avigad J (2023). "ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathe

matics". Preprint, arXiv:2302.12433. Available from: https://arxiv.org/abs/2302.12433.

89. ^Mugnier E, Anaya Gonzalez E, Jhala R, Polikarpova N, Zhou Y (2024). "Laurel: Generating Dafny Assertions Using Large Language Models". Preprint, arXiv:24

05.16792. Available from: https://arxiv.org/abs/2405.16792.

90. ^Della Penna G, Intrigila B, Magazzeni D, Melatti I, Tronci E (2013). "Cgmurphi: Automatic synthesis of numerical controllers for nonlinear hybrid systems". Eur

opean Journal of Control. 19 (1): 14–36.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/MLAOTG 19

https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2405.16792
https://www.qeios.com/
https://doi.org/10.32388/MLAOTG

