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Abstract

Image manipulation can lead to misinterpretation of visual content, posing significant risks to information security.

Image Manipulation Localization (IML) has thus received increasing attention. However, existing IML methods rely

heavily on task-specific designs, making them perform well only on one target image type but are mostly random

guessing on other image types, and even joint training on multiple image types causes significant performance

degradation. This hinders the deployment for real applications as it notably increases maintenance costs and the

misclassification of image types leads to serious error accumulation. To this end, we propose Omni-IML, the first

generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting the Modal Gate

Encoder and the Dynamic Weight Decoder to adaptively determine the optimal encoding modality and the optimal

decoder filters for each sample. We additionally propose an Anomaly Enhancement module that enhances the features

of tampered regions with box supervision and helps the generalist model to extract common features across different

IML tasks. We validate our approach on IML tasks across three major scenarios: natural images, document images,

and face images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three tasks

with a single unified model, providing valuable strategies and insights for real-world application and future research in

generalist image forensics. Our code will be publicly available.

Corresponding authors: Yiwu Zhong, yzhong52@wisc.edu; Lianwen Jin, eelwjin@scut.edu.cn

1. Introduction

The rapid advancement of image processing software and deep generative models has considerably enriched human

capability to create innovative visual content. Users can effortlessly manipulate the visual appearance and create new

images that do not exist[1]. Inevitably, such forged images can lead to fraud and the spread of rumors, posing significant

risks to politics, economics, and personal privacy[2]. Consequently, Image Manipulation Localization (IML) has become an

emerging issue in social media security[3].
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Despite the progress made in recent years, existing IML models are designed for individual image types (e.g. natural style

images, document images, face images). Although these specialized models can handle multiple tampering methods on

the images of a single target type, they always fall short on other types of forged images. The lack of generality notably

increases the maintenance costs of IML, since an additional image type classifier and multiple IML models must be

maintained for different image types. In addition, the error accumulation caused by image type misclassification is still

severe, as the existing IML models perform poorly on the image types they are not designed for. This significantly hinders

the real-world application of IML. It is crucial to develop a generalist IML model that can simultaneously perform well on all

image types.

Jointly training an IML model on diverse image types can slightly alleviate the random guessing issue on different image

types. However, in most cases, the joint training will lead to an obvious performance degradation on all image types,

making the predictions unreliable. For example, HiFi-Net[4] suffers from joint training and thus uses two different sets of

model parameters for natural images and face images separately. There are two main reasons why existing IML methods

suffer so much from joint training:

First, existing IML methods rely heavily on specific architecture designs, input modalities, and training strategies to detect

specific tampering clues on specific image types. These designs work well for the target image type, but usually not so

well for other image types. For example, edge anomaly enhancement modules[5] and object attention modules[6] have

made significant progress in identifying forged natural objects. However, they can hardly work well on document and face

images where edge artifacts are not obvious. Early frequency-vision[2] fusion achieves satisfactory performance on

document images but has obvious performance degradation on natural and face images that cover much more noise and

diversity. The high-resolution representation learning design with shallow layers[4][7] performs well in capturing the texture

anomalies left by deepfake models but falls short on natural and document images where the tampered regions are small

and the texture anomalies are not obvious.

Second, existing IML methods lack the design to alleviate the confusion in unified IML modeling. The IML task is already

challenging since various tampering methods have already produced different unobvious tampering cues on each single

image type, learning a general representation for tampering cues on different image types could be even more

challenging. Without a suitable design, models will be easily confused when learning to distinguish so many tampering

features from authentic ones.

To address the above issues, we propose Omni-IML, the first generalist model that can simultaneously perform well on all

three major IML tasks with a single model, as shown in Fig 1. Specifically, a Modal Gate Encoder is proposed to

automatically select the optimal encoding modality for each input sample, based on the characteristics of the input image.

Additionally, a Dynamic Weight Decoder is proposed to adaptively select the optimal decoder filters for each sample,

assisting the generalist model to better cope with the highly diverse tampering features from different tampering methods

on multiple image types. These sample-adaptive designs effectively help the model achieve generalism through flexibly

adapting itself to each sample. Further, an Anomaly Enhancement module is introduced between the encoder and

decoder. It enhances the features of tampered regions with a novel box supervision design and suppresses the noise
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introduced by the joint learning on different tampering methods and image types.

Figure 1. The proposed Omni-IML is the first generalist model for image manipulation localization. It that can simultaneously achieve high

performance forgery localization on natural images, document images and face images with a single model, without task-specific or benchmark-

specific fine-tuning.

We validate the effectiveness of our Omni-IML on three representative IML tasks, including natural IML, document IML,

and face IML. Without bells and whistles, experimental results showcase that our single model achieves state-of-the-art

performance simultaneously on all three tasks, significantly surpassing previous specialized methods on individual tasks.

These strong results verify the design of our generalist model in the field of image forensics.

By unifying the IML on natural images, document images and face images with a single model, our Omni-IML successfully

eliminates the trouble of judging image type at first and maintaining different models for diverse image types. The issues

of severe error accumulation and high maintenance costs are thus well solved, significantly promoting the real-world

applications of IML. The development of Omni-IML is also in line with the current main trend towards Artificial General

Intelligence (AGI).

In summary, our main contributions are as follows:

We propose Omni-IML, the first generalist model for image manipulation localization, which serves as a pioneering

effort in this field.

Our technical innovations lie in the novel and effective modules: (1) Modal Gate Encoder to effectively select sample-
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specific encoding modality, facilitating better modality collaboration. (2) Anomaly Enhancement, which enhances the

common features of the forged regions through task collaboration. (3) Dynamic Weight Decoder, which adaptively

selects the sample-specific decoder filters and reduces conflicts in the unified training.

Extensive experiments demonstrate that our generalist model can simultaneously achieve state-of-the-art results

with a single model on natural image IML, document IML and face IML.

2. Related works

2.1. Specialized Image Manipulation Localization

Natural Image Manipulation Localization aims to identify the tampered regions in daily-life style images. Mantra-

Net[8] proposes to perform natural IML with noise filters SRM and Bayar Conv. MVSS-Net[5] introduces ESB module to

enhance boundary inconsistency. ObjectFormer[6] proposes an object encoder to learn object-level attention for better

feature extraction and proposes BSCIM module to enhance the edge inconsistency. TruFor[9] benefits from the noise

filters Noiseprint++. UnionFormer[10] introduces a new backbone to enhance edge artifacts, and proposes to model the

inconsistency between tampered objects and authentic objects. These model designs have achieved significant progress

in natural images, but their performance in document and face forensics scenarios is unsatisfactory due to the the

absence of natural object, edge artifacts and noise artifacts in these scenarios.

Document Image Manipulation Localization aims to localize the forged regions in document images. Early

works[11][12] achieve document forensics through template-matching based methods. These methods work well on clean

documents but do not excel on complex documents such as photographed documents, and even cannot work on natural

or face images. Document Tampering Detector[2] improves document IML through early fusion of vision and frequency

features. However, the model will be seriously distorted in many cases of natural and face images where the frequency

features are too noisy. TIFDM[13] proposes high-level spatial attention to suppress the false alarms in documents, but it is

limited on complex natural images.

Face Image Manipulation Localization aims to localize fake human faces. The advancement of deepfake techniques

makes it easy to generate a face that does not exist[14][15]. To ensure the security of face images and improve the

interpretability of deepfake detection, some recent works have explored face image forgery localization, characterized by a

shallow network design for texture artifacts detection. HiFiNet[4] utilizes metric learning for better texture anomaly

capturing. DA-HFNet[16] proposes Dual Attention Feature Fusion to better capture the AIGC artifacts. These methods

show generalization on face IML but are sub-optimal on natural and document images, where the tampered regions are

small in size and the visual anomalies are less obvious.

2.2. Generalist Model

Recently, generalist model has attracted increasing attention since it is more convenient for academic and application[17].
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Despite the progress in unified object detection and segmentation[18], most of the previous generalist models do not cover

all image forensic tasks. EVP[19] unifies natural image forensics with other low-level tasks such as shadow detection, but it

can only perform IML on natural images and its performance is not satisfactory enough. Therefore, EVP cannot be

considered as a generalist model for IML. For image forgery localization, none of the existing work realizes a unified

model that can be simultaneously generalized to natural images, document images and face images. It is still unexplored

towards a generalist IML model that can generalize on various tampering methods across different image types.

Figure 2. The overall framework of the proposed Omni-IML.

Figure 3. The proposed Modal Gate.

3. Methodology
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As shown in Figure 2, the overall architecture of the proposed Omni-IML is roughly based on encoder-decoder

architecture. The Modal Gate Encoder of the Omni-IML consists of four modules: (1) Visual Perception Head (VPH) to

extract visual features from the original images; (2) Frequency Perception Head (FPH) to convert the Discrete Cosine

Transform (DCT) coefficients of the images to frequency domain features; (3) a Modal Gate to automatically determine

the optimal modality for the following encoding process; (4) a backbone model to extract multi-scale high-level features

from the output of the Modal Gate. The Dynamic Weight Decoder of the Omni-IML adaptively selects the sample-specific

optimal decoder filters and outputs the final mask prediction. We also design an Anomaly Enhancement module between

the encoder and decoder, to enhance the common features of tampered regions from various image types.

3.1. Modal Gate Encoder

Key Idea.

The frequency feature is a double-edged sword for the IML generalist. The frequency feature can help to detect visually

consistent tampering in some cases, but it can also degrade the model performance when the image is complex and

noisy, or the frequency information is not prominent in the original image. As a result, neither pure vision modeling nor

vision+frequency modeling can consistently provide the optimal solution. In order to achieve general IML through a flexible

encoding modality, we propose the Modal Gate, which automatically determines the optimal encoding modality

(frequency+vision or pure vision) for each input sample. The key idea of our Modal Gate Encoder is to automatically

identify the optimal modality by analyzing whether the frequency features contain too much noise, and which

coarse prediction seems more confident, reliable, and accurate.

Image Encoding.

As shown in Figure 2, the Omni-IML considers both vision domain modeling and frequency domain modeling. Given an

input image X ∈  RH×W×3 and its Y-channel quantization table QT ∈  R8×8, we extract vision features Frgb using Visual

Perception Head (VPH), Frgb = VPH(X). We obtain frequency features Ffreq from the DCT coefficients and quantization

tables (QT) of the images using Frequency Perception Head (FPH), Ffreq = FPH(DCT(X), QT). We use the same VPH and

FPH architectures as those proposed in Document Tampering Detector[2]. The Ffreq is fused with Frgb by a channel-spatial

attention module Attn to get the fused features Ffused, Ffused = Attn(Frgb, Ffreq). Two coarse binary mask predictions Prgb

 and Pfused are further obtained from Frgb and Ffused with two auxiliary heads AuxHead respectively, 

Prgb = AuxHead1(Frgb), Pfused = AuxHead2(Ffused), each of the auxiliary heads consists of two conv-layers.

Modal Gate.

As shown in Figure 3, the input of the proposed Modal Gate has four parts: Frgb, Ffused, Prgb and Pfused; We repeat Prgb, 

Pfused and concatenate them with Frgb, Ffused to get Fcat, which is then fed into a binary classifier for optimal modality

prediction. Pcls = CLS(Fcat), Pmodal = Round(σ(Pcls)), where σ is the sigmoid function and Round is the rounding up

function. The classifier CLS consists of several conv-layers, a global average pooling layer and a linear layer, and is used
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to determine whether to use the fused feature Ffused or the pure vision feature as the encoder input Frgb, by observing

the noise level and anomaly significance level of Ffused, Frgb and their corresponding coarse predictions Prgb and 

Pfused.

Loss Function.

The Modal Gate Encoder is optimized with LMG, the sum of two segmentation losses and one classification loss. CE

 denotes the cross-entropy loss function, Lm is the ground-truth mask indicating tampered region and Lc ∈ {0, 1} is the

classification label indicating the optimal modality. Lc is obtained by choosing the most accurate coarse prediction. 

IoU(x, y) denotes the Insert over Union between inputs x and y.

LMG = CE(Prgb, Lm) + CE(Pfused, Lm) + CE(Pcls, Lc)

Lc =
1 IoU(Prgb, Lm) > IoU(Pfused, Lm) + 0.1)
0 otherwise

The Modal Gate Encoder maximizes the advantages of frequency domain modeling especially when the visual anomalies

are limited (e.g. document images), and avoids its drawbacks when the image is too complex and noisy (e.g. natural

images). Our Modal Gate Encoder extracts the best features from different image types and thus considerably benefits the

generalist IML model.

Figure 4. The proposed Anomaly Enhancement module.

3.2. Anomaly Enhancement

{
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Key Idea.

Sophisticated tampering leaves very obscure anomaly clues. The encoder’s output feature from such challenging sample

can be very noisy. Different image types produce different features and thus joint training brings much more noise to the

features and confuses IML model. To tackle this, we propose to enhance the features of forged regions and suppress the

noise through including an extra box supervision during training. Since the detection framework has a clear different

characteristic from the original segmentation one, training the model under both frameworks further highlights anomaly

features by reducing the learning bias: If a feature region reports positive under both the detection and segmentation

frameworks, it can mostly be the actual tampered region. However, if a feature region reports positive under only one

framework, it is likely to be a false-positive noise and will be punished under the other framework. As a result, the contrast

between the features of forged regions and authentic regions can be strengthened, noise can be suppressed and the

common tampering features can be learned. However, directly training the model with the two frameworks may also cause

task competition for model parameters[20] and weaken model performance, while directly scaling up the model parameters

could alleviate the competition but will increase computation burden. To address this issue, we propose a novel effective

collaboration module Anomaly Enhancement (AE).

Method.

As shown in Figure 4, for the input features F2 and F3, we first extract task-agnostic features Fa and Fb with query-based

attention, the learnable attention queries contain prior knowledge to decouple and to minimize negative impact from the

segmentation supervision. After that, Fa and Fb are processed by the detection modules, including two Feature Pyramid

Networks (FPNs)[21] and the Faster R-CNN’s[22] RPN and RoI-Heads. The detection modules (black arrows in Figure 4)

are only present during training. Including the two cascaded FPNs reduces parameter competition from the detection

framework and discarding them during inference ensures the computation efficiency, successfully addressing the

dilemma. After training, the Fa and Fb contain positive features enhanced by the detection supervision, we add them to

the original features F2 and F3 and fuse them with conv-layer to get F2 ′ and F3 ′.

Loss Function.

As shown in Figure 4, the AE module is optimized by bounding box losses as Faster R-CNN[22] from the RPN and RoI-

Head. LAE = LRPN
cls + LRPN

regression + LRoIHead
cls + LRoIHead

regression. The ground-truth boxes are the bounding boxes of the mask labels’

connected regions.

The AE module is tested in an end2end manner as shown in Figure 4. The proposed AE effectively achieves task

collaboration while keeping the inference cost almost unchanged. With the proposed AE module, the tampered regions in

features F2 and F3 can be enhanced and the false-positive noise can be reduced. Consequently, our AE module helps to

extract better common features and thus benefits the generalist model.
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Figure 5. The proposed Dynamic Weight Decoder.

3.3. Dynamic Weight Decoder

Key Idea.

Different types of tampered image result in a wide range of manipulation clues. For example, forged objects in natural

style images may have abnormal contrast or edge artifacts[6], tampered text in document images might be visually

consistent but has discontinuous BAG in frequency domain[2], fake faces may have unnatural texture[4]. These wide

variations of tampering clues further cause a large variation of the encoded features of tampered regions. Merely using a

fixed set of filters for the decoder causes it being confused by the diverse encoder features, especially in the unified

training process. To address this challenge, we propose to adaptively select the optimal decoder filters for each input

image based on the characteristics of the image and the initial predicted tampered region. To achieve this, we propose

the DWD, as shown in Figure 5.

Method.

In the proposed Dynamic Weight Decoder, the low-level input features are fused with high-level input features by Pyramid

Pooling Module[23] and Feature Pyramid Network[21] to obtain multi scale features F1, F2, F3, F4. A global feature vector Vg

 is obtained by average pooling F4. A coarse mask prediction Pco is obtained from the lowest-level feature F1 by a conv-

layer, Pco = Conv(F1). A light-weight network CNN is used to extract features Fco from the coarse prediction Pco, 

Fco = CNN(Pco). The extracted feature is concatenated to the multi-scale features and it helps the model to pay attention

to the suspicious regions and analyze the forgery type, Fcat = Concat(F1, F2, F3, F4, Fco). The concatenated features are
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channel dimension reduced and processed by a series of Dynamic Weight Filters (DWF) with different dilation rates, 

Fdec1 = Concat(Avg(Fcat), Fdw, Fcat), Fdw = Concat([DWFn(Fcat, Vg)fornin(2, 3, 6)]), DWFn denotes the proposed DWF with

dilation rate n. The final prediction PDWD is obtained by PDWD = Conv(DWD2(DWD2(Conv(Fdec1), Vg), Vg)), where Conv

 denotes 1 × 1 conv-layer. The DWD is surprised by minimizing the cross-entropy loss between PDWD, Pco and the

ground-truth mask Lm. LDWD = CE(PDWD, Lm) + CE(Pco, Lm)

Dynamic Weight Filters.

As shown in the top-right of Figure 5, to obtain the dynamic filters, we first average pool the input feature to obtain a

current global representation Vc (orange box in Figure 5), then interact Vc with the global image vector Vg (blue box in

Figure 5) with a fully connected layer and identify the optimal dynamic filters Dopt by weighted summation of four common

convolutional filters. Ai = σ(FC(Vc, Vg)), Dopt = ∑4
i=1Ai ∗ Wi, σ is the sigmoid function, FC is the linear layer, Wi is the ith

filter in the DWF. Finally, we depth-wise convolve the input feature with Dopt and then perform point-wise convolution with 

1 × 1 conv-layer to obtain the output.

The proposed DWD achieves sample-specific filters selection by analyzing the characteristics of the input image, the input

features and the forgery types in the initially predicted tampered region. The selected optimal filters effectively help the

generalist model to simultaneously distinguish tampered regions in different image types.

Method Omni
CASIAv1 Coverage CocoGlide NIST16 IMD20

Avg. (w.o.
IMD)

Avg. (w/ IMD)

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1 mIoU mF1

ManTraNet No .086 .130 .181 .271 .310 .408 .040 .062 .098 .146 .154 .218 .143 .203

RRU-Net No .330 .380 .165 .260 .223 .304 .080 .129 .169 .256 .200 .268 .193 .266

MVSS-Net No .403 .455 .389 .454 .278 .360 .243 .294 .243 .294 .328 .391 .311 .371

PSCC-Net No .410 .463 .340 .446 .333 .422 .067 .110 .115 .192 .288 .360 .253 .327

CAT-Netv2 No .684 .738 .238 .292 .290 .366 .238 .302 - - .363 .425 - -

IF-OSN No .465 .509 .181 .268 .259 .364 .247 .326 .259 .364 .288 .367 .282 .366

EVP No .438 .502 .078 .114 .232 .346 .188 .239 .177 .268 .234 .300 .223 .294

TruFor No .630 .692 .446 .522 .294 .362 .279 .348 - - .412 .481 - -

APSC-Net No .810 .848 .498 .568 .392 .455 .525 .590 .679 .760 .556 .615 .581 .644

Ours Yes .798 .834 .524 .576 .448 .505 .556 .630 .662 .740 .582 .636 .598 .657

Table 1. Comparison study on natural image manipulation localization. The training data of ’CAT-Netv2’ and

’TruFor’ includes the entire IMD20 dataset, thus their performance on IMD20 is not evaluated.

Qeios, CC-BY 4.0   ·   Article, December 4, 2024

Qeios ID: MNREU8   ·   https://doi.org/10.32388/MNREU8 10/19



Method Omni
SACP DocTamper-TestingSet DocTamper-FCD DocTamper-SCD

IoU F1 IoU P R F1 IoU P R F1 IoU P R F1

DFCN[24] No .466 .607 - - - - - - - - - - - -

MVSS-Net[5] No .401 .534 - - - - - - - - - - - -

SE-Net[25] No .459 .587 - - - - - - - - - - - -

RRU-Net[26] No .517 .651 - - - - - - - - - - - -

CFL-Net[27] No .433 .571 - - - - - - - - - - - -

TIFDM[13] No .576 .703 - - - - - - - - - - - -

ManTraNet[8] No - - .180 .123 .204 .153 .170 .175 .261 .209 .160 .124 .218 .157

MVSS-Net[5] No - - .430 .494 .383 .431 .410 .480 .381 .424 .400 .478 .366 .414

PSCC-Net[7] No - - .170 .309 .506 .384 .160 .440 .580 .420 .190 .286 .540 .374

BEiT-Uper[28] No - - .590 .564 .451 .501 .350 .550 .436 .487 .340 .408 .395 .402

Swin-Uper[29] No - - .700 .671 .608 .638 .410 .642 .475 .546 .510 .541 .612 .574

CAT-Netv2[30] No - - .710 .768 .680 .721 .600 .795 .695 .741 .540 .674 .665 .670

DTD[2] No - - .828 .814 .771 .792 .749 .849 .786 .816 .691 .745 .762 .754

Omni-IML (Ours) Yes .714 .820 .842 .837 .802 .819 .750 .901 .760 .824 .685 .760 .786 .773

Method

Official model trained on specific tasks Re-trained on all tasks with the same settings

Natural SACP DocTamper Face Natural Document Face Avg.

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

EVP .223 .294 .030 .053 .016 .035 .305 .453 .455 .501 .411 .447 .814 .886 .560 .611

HiFi-Net .023 .032 .106 .116 .078 .109 .784 .815 .447 .492 .427 .461 .815 .892 .563 .615

DTD .037 .059 .140 .224 .756 .787 .003 .005 .314 .372 .468 .501 .820 .901 .534 .591

TIFDM - - .576 .703 - - - - .473 .515 .432 .473 .820 .900 .575 .629

APSC-Net .581 .644 .088 .133 .139 .184 .151 .197 .587 .653 .616 .657 .818 .900 .674 .737

Ours - - - - - - - - .598 .657 .748 .809 .822 .902 .723 .789

Table 3. Comparison study on models trained on all tasks.

Figure 6. Visualization for the ablation of the AE module.
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Figure 7. Qualitative results for visual comparison.

4. Experiments

4.1. Experiment Setup

Training Data.

The training data includes three parts:

1. Natural style image. We utilize the tampCOCO[30], CASIAv2[31], MIML[10], and COCO[32] datasets as the training set of

the natural image part, following the standard practice in the IML field[9][10].

2. Document image. SACP[33] and DocTamper[2] are high-quality, large-scale document IML datasets with varied

tampering methods. We include the training sets of SACP and DocTamper as the document image part.

3. Face image. We use the training set of the FaceShifter subset from HiFi-IFDL[4] and 24k random images from

CelebaHQ[34] as the face image part.

Test Data.

The test data of Omni-IML includes three parts:

1. Natural style image. We adopt the widely used benchmarks CASIAv1[31], Coverage[35], NIST16[36] and IMD20[37] for

evaluation. These benchmarks include diverse tampered objects of various styles and diverse handcrafted forgeries of

various types (e.g. copy-move, splicing, removal). We also include the CocoGlide dataset[9] which contains forgeries

produced by diffusion model.

2. Document image. We use the test set of SACP[33], which contains handcrafted forgeries of various types (e.g., copy-

move, splicing, removal, printing, AIGC-based editing) and heavy post-processing. We also include the three test sets
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from the DocTamper benchmark[2], which contains high-quality forgeries and can evaluate IML models in both in-

domain and out-of-domain scenarios.

3. Face image. The FaceShifter test set[4] is adopted as the face image part. These fake faces are produced by the

representative DeepFake model FaceShifter[15].

Implementation Details.

The backbone model of our Omni-IML is ConvNeXt-Base[38] initialized with its official ADE20k[39] pre-trained weights,

following previous works[9][10]. The Omni-IML is trained with the cross-entropy loss for 370k iterations, using the AdamW

optimizer[40], with a batch size of 16 and an input size of 512 × 512. The initial learning rate is set to 1e-4 and decays to

1e-6 in a linear schedule. A fixed threshold of 0.5 is used to binarize model predictions during inference.

Evaluation Metrics.

For the DocTamper benchmark, we use the official scripts to evaluate model performance. For other benchmarks, we

calculate fore-ground IoU and pixel-level Precision (P), Recall (R), and F1-score (F) for each sample and then compute

the average score following the previous work[10] for fair comparison.

4.2. Comparison Study

The proposed generalist model Omni-IML is evaluated on all of the natural IML, document IML, and face IML benchmarks

using a single set of model parameters, without any task-specific or benchmark-specific fine-tuning. The comparison with

the state-of-the-art methods of natural image forensics is shown in Table 1, the methods compared include Mantra-Net[8],

RRU-Net[26], MVSS-Net[5], PSCC-Net[7], CAT-Netv2[30], IF-OSN[41], EVP[19], TruFor[9], APSC-Net[10]. The comparison

with the state-of-the-art methods for document IML and face IML tasks are shown in Table 2 and Table 4, respectively.

Evidently, our generalist Omni-IML can simultaneously outperform existing specialized methods on each individual task,

demonstrating the strong generalization ability. This is because our Omni-IML can adaptively select the optimal input

modality and decoder parameters for each sample, effectively producing the best features for IML on different image

types. In addition, the Anomaly Enhancement module drives the model to learn common features for the forgeries from

different image types, and reveals the inconsistencies between forged and authentic regions with the extra box

supervision. Consequently, it suppresses feature noise and reduces model confusion in joint training.

It’s worth noting that in Table 4, the HiFi-Net provides two separate official models for IML on natural images and face

images respectively. This is because the HiFi-Net suffers greatly from join training, and it is necessary to train it separately

for each task. Furthermore, HiFi-Net and TruFor only perform well with their specialist face IML models, while our Omni-

IML excels with a generalist model, demonstrating the effectiveness of our methods.

To further explore the generalist capability of previous IML methods, we re-train the state-of-the-art models with their

official model code, the same training data and pipeline as ours, the results are shown in Table 3. In Table 3, the left part

is the performance of their official model trained on specific tasks. Evidently, all the models perform well on only one task.
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The right part of Table 3 is the performance of the re-trained models. The average performance of the re-trained models

improves as joint training alleviates the random guessing issue on other image types. Including the MIML dataset for

training also counteracts the significant performance degradation brought by joint training on diverse image types. Despite

this, they still perform significantly worse than our Omni-IML (e.g. 5-20 points mIoU lower than ours). This is because

existing IML methods rely heavily on designs and strategies targeted at one image type, and such designs and strategies

usually do not work so well on other image types (e.g. noise filters, edge enhancement and object-level attention are

beneficial for natural images but not for document images). Moreover, the tampering features among diverse image types

differ a lot from each other, making it challenging for models to simultaneously learn them well. As a result, training IML

models jointly on image types for which they are not designed causes considerable confusion and significantly limits their

performance. Our Omni-IML does not rely on modules or strategies that designed for only one image type. In contrast, the

adaptive selection of optimal encoding modality and decoder parameters helps our model to effectively handle diverse

tampering clues and extract the best features from various image types. Additionally, the anomaly enhancement also

benefits all domains by enhancing the features of tampered regions and driving the model to learn common features from

diverse image types. Consequently, our Omni-IML demonstrates strong generalization across different image types and

has minimal performance degradation during joint training.

Method Omni IoU P R F1

TruFor (Official model) [9] No .631 .984 .638 .774

TruFor (Face re-trained) [9] No .814 .990 . 819 .896

HiFi-Net (Natural
model) [4] No .255 .439 .379 .407

HiFi-Net (Face model) [4] No .784 .866 .800 .815

Omni-IML (Ours) Yes .822 .993 .826 .902

Table 4. Comparison study on face forgery localization.

’Face re-trained’ denotes the model re-trained on the

FaceShifter data using official code. ’Natural model’ and

’Face model’ denote the official models trained on natural

images and face images respectively.

Table 5. Ablation study on the proposed modules.
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Ablation
Natural Document Face Average

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

Baseline .451 .544 .509 .580 .809 .888 .589 .670

w.o. MG .500 .552 .609 .672 .810 .890 .639 .704

w.o. MG* .568 .632 .625 .673 .811 .889 .668 .731

w.o. DWD .477 .567 .515 .580 .815 .894 .602 .680

w.o. DW .562 .625 .692 .765 .820 .901 .691 .763

w.o. AE .547 .601 .662 .726 .819 .900 .676 .742

Ours .598 .657 .748 .809 .822 .902 .723 .789

Backbone
Natural Document Face Average

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1

ConvNeXt Small .588 .648 .736 .793 .821 .901 .715 .781

ConvNeXt Base .598 .657 .748 .809 .822 .902 .723 .789

ConvNeXt Large .605 .665 .770 .829 .836 .910 .737 .801

Table 6. Ablation study on the backbone model size.

Ablation Study on the Proposed Modules.

The ablation results are shown in Table 5. ’w.o. MG’ denotes the model without the Modal Gate, it has 8.4 points lower

mIoU than Omni-IML. This is because the frequency features in some samples are unstable, and without the Modal Gate

to filter them out, these features introduce too much noise to the encoder and thus cause performance degradation. ’w.o.

MG*’ represents the model without Modal Gate and using the pure vision modality, it has 5.5 points lower mIoU than

Omni-IML. This is because frequency domain modeling can also be helpful in some cases, especially when the tampered

region is visually consistent (e.g. on document images). ’w.o. DWD’ represents the model without the Dynamic Weight

Decoder, it has 12.1 points lower mIoU than Omni-IML. This is because the diversity of tampering features is too high for

the encoder to learn them well, thus confusing the model, confirming the necessity of the proposed DWD for the generalist

model. ’w.o. DW’ is the model with the DWD structure but the filter weights in the decoder keep all the same for each

input, it has 3.2 points lower mIoU than Omni-IML, this verifies that the adaptive selection of optimal decoder weights for

each sample can reduce confusion in joint training. ’w.o. AE’ is the model without the proposed Anomaly Enhancement

(AE) module, it has 4.7 points lower mIoU than Omni-IML. This is because the proposed AE module can enhance the

forged regions in the features, and can drive the model to learn common features. Without the AE module, the encoder’s

output features will have much more noise and confuse the decoder, as visualized in Figure 6, The model without any of

the proposed modules serves as the ’Baseline’ model, its mIoU is 13.4 points lower than Omni-IML. These results have

proved the effectiveness of our methods.

Ablation Study on the Model Size.

We conduct an ablation study on the model size. As shown in Table 6, the model performance improves slightly with a
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larger size. These results indicate the scaling law behind our Omni-IML and there is a great potential for further

improvement.

5. Conclusion

In this paper, we propose Omni-IML, the first generalist model designed for image manipulation localization to address the

drawbacks of specialist models. Specifically, multiple novel and effective modules are proposed to achieve generalism

through sample-specific adaptation, including a Modal Gate Encoder that automatically determines the optimal encoding

modality for each input image, and a Dynamic Weight Decoder that adaptively selects the optimal decoder parameters for

each input sample. In addition, an Anomaly Enhancement module is proposed to reduce confusion by enhancing the

features of tampered regions and driving the model to learn common features from diverse image types. To verify the

generalist capability, extensive experiments are conducted on three major IML tasks, covering natural IML, document IML,

and face IML. The experimental results demonstrate that our single model simultaneously achieves state-of-the-art

performance on all tasks. Comprehensive ablation studies and visual analyses are also presented to provide in-depth

insights. We believe that our work can inspire future research and promote the real-world applications of unified image

forensics models.
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