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Abstract. This paper is devoted to event-observational modelling in physics and more 

generally natural science. The basic entities of such modelling are events and where space-

time is the secondary structure for the representation of events. The novelty of our approach 

is in using a new mathematical picture of events universe. The events observed by an 

observer are described by a dendrogram, a finite tree. The event dynamics are realized in the 

dendrogramic configuration space. In a dendrogram, all events are intercoupled via the 

hierarchic relational structure of the tree. This approach is called Dendrogramic Holographic 

Theory (DHT). We introduce the causal structure on the dendrogramic space, like the causal 

structure on the Minkowski space-time. In contrast to the latter, DHT-emergent causality is of 

a statistical nature. Each dendrogram represents an ensemble of observers with the same 

relational tree representation of the events they measured/collected. Technically the essence 

of causal modelling is in encoding dendrograms by real parameters and in this way 

transitioning to the real space-time. Then we proceed in the framework of information 

geometry corresponding to Hellinger distance and introduce a kind of light cone in the space 

of dendrograms. This is a step towards the development of DHT-analog special relativity. 

 

1. Introduction 

1.1 Dendrogram representation of events-preliminaries 

To achieve our objectives, we employ the following procedure to generate a 

dendrogram and a dendrogram branch 2-adic expansion. 

 

In our approach, we depict events (referred to as Bohr's phenomena) as branches 

within a dendrogram, which is essentially a finite tree. Figure 1 provides an illustration that 

describes the construction of a dendrogramic tree from data. These finite trees serve as an 

observer's epistemic representation of reality and are constructed as follows: 

 

1. Data collection: Measurements are performed to gather the necessary data. 

2. Hierarchical clustering algorithm: A hierarchical clustering algorithm is applied, utilizing a 

chosen distance metric and a specific clustering (linkage function) algorithm. 

3. Agglomerative hierarchical cluster tree: Using the selected distance metric and clustering 

algorithm, an agglomerative hierarchical cluster tree is constructed. Each event, with its 

unique branch, can be represented by a binary string or a p-adic expansion of yes/no 

questions. 

4. Dendrogram representation: The set of branches in the tree (or the strings that fully 

describe them) forms the dendrogram. Each branch, corresponding to a measured event, 

extends from the root to a leaf (referred to as an edge). 
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5. Relation between events: A longer common path from root to leaf of two branches 

signifies a closer relation between the corresponding events, based on the chosen distance 

metric and clustering algorithm. 

 

Within the context of an infinite number of events, the ontic description of the event-

universe is portrayed as an infinite tree. One class of such trees is p-adic trees, which are 

homogeneous trees with p > 1 edges branching from each vertex. These trees possess an 

algebraic structure and a topology consistent with this structure. The p-adic topology is 

governed by the p-adic ultrametric, satisfying the strong triangle inequality. The p-adic 

distance between two branches of the tree is determined by their common root, where a 

longer common root signifies a shorter distance. As branches represent events, the space of 

events, whether finite or infinite, is equipped with a p-adic ultrametric. Therefore, 

dendrograms encode hierarchic relations between events based on p-adic distances, rather 

than space-time localization of events. This common root distance determines the level of 

similarity between events. The geometry of this field exhibits peculiar properties, such as all 

triangles being isosceles, which arise from the strong triangle inequality. Moreover, upon 

defining “open” and “closed” balls as 

B(R, a) = { x: rp(a, x) <= R} and B-(R, a) = { x: rp(a, x) } 

each dendrogram edge can be represented by a 2-adic number: 

𝑒𝑑𝑔𝑒𝑖 = ∑ 𝑎𝑗 × 2
𝑗𝑘

𝑗=0  , where 𝑎𝑗 = 0,1. 

 

Figure 1. 

Relational observation 

of events. Observer O 

discriminates events A–

H and constructs an 

object, a dendrogram, 

which describes the 

relations between these 

events. (B) Each edge of 

the dendrogram is a 

binary string of 0s and 

1s which can be 

represented as a finite p-

adic expansion. Each 

edge summation of its 

finite p-adic expansion 

results in a natural 

number. Subtracting 

between two edges’ 

finite p-adic expansion 

results in a “potential 

gap”—qij. 
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Figure 2. The 2-adic tree 

 

1.2 dendrogramic holographic theory (DHT) 

Following the line of papers [1–6], we develop the event-observational approach to 

physics and more generally natural science [7,8]. In this approach events are the basic entities 

and where space-time is the secondary mathematical structure explored by observers for the 

special representation of events. As well as, e.g., in the event (relational) mechanics [3], 

events are connected via some relational structure. The novelty of our studies is in employing 

the hierarchic relational structures leading to the representation of events by the branches of 

trees – dendrograms. Finite trees encode the experimental data collected by observers 

(epistemic dendrograms) and infinite trees represent event-reality as it is (ontic 

dendrograms). The universe is pictured as an infinite tree covering all possible dendrograms. 

Depending on the structure of the universal dendrograms, we can consider a variety of 

possible universes. This approach to event-observational physics (and generally natural 

science) was structured within the Dendrogramic Holographic Theory (DHT) [1–6]. Here the 

universal tree can be treated as a relational dendrogram. 

 

DHT is not just an abstract theoretical construction. It is directly coupled to the 

experiment: the experimental data of any origin is transferred into a dendrogram with the aid 

of clustering algorithms. Temporal dynamics of data collection by an observer are 

represented as dynamics in the configuration space of dendrograms (see articles [1–3,7,8] for 

handling concrete experimental data within DHT, especially article [4] devoted to the 

dynamics). This is a good place to remark that DHT is “invariant to using of different 

clustering algorithms’’, in the sense that general properties of dynamics do not depend on an 
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algorithm (although dendrogramic picturing can differ). For simplicity, we proceed with 2-

adic, yes-no, clustering algorithms generating homogeneous 2-adic trees, with one incoming 

and two leaving branches for each vertex. We note that homogeneous trees can be endowed 

with algebra leading to the number field (or ring) structure. In this way, DHT is connected to 

the p-adic analysis and theoretical physics [9–14] (including studies of Parisi et al [15] on 

complex disordered systems). General trees are endowed with ultrametric topology, and such 

topological spaces were widely used in the theory of complex disordered systems [14,15]. 

In this paper, we introduce the causal structure on the dendrogramic configuration 

space, similar to the causal structure on Minkowski space-time. However, in contrast to the 

latter, DHT-emergent causality is of a statistical nature. So, this is causality on the 

dendrogramic parameter space where each point in this parameter space represents an 

ensemble of observers with the same epistemic dendrogramic, relational, representation of 

the events they measured/collected. We emphasize that the same dendrogram structure can be 

obtained for a variety of measurement data. In fact, different measurement data sets produce 

the same epistemic description of the universe when the relations between measurements are 

the same for different measurement data sets. on the dendrogramic configuration space. In 

DHT, each observer generates his own event-dendrograms evolving in the configuration 

space. The transition from one point-dendrogram to another is also observer-dependent. So, 

the DHT-causal structure is determined by ensembles of observers. In this way, we introduce 

the timelike and spacelike separated event-dendrograms. 

Technically the essence of the causal modelling is in encoding dendrograms by real 

parameters and in this way transition to the real space-time, i.e., in complete accordance with 

event mechanics, events are primary, and space-time is secondary. 

Following the construction of the dendrogramic parameter space we can introduce the 

information geometry casual structure. Thus, we consider the information metric on the space 

of probability distributions based on the Hellinger distance. This information metric 

determines a dendrogramic “light cone”, which draws an analogy to the Minkowski 

spacetime metric that characterizes events. This concept allows us to analyze the propagation 

of information and observer interactions within the dendrogramic framework. 

In this paper we perform an extended numerical simulation to check the matching of 

the dendrogramic and real space representations as well as matching the corresponding 

notions of causality: in the dendrogramic space and four-dimensional Minkowski space-time. 

We emphasize that DHT describes any kind of dynamics of experimental statistical 

data in the process of collection of outcomes of new observations performed by all possible 

observers. And it is surprising that any such process can be portrayed in the Minkowski 

space-time and its causal structure is consistent with the causal structure of special relativity. 

 

2. Causal structure on the space of dendrograms corresponding to ensembles of 

observables 

 

In our model, we introduce Oi i=1, 2,…N→∞ observers who collect/measure events/data. 

Thus, an observer with already collected m events e1, e2… em collects each time a single 

event, em+1 Each time an observer Oi collects/measures an event, they construct a dendrogram 

using the following procedure: Initially, they create a pairwise distance matrix, between all 
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m+1 events/data collected, where the distance between two acquired events is determined by 

a pre-defined distance metric. Then, employing a specific pre-chosen clustering algorithm, 

they construct an agglomerative hierarchical cluster tree, which we refer to as a dendrogram. 

To represent the dendrogram, we utilize a series of p-adic numbers, with each number 

encoding the relationship of a single event to the remaining events acquired by the observers. 

It's important to note that a dendrogram can only be constructed when the number of events is 

greater or equal to 2, as it relies on the relational structure among events. Initially, all N 

observers have a trivial dendrogram with two branches. 

As observers acquire more events, a range of potential dendrograms with three branches 

emerges. The number of observers (n) that generate a fixed, same, dendrogram can be 

represented as a fraction out of all observers (N) in our universe n/ N. Basically, n=n(D), 

where D is a dendrogram. This iterative process allows the observers' dendrograms to evolve 

event by event, leading to increasingly complex structures. Please refer to Figure 3 for a 

visual representation. 

 

 
Figure 3. An Abstract Representation of the Dendrogram Space 

This figure provides an abstract representation of the dendrogram space. At each level (m=2, 3, ..., 

M), unique dendrograms are displayed, with each one associated with a specific fraction of the N 

observers present in the universe. It is noteworthy that the cumulative fraction of observers' 

dendrograms at each level precisely sums up to 1, illustrating the complete representation of the entire 

observer population. In each level m=2,3,…M, each unique dendrogram belongs to a fraction of the N 

observers present in the universe. Each level’s total fraction of observers’ dendrograms sum to 1 

 

 

Now, we explore the question of whether a given dendrogram will transfer any fraction of 

observers from itself to another dendrogram in the future. By examining the structure of two 

dendrograms, can we predict whether they are connected? Dendrograms that exhibit observer 

flow from one to the other can be referred to as "timelike separated" dendrograms, while 

dendrograms that show no observer flow between them can be classified as "spacelike 

separated". More specifically, "timelike/spacelike separated" dendrograms are defined as 

follows: 

D1 and D2 are two, timelike separated, different dendrograms with the number of 

events/data collected 𝑒1 ≤ 𝑒2, respectively, 
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if and only if there exists at least one observer with D1 dendrogram with 𝑒1 events 

moves from D1 to D2 upon collecting the next 𝑒2 − 𝑒1 events 

D1 and D2 are two, spacelike separated, different dendrograms with the number of 

events/data collected 𝑒1 ≤ 𝑒2, respectively, 

if and only if there is no possibility for observers with D1 dendrogram with 𝑒1 events 

to move from D1 to D2 upon collecting the next 𝑒2 − 𝑒1 events 

In essence, we introduce the concept of a dendrogramic "light cone," which draws an 

analogy to the Minkowski spacetime metric that characterizes events. This concept allows us 

to analyze the propagation of information and observer interactions within the dendrogramic 

framework. 

By discerning the relationships and connectivity patterns among dendrograms, we aim to gain 

insights into the causal connections and spatiotemporal dynamics within the observed events. 

Through this analysis, we can uncover the underlying structures that govern the flow of 

information and the evolution of the observer’s dendrograms. 

Please note that while the causal structure of Minkowski space is not statistical in nature, in 

DHT, we seek to establish a statistical counterpart referred to as the "dendrogramic 

Minkowski causal structure of observers ensemble relational universes". In this context, each 

dendrogram represents a fraction of observers who collect a specific number of events (n) 

this fraction of observers has the same relations between their acquired events. 

 

 

 
Figure 4. An Abstract Representation of the Causal Structure in the Dendrogram Space 

This figure provides an abstract representation of the causal structure within the dendrogram space. 

Each dendrogram is characterized by a specific number of events, with one dendrogram containing E2 

events located inside the light cone of another dendrogram containing E1 events, where E2 is greater 

than n1. Remarkably, this relationship implies that at least one observer possessing the dendrogram 

with n1 events can transform it into the dendrogram with E2 events by collecting E2-E1 additional 

events. The illustration highlights the dynamic nature of the dendrogram space and its potential for 

causal transformations facilitated by event collection. 
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In order to achieve this objective, we require a parameter space for 

dendrograms that uniquely characterizes each individual dendrogram. Remarkably, we 

demonstrate that such a parameter space can be obtained, and intriguingly, it manifests as a 

four-dimensional space. Additionally, we observe that the interval between any two 

dendrograms in this parameter space exhibits a signature akin to Minkowski spacetime—a 

combination of spacelike intervals with positive values and timelike intervals with negative 

values, or vice versa. 

 

3. Real parametrization of dendrograms 

In our study, we employed the following equation to facilitate our analysis: 

The representation of a dendrogram branch, denoted as 𝑒𝑑𝑔𝑒𝑖, can be expressed as the sum 

of a series: 𝑒𝑑𝑔𝑒𝑖 = ∑ 𝑎𝑗 × 2
𝑗𝑘

𝑗=0 ,      𝑎𝑗 = 1,0                                            (1) 

where each term corresponds to the contribution of a specific level in the dendrogram's 

hierarchical structure. Here, 𝑎𝑗 represents the binary digit at position j, with possible values 

of 0 or 1. 

To further enhance our analysis, we introduce the concept of the monna map conversion. The 

monna map conversion of an event, denoted as 𝑒𝑣𝑒𝑛𝑡𝑖 , is computed using the formula: 

𝑒𝑣𝑒𝑛𝑡𝑖 = ∑ 𝑎𝑗 × 2
−𝑗−1𝑘

𝑗=0  ,  𝑎𝑗 = 1,0.              

   (2) 

where 𝑎𝑗 represents the binary digits (0 or 1) in the 2-adic expansion of the dendrogram 

branch, and k is the maximum ball level of the dendrogram. 

By applying this Monna map conversion, we represent events as rational numbers on the 

continuous interval [0, 1]. This conversion preserves the precise relations between events, 

ensuring that the inherent structure and ordering within the dendrogram branches are 

maintained. To quantify the differences between events, we introduced the metric 𝑞𝑖𝑘, which 

represents the absolute difference between the monna map conversions of two events, 

 𝑞𝑖𝑘 = |𝑒𝑣𝑒𝑛𝑡𝑖 − 𝑒𝑣𝑒𝑛𝑡𝑘|    (3) 

Thus, we can define 5 elementary/fundamental parameters of a dendrogram 

We define our dendrogramic vector, 𝐷, as follows: 

𝐸 = 𝑒𝑣𝑒𝑛𝑡𝑖 , 𝑖 = 1,2…𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

𝐵 = 2−𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 

𝐷 = [𝐸 𝐵]𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝐷𝑖 , 𝑖 = 2,3…𝑛 + 1 

 𝑉𝐷 = (∑ 𝐷𝑖 )
𝑧   𝑘

𝑖=0  

𝑈𝐷 = (∑
1

𝐷𝑖 + 1
)𝑧1        

𝑘

𝑖=0

 

𝑀𝐷 = (∑ ∑ 𝐷𝑖 ·  𝐷𝑗 )
𝑧2

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 

𝑅𝐷 = (∑ ∑ 𝐷𝑖 − 𝐷𝑗 

𝑘

𝑗=𝑖+1

)𝑧3
𝑘−1

𝑖=1

= (∑ ∑  𝑞𝑖𝑗 ) + ∑ |𝐵 − 𝐷𝑗|

𝑘

𝑗=𝑖+1

)𝑧3
𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1
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𝑟𝐷 = (∑ ∑ 1/((𝐷𝑖 − 𝐷𝑗 ) + 1)

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

)𝑧4 = 

(∑ ∑  1/(𝑞𝑖𝑗 + 1)+ ∑ 1/(|𝐵 − 𝐷𝑗|

𝑘

𝑗=𝑖+1

+ 1))𝑧4
𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚             (4) 

Where z,z1,z2,z3 and z4 each takes randomly a value from T=[-2 -1 -0.5 0.5 1 2] 

We then constructed from a combination of them another 55 parameters in the following 

way. 

1. All possible two elementary parameters product combinations. Thus adding 10 more 

parameters 

2. All possible two elementary parameters sum combinations. Thus adding 10 more 

parameters 

3. All possible two elementary parameters division combinations. Thus adding 20 more 

parameters 

4. All possible three elementary parameters product combinations. Thus adding 10 more 

parameters 

5. All possible four elementary parameters product combinations. Thus adding 5 more 

parameters. 

Overall, we had 60 possible parameters. These 60 parameters were used for a 

numerical deep scan of possible “dendrogramic Minkowski causal structure of observers 

ensemble” 

 

4. Establishing dendrogram-parameters coupling via numerical simulation 

The problem of encoding dendrograms using real parameters is mathematically 

challenging and can require a significant amount of time to find a solution. In the context of 

Data-Driven Hypothesis Testing (DHT) theory, where simulations have provided valuable 

insights, we propose a method called "numerical experimenting confirmation" to select 

parameters. Through an extensive numerical simulation, we demonstrate the validity of our 

real parametrization on the space of dendrograms. While this approach does not provide a 

mathematical proof, the likelihood of encountering dendrograms that do not conform to our 

parametrization is practically negligible. As a result, we confidently propose the use of this 

parametrization for the extended space of dendrograms. In this technical section, we present 

the output and findings of our numerical simulation. 
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Process 1 was to determine how many different, unique, dendrograms are possible in some 

“number of events-level n”. 

We followed these sub-steps: Here are the sub-steps of the given process: 

1. Generate 100,000 vectors of n values (representing events) for each n = 5, 6, 

and 7. 

2. Randomly select n values from the interval [0, 1] for each vector. 

3. Compute pairwise Euclidean distances between elements in each vector. 

4. Construct agglomerative hierarchical cluster trees using the "single" linkage 

method for each vector. 

5. Identify distinct dendrogram structures for each "number of events-level n". 

6. Count the number of different dendrogram structures obtained for each n. 

For n=5, we found m=4 different dendrogram structures. For n=6, we obtained 

m=9 different dendrogram structures, and for n=7, we discovered m=21 

different dendrogram structures. 

Process 2 we produced 100 “observers” for each of the m=4,9,21 unique and different 

dendrograms each in its corresponding n=5,6,7 event level. 

1. Randomly select n numbers from the interval [0, 1] 

2. Construct a dendrogram D out of the n numbers (as in steps 3 and 4 of 

process 1) 

3. Identify to which of the m different dendrograms D equals to. 

4. The n random numbers define Observerij i=1,2,…100 j=1,2….m 

4. Repeat until i=100 for all j 

Thus, although each of the 100 “observers” collected different n 

events/numbers their relational observed universe is the same. 

Process 3 Producing all possible dendrograms an “observer” can evolve to by 

adding k=1,2,…6 events. 

1. For each “observer” we add k random numbers (k=1-6) t times ( 

t=4000*(1+k/2) for n=5,6. t=6000*(2+k/2) for n=7 ) 

2. Construct a dendrogram D out of the n numbers (as in steps 3 and 4 of 

process 1). 

Overall, in the end, for all 100 observers we produced for all k=1,2,…6 we 

produced 4*1600000, 9*1600000 and 21*3000000 non-unique dendrograms for 

n=5,6,7 respectively. 

In that way, we could know for a single observer in its initial “events-level n” what are the 

possible dendrogram that it can transfer to in each of the “events-level n+k” 

In each scenario of n+k events, starting from a specific initial dendrogram with 

n events, we examined the set of possible unique dendrograms that could emerge. This 

analysis allowed us to determine the distribution of these unique n+k events dendrograms 

that arise from any of the m’s unique initial dendrograms as shown in Figure 5 for n=6. 
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Figure 5. Distribution of Dendrograms at n+k Level for Two Different Initial Dendrograms 

with 6 Events. This figure illustrates the evolutionary process of two distinct initial dendrograms, 

namely Dendrogram A and Dendrogram B, each consisting of 6 events. The diagram showcases the 

distribution of dendrograms that emanate from each initial dendrogram at various n+k levels (k = 1, 2, 

3, 4, 5, and 6). At each level, the initial dendrograms undergo transformation and branching, leading 

to the emergence of unique configurations represented by subsequent dendrogram structures. The 

visualization offers insights into the dynamic nature of dendrogram evolution as they progress 

through different levels. 

 

Interestingly, all m dendrograms with n=5 could be transformed to all possible 

dendrograms at n+k levels where k has the value of 2-6. However, for the m dendrograms 

with n=6, this encompassing occurred only for n+k levels where k has the value of k=3-4. 

This implies that some of the m initial dendrograms with n=5 exhibited spacelike 

dendrograms solely at k=1, whereas for dendrograms with n=6, the presence of spacelike 

dendrograms varied across different levels. Specifically, the number of initial dendrograms 

with n=6 that had spacelike dendrograms differed for each level (Figure 6A1-A2). 
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Figure 6. A1 Number of Spacelike Dendrograms for Each k (Initial Level n=6) 

This subfigure depicts the count of spacelike dendrograms at each k level for various initial 

dendrograms, all having an initial level of n=6. Each k level demonstrates a distinct number of unique 

spacelike dendrograms, specifically 21, 51, 127, 323, 835, and 2188, representing different 

configurations of dendrogram structures. A2 Number of Spacelike Dendrograms for Each k 

(Initial Level n=7) This subfigure displays the count of spacelike dendrograms at each k level for 

different initial dendrograms, with a shared initial level of n=7. At each k level, there are 51, 127, 323, 

835, 2188, and 5798 unique spacelike dendrograms, reflecting diverse configurations of dendrogram 

structures. B1 Mean Significance of Intervals in Selected Parameters of Spacelike vs. Timelike 

Dendrograms (Initial Level n=6) This subfigure presents the average significance values of intervals 

within selected parameters for spacelike and timelike dendrograms at each k level, considering 

various initial dendrograms with an initial level of n=6. The comparison between spacelike and 

timelike dendrograms allows for an assessment of the significance variations across different intervals 

in the selected parameters. B2 Mean Significance of Intervals in Selected Parameters of Spacelike 

vs. Timelike Dendrograms (Initial Level n=7) This subfigure exhibits the average significance 

values of intervals within selected parameters for spacelike and timelike dendrograms at each k level, 

considering different initial dendrograms with an initial level of n=7. The comparison between 

spacelike and timelike dendrograms enables an examination of the significance variations across 

different intervals in the selected parameters. 
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For each of the m unique initial dendrogram with n events, the resulting n+k 

level corresponds to a set of unique dendrogram structures. This set can encompass either the 

complete set of possible unique dendrograms for the n+k level or a partial set, depending on 

the specific scenario. The case of a set that is a partial subset of all possible unique 

dendrograms at the n+k level means there are dendrograms that observers with one of the m 

initial dendrograms do not evolve to ("spacelike" dendrograms relative to the initial n-level 

unique dendrogram). 

These results raise the question of whether we can assign Minkowski-like 

signatures to these dendrograms, with signatures opposite in sign for dendrograms observers 

can/cannot evolve to. 

Interestingly, the absolute difference between some of the 60 parameter values 

an initial dendrogram (one of the m possible) and the corresponding dendrograms it evolved 

to, at some level n+k, showed a significant difference compared to the absolute difference 

between the parameter values an initial dendrogram (one of the m possible) and its 

corresponding dendrograms it did not evolve to, at some level n+k. 

After performing 5000 iterations of random selection for z, z1, z2, z3, and z4, 

we identified 23 out of the 60 parameters that exhibited statistical significance (p < 0.05 in t-

test) in at least 60% of the occurrences where “timelike” and "spacelike" dendrograms both 

existed for an initial specific m dendrogram. Furthermore, these parameters showed 

significance in at least 70% of the random selections of z, z1, z2, z3, and z4 (an example is 

shown in Figure 4 B.1-B.2). 

With those selected parameters, we randomly pick a parameter s2 from the set S 

= [0.5, 1, 1.5, 2, 2.5]. This parameter will take the same role as the speed of light in special 

relativity. We consider all four possible combinations out of the 23 selected parameters above 

𝜃1 , 𝜃2 , 𝜃3 𝑎𝑛𝑑 𝜃4, and for each such combination, we perform the following four 

calculations: 

We take all possible order permutations of the parameter 𝜃1 , 𝜃2 , 𝜃3 𝑎𝑛𝑑 𝜃4 

Each such permutation is now based on order 𝜃′1 , 𝜃′2  , 𝜃′3 𝑎𝑛𝑑 𝜃′4 we calculate for the three 

first parameter 

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿𝑖 = (𝜃′𝑖 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 − 𝜃
′
𝑖 𝑛+𝑘 𝑙𝑒𝑣𝑒𝑙 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚)

2 𝑖 = 1,2,3 

And we define n= initial dendrogram number of events 

 n+k=level of transmitted/not transmitted dendrogram, k=1,2,3,4,5,6. then 

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿4 = (√𝑛𝜃′𝑖 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 − (√𝑛 + 𝑘)𝜃
′
𝑖 𝑛+𝑘 𝑙𝑒𝑣𝑒𝑙 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚

)2 𝑖 = 4

 (5) 

We then calculate the following four quantities: 

𝐼𝑁𝑡𝑒𝑟𝑣𝑎𝑙 = 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿1 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿2 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿3 − 𝑠2 ∗ 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿4 

      

      (6) 

We conducted 5000 iterations, exploring various combinations of constants (z, 

z1, z2, z3, z4, and s2), to identify parameter sets consistently demonstrating opposite sign 

intervals between timelike and spacelike dendrograms. This analysis encompassed all initial 

m dendrograms (limited to n=6) and their corresponding spacelike/timelike dendrograms at 

n+k levels (k=1, 2, ..., 6). 
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Remarkably, our analysis revealed the existence of parameter spaces with two distinct 

causality structures: one characterized by a "negative spacelike signature" and the other by a 

"positive spacelike signature." 

 

In the case of the "negative spacelike signature," we observed that the interval 

between two spacelike dendrograms was consistently negative. Specifically, the sum of the 

first three "space" parameters (𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿1 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿2 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿3) was consistently 

smaller than s2 multiplied by 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿4. This negative signature held true across all 

intervals computed from the parameters of the 9 initial n=6 level dendrograms and their 

corresponding n+k spacelike dendrograms (where k ranged from 1 to 6). Notably, the 

timelike dendrograms derived from each of the n=6 initial dendrograms consistently 

exhibited positive values for their respective time-like parameter intervals. Importantly, this 

reversed causality structure was consistently observed across all 9 initial dendrograms and 

their unique sets of n+k dendrograms (totaling 21, 51, 127, 127, 834, and 2400 such 

dendrograms for k=1, 2, ..., 6, respectively). This observation contradicts the ordinary causal 

structure of the real Minkowski metric in special relativity and its resulting characteristic 

light cone, where information cannot be transmitted between two spacelike separated events 

for the trivial cause that the sum of the space coordinates' intervals is greater than the distance 

light can travel within the given time interval. 

Conversely, the "positive spacelike signature" aligns with the characteristics of the 

Minkowski metric. In this scenario, the sum of the first three "space" parameters 

(𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿1 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿2 + 𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿3) consistently surpasses s2 multiplied by 

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿4. 4. Once again, this positive "space like signature" remained consistent for all 

intervals computed from the parameters of the 9 initial n=6 level dendrograms and their 

corresponding n+k spacelike dendrograms (with k ranging from 1 to 6). Interestingly, the 

timelike dendrograms derived from each of the n=6 initial dendrograms consistently 

exhibited negative values for their respective time-like parameter intervals. It is worth noting 

that this Minkowski-like causality structure persisted across all 9 initial dendrograms and 

their unique sets of n+k dendrograms (totaling 21, 51, 127, 127, 834, and 2400 such 

dendrograms for k=1, 2, ..., 6, respectively). 

In our random numerical analysis, we observed a higher occurrence of parameter 

spaces with a "positive spacelike signature" compared to those with a "negative spacelike 

signature." Remarkably, each of these two distinct parameter spaces maintained consistency 

and demonstrated opposite sign intervals between timelike and spacelike dendrograms across 

all initial n dendrograms (specifically n=6) and their corresponding n+k level dendrograms. 

Figure 7 illustrates the overall rather peculiar and counter-intuitive causality, where 

timelike intervals have positive values and spacelike intervals have negative values. This 

causality structure aligns with increasing levels of k for the initial dendrogram of n=6 in the 

time/space-like dendrograms. Figure 8 demonstrates that the overall causality, as indicated by 

the intervals with a positive spacelike signature, remains consistent with increasing levels of 

k for initial dendrogram levels n=6 in both the time-like dendrograms and the space-like 

dendrograms. 
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Figure 7. Time-Like and Spacelike Dendrogram Interval Values for the Negative Spacelike 

Signature Parameter Space 

This figure explores the interval values for time-like and spacelike dendrograms in the context of the 

negative spacelike signature parameter space. The figure is divided into several panels, each 

representing different aspects of the analysis. Top row first 3 panels from the left: Cumulative 

Distribution Functions (cdfs) of Interval Values for Spacelike Dendrograms depict the 

cumulative distribution functions (cdfs) of INterval values for spacelike dendrograms, focusing on 

three specific initial dendrograms at the initial level n=6 and varying k values (k=1, 2, ..., 6). Each 

panel showcases the distribution of interval values for spacelike dendrograms resulting from the 

transformation and branching processes. Top row panel on the right: Cumulative Distribution 

Function (cdfs) of Interval Values for All Spacelike Dendrograms presents the cumulative 

distribution function (cdfs) of INterval values for spacelike dendrograms, encompassing all initial 

dendrograms at the initial level n=6 and for each k value (k=1, 2, ..., 6). The visualization offers an 

overall perspective of the interval value distributions across all spacelike dendrograms. Bottom row 

first 3 panels from the left: Cumulative Distribution Functions (cdfs) of Interval Values for 

Time-Like Dendrograms illustrate the cumulative distribution functions (cdfs) of INterval values for 

time-like dendrograms, focusing on three specific initial dendrograms at the initial level n=6 and 

varying k values (k=1, 2, ..., 6). Each panel provides insights into the distribution of interval values 

for time-like dendrograms resulting from the transformation and branching processes. Bottom 

rowrightpanel: Cumulative Distribution Function (cdfs) of Interval Values for All Time-Like 

Dendrograms displays the cumulative distribution function (cdfs) of INterval values for time-like 

dendrograms, encompassing all initial dendrograms at the initial level n=6 and for each k value (k=1, 

2, ..., 6). The visualization presents an overall perspective of the INterval value distributions across all 

time-like dendrograms. 
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.

 
 

Figure 8. Time-Like and Spacelike Dendrogram Interval Values for the Positive Spacelike 

Signature Parameter Space This figure explores the interval values for time-like and spacelike 

dendrograms in the context of the positive spacelike signature parameter space. The figure is divided 

into several panels, each representing different aspects of the analysis. Top row first 3 panels from 

the left: Cumulative Distribution Functions (cdfs) of Interval Values for Spacelike 

Dendrograms depict the cumulative distribution functions (cdfs) of INterval values for spacelike 

dendrograms, focusing on three specific initial dendrograms at the initial level n=6 and varying k 

values (k=1, 2, ..., 6). Each panel showcases the distribution of interval values for spacelike 

dendrograms resulting from the transformation and branching processes. Top row panel on the 

right: Cumulative Distribution Function (cdfs) of Interval Values for All Spacelike 

Dendrograms presents the cumulative distribution function (cdfs) of INterval values for spacelike 

dendrograms, encompassing all initial dendrograms at the initial level n=6 and for each k value (k=1, 

2, ..., 6). The visualization offers an overall perspective of the interval value distributions across all 

spacelike dendrograms. Bottom row first 3 panels from the left: Cumulative Distribution 

Functions (cdfs) of Interval Values for Time-Like Dendrograms illustrate the cumulative 

distribution functions (cdfs) of INterval values for time-like dendrograms, focusing on three specific 

initial dendrograms at the initial level n=6 and varying k values (k=1, 2, ..., 6). Each panel provides 

insights into the distribution of interval values for time-like dendrograms resulting from the 

transformation and branching processes. Bottom row panel on the right: Cumulative Distribution 

Function (cdfs) of Interval Values for All Time-Like Dendrograms displays the cumulative 

distribution function (cdfs) of INterval values for time-like dendrograms, encompassing all initial 

dendrograms at the initial level n=6 and for each k value (k=1, 2, ..., 6). The visualization presents an 

overall perspective of the INterval value distributions across all time-like dendrograms. 

 

Out of the 5000 randomly generated combinations of constants (z, z1, z2, z3, 

z4, and s2), our analysis identified 260 distinct combinations that demonstrated consistency 

across all n+k levels for the initial set of 9 dendrograms with n=6. This consistency was 
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defined by the inverse sign between the computed 𝐼𝑁𝑡𝑒𝑟𝑣𝑎𝑙 values, as defined in equation 6, 

for the timelike dendrograms and their corresponding n+k spacelike dendrograms. 

Furthermore, we discovered a total of 3117 different combinations of constants 

(z, z1, z2, z3, z4, s2) and parameters (θ'₁, θ'₂, θ'₃, θ'₄) that exhibited this remarkable 

consistency. Among these combinations, 797 displayed a "negative spacelike signature," 

while 2320 exhibited a "positive spacelike signature" (as depicted in Figure 9). 

 

 
Figure 9. Number of "negative spacelike signature and positive spacelike signature parameter 

spaces found in our simulations 

 

We then tested the consistency of the found sets of these 3117 parameters and 

constants in the same way for the initial dendrograms of n=5 and n=7. 

We observed that when preparing the dendrogram parameters according to the 

described method, only specific combinations of 𝜃′1 , 𝜃′2  , 𝜃′3 𝑎𝑛𝑑 𝜃′4 can uniquely describe 

a dendrogram. Such uniqueness is achieved when one of the parameters (𝜃′1 , 𝜃′2 𝑜𝑟 𝜃′3) is 

either 𝑉𝐷 or 𝑈𝐷, and another parameter is a product, sum, or division of the two. 

Alternatively, when one of the parameters is 𝑅𝐷 or 𝑟𝐷, and another parameter is a product, 

sum, or division of the two. 

Interestingly, we discovered that all 797 combinations with a "negative 

spacelike signature" were unable to uniquely define the dendrogram space. This suggests that 

in order for a coordinate/parameter space to uniquely define events (or dendrograms in our 

case), as is the case in ordinary spacetime, it must possess the light cone characteristics and 

vice versa. In the context of spacetime intervals spacelike intervals are characterized by 

∑∆𝑋2 > 𝑐∆𝑡2 whereas time-like intervals are characterized by ∑∆𝑋2 < 𝑐∆𝑡2. In these cases 

with "negative spacelike signature," where this condition was reversed, we lost the unique 

definition of dendrograms. 

Out of the total 2320 consistent parameters that exhibited a "positive spacelike 

signature," only 310 combinations were found to uniquely define the dendrogram space (refer 

to Figure 10). 
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Figure 10. Number of positive spacelike signatures that uniquely define the dendrogram space 

vs. positive spacelike signatures that did not uniquely define the dendrogram space found in our 

simulations. 

 

To further investigate this conjecture, we examined a mixture of 760*137 parameter 

combinations that possessed either a "negative spacelike signature" or a "positive spacelike 

signature" in n=6 while still being able to uniquely define the dendrogram space. As 

expected, all the parameters with a "negative spacelike signature" could not exhibit consistent 

opposite sign values for all its intervals produced from time-like dendrograms compared to 

all its intervals produced from spacelike dendrograms across all initial n dendrograms 

(n=5,6,7) and for all their n+k levels dendrograms. Consequently, these parameters failed to 

maintain the causal structure of the “reversed” non-trivial light cone. 

Thus, in cases of parameters exhibiting consistent "negative spacelike signature" with 

“reversed” causal structure and non-trivial light cone they fail to uniquely define the 

dendrogram space. while those that do possess the ability to uniquely define the dendrograms 

space lose the consistency of the casual structure of the “reversed” light cone. 

 

On the other hand, some of the parameter spaces (49 of them) with a "positive 

spacelike signature" exhibited the necessary consistency of the casual structure of the light 

cone, in all tests conducted for n=5, 6, and 7 (as described earlier). This outcome confirmed 

that the only possible casual structure must resemble the ordinary Minkowski metric light 

cone. 

 

I n order to validate the applicability of the 310 combinations of 

𝜃′1 , 𝜃′2 , 𝜃′3 𝑎𝑛𝑑 𝜃′4 that were both consistent and could uniquely define the dendrogram 

space we conducted the following test: 20000 times we randomly generated a dendrogram 

with a random size smaller than 100 events and its corresponding timelike dendrogram, 

which was obtained by adding random k events to the initial dendrogram. The value of k 

satisfied the condition; 

number of events in initial dendrogram<k<2*number of events in initial dendrogram 
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Among the 20,000 tests conducted on “positive space-like signature spaces,” none of the 

cases yielded positive values, thereby illustrating the consistency of the time-like negative 

signature. This finding is exemplified in Figure 11. 

The consistent overall combinations of z, z1, z2, z3, z4, s2 and 𝜃′1 , 𝜃′2 , 𝜃′3 𝜃′4 were kept for 

future validations. 

 
Figure 11. Illustration of the consistency of one time-like negative signature of one parameter 

space found in our simulations. This parameter space uniquely defined the dendrogramic space 

 

we will demonstrate now that at least one of the consistent parameters with a 

“positive spacelike signature” have the ability to uniquely define a unique dendrogram 

structure ( this set of z, z1, z2, z3, z4 and parameters 𝜃′1 , 𝜃′2 , 𝜃′3 𝑎𝑛𝑑 𝜃′4 are the one shown 

as examples in figures 6 and 10). 

𝜃′1 = (𝑈𝐷)
−2 

 𝜃′2 = (𝑉𝐷)
0.5/(𝑈𝐷)

−2 

𝜃′3 = (𝑈𝐷)
−2(𝑉𝐷)

0.5𝑅𝐷
−0.5(𝑀𝐷)

2 

 𝜃′4 = √𝑛(𝑟𝐷)
2/𝑅𝐷

−0.5 

Let’s suppose 𝜃′1 = 𝜃′′1  , 𝜃′2 = 𝜃′′2, 𝜃′3 = 𝜃′′3  𝑎𝑛𝑑 𝜃′4 = 𝜃′′4 for two different dendrograms 

𝐷′ 𝑎𝑛𝑑 𝐷′′ then if 𝜃′1 = 𝜃′′1  𝑎𝑛𝑑 𝜃′2 = 𝜃′′2 then (𝑈𝐷′)
−2 = (𝑈𝐷′′)

−2 and  

(𝑉𝐷′)
0.5

(𝑈𝐷′)
−2
=
(𝑉𝐷′′)

0.5

(𝑈𝐷′′)
−2

 which means (𝑉𝐷′)
0.5 = (𝑉𝐷′′)

0.5 the combination 

 

{
(𝑈𝐷′)

−2 = (𝑈𝐷′′)
−2

(𝑈𝐷′)
−2 = (𝑈𝐷′′)

−2 can’t happen by their definition unless 𝐷′ =  𝐷′′ and we are done. 

 

Now for the consequence of our numerical analysis. We propose that 

 

𝑝𝜃′(𝑋) =
1

(2𝜋𝑎2)2
exp (−

(𝑡 − 𝑖(𝑠2)𝜃′
4
)2 + (𝑥 − 𝜃′1)

2 + (𝑦 − 𝜃′2)
2 + (𝑧 − 𝜃′3)

2

2𝑎2
) 

Where X is a vector of [t,x,y,z] and s2 is our equivalent of c=speed of light and is defined 

above in equation 6. 
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this distribution is normalized: meaning ∫𝑑4𝑥 𝑝𝜃′(𝑋) = 1 

and leads to 

the following fisher information matrix 𝑔𝜇𝜈 = (

−𝑠2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 

After rescaling by 𝑎2 [16]. 

Furthermore, we define n=number of events in dendrogram 1, n’=number of events in 

dendrogram 2, 

N=|n-n’| and we define the simultaneity matrix or operator for the positive signature space 

like combinations 

𝑠𝑦𝑚+̂ =  

(

 
 
⌈
𝑁

𝑁 + 1
⌉ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1)

 
 

 

𝑑𝑖𝑠𝑡(𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚1, 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚2) = (𝑠𝑦𝑚+̂ )𝜇𝜈𝑔𝜇𝜈𝑑𝜃
′
𝜇𝑑𝜃

′
𝜈 

 

One benefit of this construction is the transformation of the discrete parameter 

space into a continuous one. Thus, every dendrogram is defined by its non-hermitian 

distribution 𝑝𝜃′(𝑋) defined above (ref) and we operate on a smooth Riemann 4d parameter 

space. In that way, we can also find the null-like parameters for a given dendrogram 

(although they will (probably) not represent a dendrogram) 

 

5. The informational Minkowski-like metric of the dendrogramic space 

Having established the existence of spaces with four parameters that uniquely 

determine a dendrogram, we can now develop an informational metric inspired by 

Minkowski spacetime. We will describe our model step by step: each parameter point in 

parameter space uniquely defines a dendrogram. This dendrogram is the n-level state of an 

ensemble of observers with the same dendrogram (note that in the numerical study above we 

constructed the same initial dendrogram for 100 different sets of n random numbers). Thus, 

such a point in parameter space has a flow-in of observers from a distribution of observers on 

𝜃′ of lower-level parameter points (the past of that point). 

Furthermore, the dendrogram at level n exhibits a flow of observers emanating 

from this parameter point, where the ensemble of observers is distributed to the next level in 

a certain manner, representing the future distribution of the n-level point. Specifically, for a 

single dendrogram at level n, its future cone at level n+k (where k ranges from 1 to M→∞) 

displays k distributions 𝜌𝑘,𝑛(𝜃
′)𝑓𝑢𝑡𝑢𝑟𝑒, dependent on the level of the initial point in the 

parameter space as well as the particular 𝜃′ at that level n. Similarly, the past cone of a 

dendrogram at level n extends to level n-k (where k ranges from 1 to n-2) and exhibits k 

distributions 𝜌𝑘,𝑛(𝜃
′)𝑝𝑎𝑠𝑡  (see Figure 6). 

It is noteworthy that, as k approaches infinity, the distributions tend to flatten, 

such that at infinity each observer acquires a unique infinite dendrogram. Therefore, at 

infinity, the particular point 𝜃′' has a distribution of 1/N (where N is the number of 
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observers), as each observer possesses a unique dendrogram. The subset of all infinite 

dendrograms belonging to the point 𝜃′ defines 𝜃′, and vice versa. Consequently, if there 

exists an intersection between the infinite dendrograms associated with 𝜃′1 and 𝜃′2, it 

implies that there are observers flowing from one point to the other, establishing a causal 

connection or indicating a timelike separation between the two parameters. On the other 

hand, if the intersection is an empty set, it signifies a spacelike separation between the two 

parameters. 

We conclude by stressing that a point in parameter space is accompanied by all its past 

distributions flowing into that point and all future distributions flowing out of that point and 

both the distributions and the point are defined by the set of observers that flow in and out of 

that point set of ultimate infinite dendrograms and vice versa (figure 12). These distribution 

dynamics are manifested from level to level by a “potential”/“force” we call the “Leibnitz 

potential/force” which forces the observers to become distinct (ultimately at the ontic infinite 

sub-dendrogram). Otherwise, the Leibnitz principle holds where: 

Leibniz’s principle (identity of indiscernibles) states that If, for every property F, object x has 

F if and only if object y has F, then x is identical to y. In our case, it translates to If, for every 

dendrogram D, observer x has D if and only if observer y has D, then observer x is 

identical to observer y. 

 

 
Figure 12. Representation of a point in the dendrogramic parameter space and its accompanied 

distributions in each of the future and past levels. 

 

This is an infect the ontic realization of Leibnitz principle. 

To quantify the informational distance between two parameter points accompanied by their 

distribution, we propose a metric: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2𝐻𝑓
⌈ 𝑇 ⌉ + 2𝐻𝑝

⌈ 𝑇 ⌉ − (𝐻𝑓′ + 𝐻𝑝′) − 2(
𝐿

𝐿 + 1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) 

Consider two points 𝜃′1 𝑎𝑛𝑑 𝜃′2 𝑎𝑛𝑑 𝑛1, 𝑛2 𝑎𝑟𝑒 𝑡ℎ𝑒𝑖𝑟 𝑙𝑒𝑣𝑒𝑙 where without loss of 

generality 𝑛1 ≤ 𝑛2: 
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𝐻𝑓 =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 and 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 

(see figure 13), if 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 𝑎𝑛𝑑 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 share parameter 

points with non-zero probability 0 ≤ 𝐻𝑓 < 1 else 𝐻𝑓 = 1 

 

 
Figure 13. Representation of the 𝐻𝑓 =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 and 

𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2+1 

 

𝐻𝑝 =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 and 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 

(see figure 14), if 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 𝑎𝑛𝑑 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 share parameter points 

with non-zero probability 0 ≤ 𝐻𝑓 < 1 else 𝐻𝑓 = 1 

 
Figure 14. Representation of the 𝐻𝑝 =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 and 

𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑝𝑎𝑠𝑡 𝑎𝑡 𝑛1−1 

 

 

𝜌𝑘,𝑛1,𝜃′1⃛ (𝑥) 𝑓𝑢𝑡𝑢𝑟𝑒 𝑛1+𝑘1 = lowest k1 value distribution of 𝜃′1 that shares parameter points 

with non zero probability, lowest k2 value with 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑛2+𝑘2. Thus: 

𝐻𝑓′ =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1⃛ (𝑥) 𝑓𝑢𝑡𝑢𝑟𝑒 𝑛1+𝑘1 and 𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑛2+𝑘2 

(figure 15) 



23 

 

 
Figure 15. Representation of the 𝐻𝑓′ =Hellinger distance between 𝜌𝑘,𝑛1,𝜃′1⃛ (𝑥) 𝑓𝑢𝑡𝑢𝑟𝑒 𝑛1+𝑘1 and 

𝜌𝑘,𝑛2,𝜃′2(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑛2+𝑘2 

 

𝜌𝑘,𝑛2,𝜃′2⃛ (𝑥) 𝑝𝑎𝑠𝑡 𝑛2−𝑘2 = lowest k2 value distribution of 𝜃′2 that shares parameter points, 

with non zero probability, with lowest k1 value distribution 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑛1−𝑘1. Thus: 

𝐻𝑝′ =Hellinger distance between 𝜌𝑘,𝑛2,𝜃′2⃛ (𝑥) 𝑝𝑎𝑠𝑡 𝑛2−𝑘2 and 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑛1−𝑘1 (figure16) 

 
Figure 16. Representation of the 𝐻𝑝′ =Hellinger distance between 𝜌𝑘,𝑛2,𝜃′2⃛ (𝑥) 𝑝𝑎𝑠𝑡 𝑛2−𝑘2 and 

𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑝𝑎𝑠𝑡 𝑛1−𝑘1 

 

 

𝐿 = |𝑛1 − 𝑛2| 

 

𝐻𝑟𝑎𝑡𝑖𝑜 = Hellinger distance of two distributions 𝑝𝑝𝑜𝑝 𝜃′1 and 𝑝𝑝𝑜𝑝 𝜃′2 

Where 𝑝𝑝𝑜𝑝 𝜃′1 =

[
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝜃′1 𝑎𝑡 𝑙𝑒𝑛𝑣𝑒𝑙 𝑛1 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠
 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑒𝑛 𝜃′1 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑛1 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠
] 

𝑝𝑝𝑜𝑝 𝜃′1

= [
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝜃′2 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑛2 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠
 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑒𝑛 𝜃′2 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑛2 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠
] 

 

𝑇 = 𝑝𝜃′1(𝑥 = 𝜃
′2) =distribution value of 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2 at x=𝜃′2 see figure 17. 
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𝐅𝐢𝐠𝐮𝐫𝐞 𝟏𝟕. Representation of 𝑇 = 𝑝𝜃′1(𝑥 = 𝜃

′2) =distribution value of 𝜌𝑘,𝑛1,𝜃′1(𝑥)𝑓𝑢𝑡𝑢𝑟𝑒 𝑎𝑡 𝑛2 at 

x=𝜃′2 

 

Now for proving the timelike/spacelike signature: 

For time like dendrograms 𝐻𝑓=𝐻𝑓′  , 𝐻𝑝 = 𝐻𝑝′  and ⌈ 𝑇 ⌉ = 1. Thus, the metric reduces to: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐻𝑓 +𝐻𝑝 − 2(
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉). 

0 ≤ 𝐻𝑓 + 𝐻𝑝 < 2 since they are timelike. On the other hand: 𝐻𝑟𝑎𝑡𝑖𝑜 ≤ 1 ,
𝐿

𝐿+1
< 1 

As ⌈ 𝑝
𝜃′1
(𝑥 = 𝜃′2)⌉ = ⌈ 𝑇 ⌉ = 1 as in timelike dendrograms some fraction of observer 

flow from one dendrogram to the other. 

So, the component 2≤ 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) resulting in: 

 

𝐻𝑓 +𝐻𝑝 − 2(
𝐿

𝐿 + 1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) < 0 

 

Now for space-like, we have in fact two cases let’s treat the first one where n1<n2 

 𝐻𝑓 = 1,𝐻𝑝 = 1 , thus, we reduce the metric to 4 − (𝐻𝑓′ + 𝐻𝑝′) − 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉). 

0 < (𝐻𝑓′ + 𝐻𝑝′) ≤ 2−→ 4 − (𝐻𝑓′ +𝐻𝑝′) ≥ 2 

Then for 2(
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) we have again 𝐻𝑟𝑎𝑡𝑖𝑜 ≤ 1 ,

𝐿

𝐿+1
< 1 but ⌈ 𝑝

𝜃′1
(𝑥 = 𝜃′2)⌉ =

⌈ 𝑇 ⌉ = 0 so 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) < 2 

 

The other case is when 𝐻𝑓 < 1,𝐻𝑝 < 1 then 𝐻𝑓=𝐻𝑓′  , 𝐻𝑝 = 𝐻𝑝′and ⌈ 𝑇 ⌉ = 0 leading to 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 4 − (𝐻𝑓 + 𝐻𝑝) − 2(
𝐿

𝐿 + 1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) 

 

Again 0 ≤ 𝐻𝑓 +𝐻𝑝 < 2 thus 4 − (𝐻𝑓′ + 𝐻𝑝′) ≥ 2 but 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) reduces to 

2(
𝐿

𝐿 + 1
𝐻𝑟𝑎𝑡𝑖𝑜) < 2 

Thus: 4 − (𝐻𝑓′ + 𝐻𝑝′) − 2(
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) > 0 

 

For n1=n2 



25 

 

We have if 𝐻𝑓 = 1,𝐻𝑝 = 1−→  4 −(𝐻𝑓′ +𝐻𝑝′) − 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) since ⌈ 𝑇 ⌉ = 0 and 

𝐿 = 0 thus 2(
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉)=0 and we have 4 −(𝐻𝑓′ +𝐻𝑝′) ≥ 2 

And we are done 

 

If We have if 𝐻𝑓 < 1,𝐻𝑝 < 1−→  4 −(𝐻𝑓′ +𝐻𝑝′) − 2 (
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉) since ⌈ 𝑇 ⌉ = 0 

and 𝐿 = 0 where 𝐻𝑓=𝐻𝑓′  , 𝐻𝑝 = 𝐻𝑝′  we conclude that 2(
𝐿

𝐿+1
𝐻𝑟𝑎𝑡𝑖𝑜 + ⌈ 𝑇 ⌉)=0 and we have 

4 −(𝐻𝑓′ +𝐻𝑝′) ≥ 2 

And we are done. 

6. Concluding remarks 

Exploring the treelike geometry opens a new direction in the modelling of the event universe 

endowed with a hierarchic relational structure. At the epistemic level, experimental data 

collected by an observer is represented with the aid of a clustering algorithm by a 

dendrogram – a finite tree. The collection of new data restructures the observer’s 

dendrogram. Such dynamical restructuring is nonlocal w.r.t. the hierarchic relation between 

events: the appearance of a new event restructures the whole dendrogram. As we know 

relational mechanics and event universe play an important role in the modern development of 

quantum foundations [[17–24]]. Our approach, DHT [[1–8]], gives new mathematical and 

physical insights to this area of research. Of course, it is important to connect relational event 

physical models with conventional models based on the real space-time endowed with 

Minkowski’s causal structure. In the present paper, we proceed in this direction. We start 

with an introduction to the causal structure of the dendrogramic configuration space. This 

causality is statistical and reflects dendrogramic dynamics for ensembles of observers. This is 

a novel approach to causality. Then we encode dendrograms by real parameters. This gives 

the possibility to determine the four-dimensional real space-time and information geometry 

on it matching the statistical observers’ causality. Via this construction, transformations of 

special relativity can be realized in the dendrogramic configuration space. This is the topic 

for the further development of DHT. 

Finally, we remark once again that DHT finds applications outside of physics, in the 

modelling of information processing by the brain and medical diagnostics of the brain 

disorders. The method developed in the present paper gives the possibility to invent a kind of 

Minkowski causal structure on the mental space. In future studies, we shall employ this 

structure for medical diagnostics. 
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