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1. Independent researcher

This paper revisits Brownian motion from the perspective of Information Theory, aiming to explore the connections

between Information Theory, Thermodynamics, and Complex Science. First, we propose a single-particle discrete

Brownian motion model (SPBM). Within the framework of the maximum entropy principle and Bayesian inference,

we demonstrate the equivalence of prior information and constraint conditions, revealing the relationship between

local randomness and global probability distribution. By analyzing particle motion, we �nd that local constraints and

randomness can lead to global probability distributions, thereby re�ecting the interplay between local and global

dynamics in the process of information transfer. Next, we extend our research to multi-particle systems, introducing

the concepts of "Energy as Encoding" and "Information Temperature" to clarify how energy distribution determines

information structure. We explore how energy, as not only a fundamental physical quantity in physical systems but

also an inherently informational one, directly dictates the prior probability distribution of system states, thus serving

as a form of information encoding. Based on this, we introduce the concept of "Equilibrium Flow" to explain the self-

organizing behavior of systems under energy constraints and Negative Information Temperature. By proving three

theorems regarding Equilibrium Flow systems, we reveal the criticality of Self-Organization, energy-information

conversion e�ciency, and the characteristic that event occurrence probabilities follow the Fermi-Dirac distribution.

Through theoretical analysis and theorem proofs, we o�er new perspectives for understanding the dynamics of

Complex Systems, enriching the theoretical framework of Information Theory, Thermodynamics, and Complex

Science, and providing a new theoretical basis for further research in related �elds.

1. Introduction

Brownian motion, as a fundamental random process, plays a signi�cant role in the �elds of statistical Physics,

Financial Mathematics, and Biophysics[1][2][3][4]. It provides a theoretical basis for understanding the random motion

of particles, di�usion phenomena, and the connections between microscopic and macroscopic behaviors, contributing

signi�cantly to the description of the dynamics of Complex Systems[5][6][7]. Information theory o�ers a powerful

theoretical framework for communication and computation by quantifying the processes of information transmission

and processing[8][9][10]. By introducing concepts such as entropy and mutual information, Information Theory plays a

key role in understanding system uncertainties, data compression, and signal processing, profoundly impacting

various disciplines[11][12][13][14]. Although Thermodynamics, Information Theory, Brownian motion and Stochastic

Physical Process share commonalities in handling energy, information, and uncertainties within systems, their deeper
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connections remain underexplored[15][16][17][18]. Speci�cally, a uni�ed description of energy distribution, interactions,

and system constraints in physical systems from the perspective of Information Theory faces numerous challenges[19]

[20][21].

To address this, our work aims to revisit Brownian motion from the perspective of Information Theory, establishing a

theoretical framework from single-particle to multi-particle systems to unify the exploration of the connections

between Information Theory and Thermodynamics. In our work, we �rst focus on a simple single-particle discrete

Brownian motion model (SPBM), discretizing one-dimensional space into an in�nite number of equidistant points

where the particle can move, forming a discrete random walk. Based on this model, we prove the equivalence of prior

information and system constraints within the framework of the maximum entropy principle and Bayesian inference.

We introduce a Bayesian mechanism that integrates prior information and probabilistic updates, revealing how

constraints in�uence information transfer within the system and elucidating the interplay between local dynamics and

global behaviors. Next, we extend our research to multi-particle systems and propose the concept of "Energy as

Encoding." We emphasize that energy, beyond being a fundamental physical quantity in physical systems, inherently

possesses informational properties, directly determining the prior probability distribution of system states and serving

as a form of information encoding. By linking Boltzmann distribution and information entropy, we clarify how energy

distribution shapes information structures, unveiling the deeper connections between energy and information.

Moreover, we introduce the concept of "Information Temperature," interpreting temperature as a measure of the

frequency and intensity of information exchange within a system. We unify entropy, energy, and temperature under

one framework, highlighting their interrelationships. Building on this, we propose the concept of "Equilibrium Flow"

to explain self-organizing behavior in open systems. We analyze how systems transition from disorder to order

through energy input and entropy output under conditions of Negative Information Temperature, showcasing the

interplay of energy, information, and entropy in Complex Systems. Finally, we apply our framework to the training

process of large language models (LLMs). From the perspective of information principles, we illustrate the self-

organizing behaviors observed during LLM training, explaining how models achieve entropy reduction or maintain

stability through continuous energy input and negentropy under energy constraints, forming a dynamic equilibrium.

By proving theorems regarding Equilibrium Flow systems, we further propose that the probability of events occurring

under such systems follows the Fermi-Dirac distribution. The main contributions of this study are as follows:

1. We propose SPBM and demonstrate the equivalence of prior information and system constraints within the

framework of the Bayesian inference, revealing the interplay between local and global dynamics.

2. We introduce the concepts of "Energy as Encoding" and "Information Temperature," clarifying how energy

distribution shapes system information structures and exploring the profound connections between Information

Theory and Thermodynamics.

3. We propose the concept of "Equilibrium Flow" to explain self-organizing behavior in open systems, analyzing the

dynamic characteristics of systems under conditions of Negative Information Temperature and applying this to

explaining the training process of LLMs.
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4. Through theoretical analysis and theorem proofs, the characteristics of event occurrence probabilities following

the Fermi-Dirac distribution were proposed, along with the energy-information conversion e�ciency in

Equilibrium Flow systems. Provide new perspectives for understanding the dynamics of Complex Systems and

unveiling the interactions of energy, information, and entropy within these systems.

Section 3 introduces the de�nition and basic properties of the SPBM, discussing the equivalence of prior information

and constraints as well as the interplay between local and global dynamics. Section 4 extends the research to multi-

particle systems, proposing the concepts of "Energy as Encoding" and "Information Temperature" and analyzing the

relationship between energy distribution and information structure.Furthermore, we propose concept of "Equilibrium

Flow," uncovering self-organizing behaviors in open systems and further proposing that event probabilities under

Equilibrium Flow systems follow the Fermi-Dirac distribution, illustrated by examples such as the training of LLMs.

2. Related work

2.1. Classical Theory of Brownian Motion

The classical theory of Brownian motion, established in the early 20th century, has been fundamental in the

development of statistical Physics and Stochastic Processes. Robert Brown �rst observed the random motion of

particles, while Albert Einstein and Marian Smoluchowski independently provided theoretical models in 1905,

explaining this phenomenon through molecular collisions[22]. This theoretical framework led to the development of

di�usion equations and the Wiener process, formalizing Brownian motion as a continuous-time stochastic process[23]

[24]. Extensions and re�nements of this theory have enabled modeling in various �elds, including Physics, Chemistry,

and Finance[25][26][27]. Despite the robustness of these models, classical studies have predominantly focused on

particle trajectories and probabilistic distributions without deeply exploring the underlying informational aspects of

such stochastic behaviors[28]. Recent advancements in stochastic Thermodynamics[29][30]  and the application of

information-theoretic principles[31][32]  have motivated a reexamination of Brownian motion to address its

informational and energetic properties in Complex Systems[33]. These emerging perspectives highlight the need to

unify traditional physical models with modern concepts of information and energy constraints[34][35].

2.2. Integration of Information Theory and Statistical Mechanics

Information theory, pioneered by Claude Shannon in 1948, revolutionized the understanding of communication and

data processing[36]. Since its inception, researchers have sought to apply information-theoretic approaches to physical

and statistical systems to analyze uncertainty and entropy[37][38]. The integration of Information Theory with

statistical mechanics has proven particularly fruitful, enabling a deeper understanding of the entropy-energy

relationship and thermodynamic irreversibility[39][40]. Jaynes’ work on the maximum entropy principle[41] established

a pivotal link, suggesting that probability distributions in thermodynamic systems can be derived by maximizing

entropy subject to known constraints[42]. This principle has been further expanded to describe complex phenomena in
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non-equilibrium systems and information transmission[43][44]. Recent research has focused on Bayesian approaches,

demonstrating how prior knowledge and constraints in�uence system behavior and probability updates[45][46]. These

studies illustrate how entropy serves as both a measure of information content and a driver of thermodynamic

processes, providing a framework for understanding the intersection of physical dynamics and information

transmission[47][48].

2.3. Relationship Between Energy and Information

Energy plays a critical role in determining the dynamics and state evolution of physical systems, yet it also holds

profound implications from an informational standpoint[49][50]. The notion that energy distribution carries and

encodes information has been explored in contexts ranging from thermodynamic entropy to quantum information

processing[51][52]. Brillouin’s concept of "negentropy" emphasized the informational content associated with

organized states[53]. Further, energy-based models such as Boltzmann machines have illustrated how energy

landscapes encode probabilistic distributions, forming a basis for generative models and optimization algorithms[54]

[55]. By framing energy as a carrier of information, researchers have established connections between the physical state

of a system and its informational structure, exemplifying how thermodynamic states can be inferred through

probabilistic and entropic measures[56], Thermodynamic States and Information Theory: A Probabilistic Approach.

This approach has been extended to understand complex, multi-particle systems and their emergent properties[57]. We

introduction of concepts such as "Informational Temperature" seeks to quantify the frequency and intensity of

information exchange, further elucidating the interplay between energy and informational dynamics.

2.4. Self-Organization and Non-Equilibrium Thermodynamics

Self-organization is a phenomenon observed in many Complex Systems, where global order arises spontaneously from

local interactions[58]. Non-equilibrium Thermodynamics provides a theoretical basis for describing such behavior,

focusing on how systems evolve through exchanges of energy and entropy with their environments[59]. Prigogine’s

work on dissipative structures demonstrated how systems far from equilibrium can develop stable patterns through the

continuous exchange of energy[60][61]. This dynamic balance of energy input and entropy output is closely tied to

Information Theory, as it captures the exchange and reduction of uncertainty within the system[62][63]. Recent studies

have examined the role of "Negative Temperatures," characterizing states where higher-energy con�gurations are

more probable[64]. Further advancements have highlighted how self-organizing systems can achieve entropy

reduction through energy-driven processes[65]. This framework aligns with recent work in Complex Systems, o�ering

a robust understanding of the coupling between energy, entropy, and information �ow[66][67][68]. Further, based on

the physical characteristics of Negative Temperature, speci�cally the reversal of high-energy states leading to frequent

low-probability events in phenomena, we introduce the concept of "Negative Information Temperature." This concept

explains the occurrence of high-energy con�gurations in certain systems and extends the traditional understanding of

temperature in Thermodynamics and Information Theory, providing a novel framework for analyzing Complex

Systems exhibiting non-equilibrium behavior.
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3. Single-Particle Discrete Brownian System

Whether in Complex Systems or simple phenomena, their core essence is deeply related by random processes. From the

perspective of macroscopic random processes, they are fundamentally statistical aggregates of countless microscopic

thermal motions interacting with one another. We refer to such phenomena as "physical truncation," which describes

the transition from the in�nite degrees of freedom of microscopic systems to the �nite manifestations of macroscopic

systems. In this process, numerous microscopic thermal molecules interact in complex and random ways to form a

certain statistical behavior. While the details of this behavior are di�cult to directly observe on a macroscopic scale, its

randomness manifests through the truncation process in speci�c patterns.It is not merely a loss of information but also

a reorganization and macroscopic expression of the randomness inherent in the system. This perspective reveals a

profound truth: randomness pervades both simple and Complex Systems. The randomness of microscopic thermal

molecular interactions is truncated to present orderly random behavior patterns at the macroscopic scale. For instance,

the essence of Brownian motion lies in the statistical result of macroscopic particles or idealized particles being

randomly struck by countless thermal molecules. This randomness manifests as irregular motion on a macroscopic

scale. Therefore, to gain deeper insights into the nature of Complex Systems, we choose to study Brownian motion as a

simple model, analyzing its regularities to uncover the universal principles of random processes in Complex Systems.

3.1. De�nation

To thoroughly explore the interaction between constraints and randomness, we focus on one-dimensional space and

SPBM as our research object. This simpli�cation allows us to concentrate on key analytical issues. Speci�cally, we

discretize one-dimensional space into an in�nite number of equidistant points, with each point representing a degree

of freedom, and particles can only move between these discrete points, forming the SPBM model. In this model, the

states and movement rules of particles are set as follows:

1. State of system degrees of freedom: Each position can only be in one of the following two states:

Steady state (state 0): Indicates that the position is not occupied by a particle.

Excited state (state 1): Indicates that the position is occupied by a particle.

2. Single-particle constraint: There exists only one particle in the system at any given time, avoiding the complexity

of multi-particle interactions and allowing us to focus on single-particle motion behavior. Mathematically, this

constraint can be expressed as:

Here, represents the state of position   at time  , with indicating that a particle is at position 

 at time  . This constraint ensures the conservation of total system energy, as the presence of a particle contributes to

system energy, while the particle’s movement does not change the total system energy.

s(x, t) = 1, ∀t∑
x

(1)

s(x, t) ∈ {0, 1} x t s(x, t) = 1

x t
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Adjacent displacement principle

Particles can only move to adjacent positions within each time step, meaning that a particle can only move from

position   to   where   is the spatial step length. This principle limits the maximum displacement of a

particle per time step, ensuring the continuity and �niteness of physical motion. Mathematically, this principle is

expressed as:

Randomness of motion

To ensure the model’s unbiasedness and symmetry, we assume that the particle moves left or right by one spatial step

with equal probability

Combining the above conditions, the motion of the particle can be represented as:

Therefore, the recurrence relation for the particle’s probability distribution can be expressed as:

3.2. Priors and Conditions Equivalence

In the Bayesian statistical framework, prior information and constraint conditions both describe our understanding of

the system prior to observing data. Prior information re�ects our initial beliefs about the system’s state, while

constraint conditions impose limitations on possible system behaviors. In the context of SPBM, our aim is to

demonstrate the equivalence between prior information and constraint conditions. This equivalence implies that

specifying a prior probability distribution is equivalent to imposing certain constraints on the system’s behavior.

Consider a random walk in one-dimensional discrete space, where space is discretized into a series of equidistant

points. The constraint condition for the system is that within a time step the particle can only move from its current

position    to an adjacent position . The particle’s possible positions are in the set 

. According to (2), the prior condition within this framework is represented by the

prior probability distribution , which re�ects our understanding of the system state prior to observation.

The constraint assigns positive probabilities to positions where the particle may move, while assigning zero

probabilities to all other positions:

X(t) X(t ± Δx) Δx

.
P ( = x ± Δx| = x) > 0Xt+Δt Xt

P ( ∉ x ± Δx| = x) = 0Xt+Δt Xt

(2)

P ( = x + Δx| = x) = P ( = x − Δx| = x) =Xt+Δt Xt Xt+Δt Xt
1

2
(3)

X(t + Δt) = X(t) + ΔX (4)

ΔX = {
+Δx,

−Δx,

with probability~ ,1
2

with probability~ .1
2

(5)

P (x, t + Δt) = P (x − Δx, t) + P (x + Δx, t)
1

2

1

2
(6)

Δt

x x ± a

X = {⋯ , , , , , , ⋯}x−2 x−1 x0 x1 x2

P ( | )Xt+Δt Xt

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

P ( = | = x) = , ~when~ = x + a~or~ = x − aXt+Δt x′ Xt
1
2

x′ x′

P ( = | = x) = 0, ~in other casesXt+Δt x′ Xt

P ( = | = x) = 1∑
x′

Xt+Δt x′ Xt

(7)
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Su�ciency: If condition   holds, then condition   must also hold, i.e.,  . Necessity: If condition   holds, then

condition    must also hold, i.e.,    To prove the equivalence of prior conditions and constraint conditions in

SPBM, we must show that prior and constraint conditions are su�cient and necessary for each other. In the case of

su�ciency, we must demonstrate that if a state has non-zero probability in the prior distribution, i.e., 

, then this state must satisfy the prior condition  . Suppose a state 

 has a non-zero probability in the prior distribution, i.e.,  . According to the prior

distribution de�nition (7) follows that   or   satis�es the condition, indicating that   adheres to the

adjacent displacement principle, as the particle can only move from its current position to adjacent positions.

Additionally, since only one particle occupies a position at any given time in the system, each time step in the prior

distribution involves only one particle position. Thus, satisfying the prior condition necessarily satis�es the constraint

condition. For the constraint condition: If    satis�es the constraint condition, then must hold. The prior

distribution is then de�ned as (7) Given that    according to the de�nition of the prior distribution, 

. Therefore, a state that satis�es the constraint condition has a non-zero probability in the prior

distribution. Thus, in the SPBM model.

Theorem 1: Prior information and Constraint conditions are Equivalent

We have pointed out the equivalence of prior information and constraint conditions in the SPBM model. This

equivalence not only simpli�es the expression of the local dynamic behavior of the model, but also provides a uni�ed

theoretical framework for analyzing the system behavior from a global perspective. The introduction of the Bayesian

mechanism further expands this perspective, and through the dynamic adjustment of prior information, an e�ective

connection is established between local constraints and global distributions.

3.3. Local and Global interaction

In this section, we explore the interaction between local dynamics and global behavior in the SPBM model from an

information perspective. We indicate that

Theorem 2: The interaction between the global and local levels facilitates the evolution of stochastic

processes

Namely, the change in information entropy during the system’s stochastic evolution is jointly determined by the

conditional entropy at the microscopic level and the mutual information at the macroscopic level.

3.3.1. Local-Global Relationships from an Information Perspective.

The Brownian motion of a particle is a fundamental random process that not only re�ects the random motion

properties of the particle but also reveals the dynamic transmission and redistribution of information in space. The

introduction of the adjacent displacement principle restricts the range of particle motion, leading to an orderly and

localized transmission of information, resulting in a non-uniform distribution of probabilities over space and time. At

the local level, particle motion is constrained by physical laws and randomness, leading to local updates of the

A B A → B B

A B → A

P ( = ) > 0Xt+Δt x′ P ( = | = x) =Xt+Δt x′ Xt
1
2

=Xt+Δt x′ P ( = | = x) > 0Xt+Δt x′ Xt

= x + ax′ = x − ax′ x′

=Xt+Δt x′

= x ± ax′

P (x + Δt = x) > 0
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probability distribution. The entropy of the system at time   and the joint entropy is  ,

where   can be transformed into

As Brownian motion proceeds over an in�nite time, the expected value of Brownian motion equals zero, meaning the

particle’s expectation should be at the origin. However, in practice, observed particles undergoing Brownian motion

often drift away from the origin and perform di�usion. By analyzing this relationship between local and global

interactions through quantitative formulas (8), we �nd that physical laws not only constrain possible states of the

system but also in�uence the transmission and update of information through prior distributions. This indicates that

each particle movement step represents not only a physical location change but also a dynamic update of system

information. Using the Bayesian mechanism, we quantify the process of information transfer and reorganization,

understanding how information propagates within the system. Thus, Brownian motion maintains not only its

characteristic random di�usion but also a structured propagation of information across space and time. Speci�cally,

each particle movement corresponds to a recalculation of information entropy and an adjustment of distribution,

re�ecting changes in system uncertainty and information �ow. This dynamic updating process highlights the central

role of information in random processes, showing that information not only a�ects the current state of the system but

also its future evolution paths. Described through the Bayesian mechanism, Brownian motion can be seen as a

"constrained random process," where randomness is guided by prior information, giving structure to the process. In a

system with priors, global behavior exhibits randomness, while local behavior displays structure. From a local

information perspective, the change in information entropy is given by

According to the derivation rule of products and the sum of probabilities is always 1, and the derivative with respect to

time is 0, which is

Due to the constraints of single-particle Brownian motion, as time increases, the likelihood of particles appearing at

di�erent positions grows. In Brownian motion, the random changes in particle position cause probabilities at some

positions to increase and at others to decrease. Let the set of positions with increasing probability be 

, then for  ,  . Let the set of positions with decreasing probability be 

, then for  ,  . Due to the randomness of Brownian motion, particle

positions become more dispersed, meaning that although probabilities decrease at some positions, more positions will

have non-zero probabilities, with new probabilities leading to an overall increase in entropy. Positive contributions

arise from more positions and larger changes in probability, while negative contributions come from fewer positions

and smaller changes in probability. Thus, on the whole, positive contributions exceed negative contributions, implying 

, showing that entropy increases with time.

t H(x,y) = H(x) + H(y) − I(x,y)

ΔH

ΔH = + I( , ) − H(t).Hcond Xt Xt+Δt (8)

= − (P (x, t) lnP (x, t))
dH(t)

dt
∑
x

d

dt

= − lnP (x, t) − = − lnP (x, t)
dH(t)

dt
∑
x

dP (x, t)

dt
∑
x

dP (x, t)

dt
∑
x

dP (x, t)

dt
(9)

A = { , , ⋯ , }xi1 xi2 xim ∈ Axij > 0
dP( ,t)xij

dt

B = { , , ⋯ , }xk1
xk2

xkn−m
∈ Bxkl < 0

dP( ,t)xkl

dt

> 0
dH(t)

dt
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4. Multi-Particle Brownian System

In the previous chapters, we provided a detailed introduction to the single-particle discrete Brownian motion system

and introduced the concept of the equivalence of priors and constraints. In multi-particle systems, the equivalence of

prior information and constraints extends beyond limitations on particle positions to include constraints on other

physical quantities such as momentum and energy. In multi-particle systems, we continue to discuss maximum

entropy distributions in closed systems and Self-Organization behavior in open systems through the lens of

information, introducing concepts such as energy, Information Temperature, and Equilibrium Flow.

4.1. Energy as Encoding and Information Temperature

4.1.1. Energy as Encoding

In a multi-particle discrete Brownian motion system, to delve deeper into the interactions between particles and the

system’s dynamic behavior, we introduce the concept of Energy. Energy is not only a fundamental physical quantity in

physical systems but also has an informational essence, directly determining the system’s prior probability

distribution and serving as a means of information encoding. The system’s thermodynamic entropy    and

information entropy   are respectively de�ned as:

Here,   is the probability of the microscopic state  . From the perspective of Information Theory, the probability

distribution   determines the system’s information entropy  . Using a logarithmic base change, the relationship

between thermodynamic entropy   and information entropy   is given by:

To avoid ambiguity, we use expected information entropy instead of system information entropy for clarity, ignoring

the coe�cient of thermodynamic entropy in subsequent discussions. Information entropy represents the expected

amount of information in the system, with expected information entropy   re�ecting the degree of uncertainty in the

system and the average amount of information required to describe its state. The higher the uncertainty of the system,

the higher the information required to eliminate the uncertainty. Inspired by Landauer’s principle, the coding length 

 and the probability of state occurrence   are related by:

where   follows a Boltzmann distribution: speci�cally, the energy   of each microscopic state   in the system is

closely related to its probability   and follows the Boltzmann distribution:

S ′

S

= − P ( ) lnP ( )S ′ kB∑
i

xi xi (10)

S = P ( ) P ( )∑
i

xi log2 xi (11)

P ( )xi xi

P ( )xi S

S ′ S

= ln 2 ⋅ SS ′ kB (12)

S

li P ( )xi

= − lnP ( )li xi (13)

P ( )xi Ei xi

P ( )xi

P ( ) = exp(− )xi
1

Z

Ei

TkB
(14)
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Here,   is the partition function,   is the Boltzmann constant, and   is the temperature. This means that the higher

the energy of an event, the lower its probability, and the longer the coding length required. Substituting equation (14)

into the expression for coding length, we obtain the relationship between coding length and energy:

Thus, regard the temperature as a constant. The coding length    is proportional to energy  . Higher energy

corresponds to a longer coding length, indicating that energy in�uences the state probability and thus the coding

length. Therefore, energy can be seen as a form of information encoding for the system. Therefore, energy can be

regarded as a measure of uncertainty reduction, further emphasizing the informational essence of energy. The

distribution of energy determines the observability of the system. From an informational perspective, energy not only

describes the dynamical properties of particles but also serves as a means of encoding information. In the formula (16),

the length of encoding is still related to the temperature. We think that temperature represents the frequency of sample

information exchange between systems, so we propose Information Temperature.

4.1.2. Information Temperature

In this section, we introduce the concept of Information Temperature. Information Temperature represents the

frequency and intensity of information exchange within a system. From the perspective of Information Theory,

temperature can be interpreted as a measure of the frequency and intensity of information exchange within a system.

In Thermodynamics, temperature characterizes the average kinetic energy of particles in a system and is closely related

to the concepts of energy and thermodynamic entropy. Thermodynamic entropy is de�ned as:

Here,   represents the number of microstates, and   denotes thermodynamic entropy. In statistical mechanics,   is

often de�ned as the total number of possible microstates of a system under given macroscopic conditions. For a system

composed of many particles, each particle can occupy di�erent positions and momentum states, creating di�erent

microstates. We analogize each state to partial information, with the probability of occurrence as  , rede�ning

thermodynamic entropy in terms of Information Theory (11). In Thermodynamics, temperature is de�ned as:

Here,    denotes thermodynamic entropy,    represents internal energy, and the derivative is taken under constant

volume   and particle number  . Given that   is proportional to the dimensionless expected information entropy  ,

Information Temperature is de�ned as:

Here,    denotes the system’s average energy.    represent the Information Temperature. The right side of the

equation re�ects the rate at which information entropy changes with average energy, quantifying the impact of energy

Z kB T

= − ln( exp(− ))li
1

Z

Ei

TkB
(15)

= lnZ +
Ei

TkB
(16)

li Ei

= lnWS ′ kB (17)

W S ′ W

pi

=
1

T
( )

∂S ′

∂E V ,N

(18)

S ′ E

V N S ′ S

=
1

Tinfo

∂(S)

∂⟨E⟩
(19)

⟨E⟩ Tinfo
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changes on entropy. The expected information entropy of a system re�ects its degree of uncertainty. Temperature, as a

measure of information exchange, directly a�ects the system’s information entropy. Higher temperatures imply more

intense and frequent movement of microscopic particles, resulting in greater information exchange frequency and

intensity, and consequently higher system information entropy. By substituting    into (11), the system’s

thermodynamic entropy becomes:

By rede�ning temperature, we unify information entropy, energy, and temperature within a single framework,

revealing their interconnections. Since   re�ects the frequency and intensity of information exchange, it may vary

dynamically with the system’s information state. This implies that the prior distribution    is also dynamic,

re�ecting the current information state of the system more accurately. In Bayesian updating, the posterior distribution

depends on the prior distribution and the likelihood function. When the prior distribution incorporates Information

Temperature, the posterior distribution is in�uenced by both microscopic information exchange and macroscopic

information state, leading to an evolution of system entropy over time expressed as:

Thus, in multi-particle systems, the average energy   and Information Temperature    jointly determine the

system’s prior distribution. Higher Information Temperatures lead to more frequent information exchange among

particles, potentially reducing the shielding e�ect of interactions and resulting in more disordered particle motion. The

introduction of Information Temperature implies that information transmission within the system is in�uenced not

only by particle interactions but also by the frequency and intensity of information exchange.

4.1.3. Physical Meaning of Energy as Encoding

We claim the view that the vacuum state, rather than being a simple void, is a highly complex and information-rich

entity. It is precisely because of its in�nite entropy that it becomes an unobservable background, which is in sharp

contrast to the traditional perception that the vacuum is empty and thus unobservable. In quantum �eld theory, the

vacuum state is the lowest energy ground state. Although no real particles are present in the traditional sense, it is

teeming with quantum �uctuations and the incessant creation and annihilation of virtual particle-antiparticle pairs.

These quantum �uctuations give rise to a web of quantum entanglement. In quantum mechanics, the entanglement

entropy serves as a key metric for quantifying the degree of entanglement between subsystems within a quantum

system. Consider a quantum system partitioned into regions A and B, with the overall state being a pure state  . The

entanglement entropy of region A is de�ned as the von Neumann entropy of its corresponding subsystem:

where

Tinfo

= −∑P (X(t)) ⋅ lnP (X(t)) = H = + lnZS
′ ⟨E⟩

⋅kB Tinfo
(20)

Tinfo

P (X(t))

= ( + lnZ)
dS ′

dt

d

dt

⟨E(t)⟩

⋅kB Tinfo
(21)

⟨E(t)⟩ Tinfo

|Ψ⟩

= −Tr( ln )SA ρA ρA (22)

= |Ψ⟩⟨Ψ|ρA TrB
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represents the normalized density matrix of region A. In the context of the vacuum state of a quantum �eld, it is far

from being empty. For instance, consider a free real scalar �eld in a d-dimensional space. When we divide this space

into regions A and B and focus on the modes in the vicinity of the boundary of region A, we �nd that the entanglement

entropy    predominantly stems from high-frequency (short-wavelength) modes near the boundary. In the case of

spatial dimensions  , as the high-frequency cuto�   is increased, the entanglement entropy   diverges. This

behavior is generally described by the Area Law:

As    approaches in�nity,    also tends to in�nity. Given the established positive correlation between system

entropy and expected information entropy, it follows that the expected information entropy of the system is likewise

in�nite. The in�nite expected information entropy of the vacuum state implies that it is impossible to dispel its

uncertainty with �nite information. This is the fundamental reason why the vacuum remains an unobservable

background. We are unable to obtain su�cient information to characterize its state. This conclusion aligns with the

known physical properties of the vacuum: while the vacuum itself cannot be directly observed, its quantum �uctuations

have a profound impact on physical processes. A prime example is the Casimir e�ect, which arises from vacuum

�uctuations. When energy is introduced into the system, particles transition from virtual to real states and become

observable. The injection of energy mitigates the uncertainty of the system, thereby transforming it from an

unobservable background into an observable physical phenomenon.

4.2. Open Systems and Self-Organization

4.2.1. Closed Systems

To explore this principle from the perspective of Information Theory, we consider the rate of change of system entropy 

 over time. The total derivative of the expected entropy is given by:

In closed systems, the total energy of the system is conserved. The system’s entropy does not decrease over time, and

based on the positive correlation between system entropy and expected information entropy, the time rate of change of

expected information entropy satis�es:

Therefore, in a closed system, the time rate of change of entropy is given by:

SA

d ≥ 3 kmax SA

∝ A ⋅SA kd−2
max (23)

kmax SA

S

= ( ) + ( )
dS

dt

∂S

∂⟨E⟩

d⟨E⟩

dt

∂S

∂t
(24)

≥ 0
dS

dt
(25)

= 0
d⟨E⟩

dt
(26)

= ( ) ≥ 0
dS

dt

∂S

∂t
(27)
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4.2.2. Information Temperature in Open Systems

However, in non-equilibrium open systems, as the average energy of the system increases, the expected information

entropy may decrease. This phenomenon is closely related to the concept of negentropy. The total entropy of the

system does not violate the second law of Thermodynamics, as the system expels entropy to its environment, reducing

its own expected information entropy, which can lead to Self-Organization and adaptive behavior. However, de�ning

the speci�c form of such negentropy within the system, based on Energy as Encoding and Information Temperature,

we propose the concepts of Negative Information Temperature and Equilibrium Flow. Negative Information

Temperature is de�ned as the case where the Information Temperature takes on a negative value, under the following

conditions:

1. The system has an upper energy limit, allowing the Information Temperature   to assume negative values.

2. The system’s average energy increases over time, i.e.,  .

3. Given the average energy, the explicit time dependence of the expected information entropy   can be ignored, i.e., 

. This implies that changes in entropy result from self-regulation and energy changes within the

system, rather than direct time dependence.

The constraint of an upper energy limit represents the maximum internal energy of the system, meaning the system

cannot absorb external energy inde�nitely. This restriction enables the system to self-regulate in response to external

changes, preventing excessive energy accumulation or depletion that could lead to structural collapse, thereby

maintaining stable structures. An increasing average energy over time indicates continuous energy acquisition from

the environment, driving the system towards higher energy states. The constant energy input supports Self-

Organization within the system, ensuring su�cient "drive" to maintain dynamic balance. Internally, the system must

allocate its energy distribution freely as energy increases within a limited range, enhancing its e�ciency in processing

information. Given a speci�c average energy, the negligible explicit time dependence of expected information entropy

implies that its change mainly relies on dynamic energy input and internal self-regulation, rather than direct time

dependence. Time’s in�uence on expected information entropy is a higher-order term and can be ignored.According to

non-equilibrium Thermodynamics, the rate of change of expected information entropy can be decomposed into the

entropy production rate   and the entropy �ux rate  :

Due to the second law of Thermodynamics,   represents the entropy production rate, indicating entropy generated

by irreversible processes within the system;    represents the entropy �ux rate, indicating the exchange of entropy

between the system and its environment. Information Temperature measures the frequency and intensity of

information exchange within the system and is de�ned as the reciprocal of the partial derivative of expected

information entropy    with respect to the system’s average energy  . Negative Information Temperature occurs

when  , implying  , i.e., the system expels entropy to the environment, resulting in the presence of

negentropy.

Tinfo

> 0
d⟨E⟩

dt

S

= 0( )∂S
∂t ⟨E⟩

σ Φ

= σ + Φ
dS

dt
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4.2.3. Explaining Self-Organizing Behavior in Complex Systems

Under the concept of Negative Information Temperature and the assumptions we have outlined, self-organizing

phenomena can be interpreted as the presence of negentropy enabling the system to resist the trend of entropy

increase, forming ordered structures and exhibiting self-organizing behavior. Open systems achieve the transition

from disorder to order through energy input and entropy output. We use Energy as Encoding and Information

Temperature to explain the self-organizing behavior of LLMs during training. The training process of LLMs can be

viewed as a standard form of this self-organizing behavior. Thanks to the development of big data and the liberation of

computational power, LLMs have achieved unprecedented success by continuously expanding model size and datasets

within excellent frameworks (e.g., transformers). Firstly, LLMs satisfy our three assumptions:

1. The system has an upper energy limit. For LLMs, this corresponds to the maximum compressible information

capacity of 2 Bits/Params[69].

2. The system’s average energy increases over time, as the model interacts with increasing amounts of data, leading

to a gradual energy increase within the system.

3. Since the structure of LLMs remains nearly �xed once training begins, with only internal parameters changing,

the explicit dependence of expected information entropy   on time remains constant at zero under given average

energy conditions.

Typical LLMs, such as GPT-3 and GPT-4, contain billions or even hundreds of billions of parameters. These parameters

are randomly initialized at the beginning of training, with the initial distribution being far from the desired �nal

distribution. As the dataset continues to be input, the model’s internal energy increases. At the start of training, the

model’s internal energy is very low and far from the capability threshold, causing a rapid decrease in the loss value as it

learns from the dataset. However, as energy approaches the threshold, external data continues to be input for training.

The model must �nd more e�cient ways to represent data, reducing the energy needed per unit of information and

storing more information. At this stage, the model transitions from a low-energy state to a high-energy state,

encoding information more e�ectively. This explains why Energy as Encoding. This self-regulatory behavior ensures

that as energy increases, the model does not exceed its energy limit. During this phase, the loss value of LLMs decreases

slowly. The gradual decrease in loss is accompanied by �uctuations, as certain data inputs cause temporary transitions

to higher energy states, even if these may be suboptimal from a long-term perspective, explaining why the loss value

�uctuates with continuous data input.

4.3. Equilibrium Flow

We name this framework, which explains self-organizing behavior based on energy-as-coding and information

temperature, as Equilibrium Flow. Equilibrium Flow is de�ned as a state in non-equilibrium open systems where,

under the constraint of an upper energy limit, continuous energy input (leading to increased average energy) and

entropy �ow output to the environment lead to reduced or stabilized internal entropy, forming a dynamic balance. In

Complex System research, a Equilibrium Flow system represents a class of systems that achieve dynamic stability

S
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through energy input and negentropy output under non-equilibrium conditions. Such systems can spontaneously

reach a state of self-organized criticality under speci�c conditions, exhibiting complex phenomena such as power-law

distributions and high-frequency occurrence of high-energy events. To systematically describe and analyze the

behavior of Equilibrium Flow systems, we propose three theorems:

1. Theorem 3: Equilibrium Flow Systems Follow the Fermi-Dirac Distribution

In non-equilibrium open Complex Systems with an upper energy limit, if the system is under the condition of Negative

Information Temperature  , the occurrence probability of events (such as particle occupation or speci�c state

formation)   follows the Fermi-Dirac distribution:

 

where   is the Information Alive Function of the system, represents the deviation of an event’s energy from its

occurrence threshold, determining the priority and likelihood of the event occurring.    is the Boltzmann constant,

and   is the Information Temperature. This distribution indicates a signi�cantly increased occurrence probability of

high-energy events under Negative Information Temperature conditions.

2. Theorem 4: Self-Organized Criticality of Equilibrium Flow Systems

Under the constraint of Negative Information Temperature    and an upper energy limit, events within a

Equilibrium Flow system (such as the occupation of high-energy states or the formation of speci�c structures) will

spontaneously exhibit self-organized criticality. This criticality manifests as power-law distribution characteristics of

event occurrences and cascading e�ects formed by local interactions, with the conditions for maintaining dynamic

balance keeping the system near a critical state.

3. Theorem 5: Energy-Information Conversion E�ciency in Equilibrium Flow Systems

Under Equilibrium Flow conditions, part of the energy input into the system is converted into information. The energy-

to-information conversion e�ciency   is given by the following relation:

 

where    represents the increase in information, and    denotes the input energy. The conversion e�ciency is

inversely proportional to the absolute value of the Negative Information Temperature, i.e., the smaller the absolute

value of the Negative Information Temperature, the higher the conversion e�ciency.

We now prove the above theorems. Formally, in a Equilibrium Flow system, let the system’s energy input rate be 

 and the dissipation rate be  . When the system achieves dynamic balance, the following holds:

< 0Tinfo

P (E)

P (E) =
1

exp( )+ 1
(E)Φinfo

kBTinfo

(29)

(E)Φinfo

kB

Tinfo

< 0Tinfo
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qeios.com doi.org/10.32388/MTS9L8 15

https://www.qeios.com/
https://doi.org/10.32388/MTS9L8


Under this condition, the system achieves dynamic stability through external energy input and negentropy output. The

system evolves under conditions far from equilibrium, reaching a state of self-organized criticality. In Complex

Systems, this behavior manifests as long-range correlations, scale invariance, and power-law distributions.

Theorem 3: Equilibrium Flow Systems Follow the Fermi-Dirac Distribution. In non-equilibrium open systems with an

upper energy limit, if the system is under the condition of Negative Information Temperature  , the probability 

 of event occurrence follows the Fermi-Dirac distribution:

Here, the   represent Information Alive Function:

 is the Information Alive Function of the system, representing the deviation between the event energy and the

threshold for the event’s occurrence. It determines the priority and probability of the event’s occurrence.    is the

chemical potential, representing the threshold for the event’s occurrence.    denotes the "energy" of an event,

characterizing the di�culty of its occurrence. The total information entropy of the system can be expressed as (20). We

introduce the constraint condition normalization condition:

where   denotes the total number of events or particles in the system. Average energy constraint:

Here,   is the system’s average energy. We construct the Lagrange function:

where   and   are Lagrange multipliers. Taking the derivative with respect to   and setting it to zero yields:

Rearranging gives:

We use the following relations:

Thus, the probability distribution of events is given by:
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This indicates that the event occurrence probability directly depends on the Information Alive Function   and

follows the Fermi-Dirac distribution form. Since    and  ,    are negative, implying an

increased probability of high-energy events ( ).

Theorem 4: Self-Organized Criticality of Equilibrium Flow Systems states that under the constraint of Negative

Information Temperature    and an upper energy limit, events within a Equilibrium Flow system (such as

occupation of high-energy states or structure formation) spontaneously exhibit self-organized criticality. Consider a

system consisting of   subunits, each with a maximum energy constraint  . The state distribution of the system is

in�uenced by the Negative Information Temperature  , leading to a higher probability of occupying high-

energy states. Assuming an energy transfer mechanism within the system, when a subunit reaches a threshold  , it

triggers energy release. The system maintains balance between external energy input and internal dissipation,

satisfying:

under balance conditions,  . This ensures that the system does not accumulate energy inde�nitely but

�uctuates around a stable state. Through local interactions (e.g., energy transfer), the system forms complex cascading

e�ects. Small local disturbances may trigger large-scale energy releases, with the event size   following a power-law

distribution:

Thus, under the constraints of Negative Information Temperature and an upper energy limit, a system achieves self-

organized criticality through the balance of energy input and dissipation, exhibiting self-organizing behavior. This

scale invariance and long-range correlation are hallmarks of self-organized criticality.

Theorem 5: Energy-Information Conversion E�ciency in Equilibrium Flow Systems states that under Equilibrium

Flow conditions, the energy-to-information conversion e�ciency is inversely proportional to the absolute value of the

Negative Information Temperature. The system converts part of the input energy into information, with the conversion

e�ciency   given by:

where    denotes the increase in information, and    denotes the input energy. According to the relationship

between entropy and information(20), the total information   of the system and the information entropy   are related

by:

Thus, the change in information is inversely proportional to the change in expected information entropy:

According to the de�nition of Information Temperature, we have:
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When the energy change is small, we can approximate:

Substituting the above relationships into the expression for energy-information conversion e�ciency, since  ,

the conversion e�ciency is positive:

Thus, the energy-to-information conversion e�ciency is inversely proportional to the absolute value of the Negative

Information Temperature; the smaller the absolute value, the higher the e�ciency.

Thus, in Equilibrium Flow systems, the probability of events follows the Fermi-Dirac distribution form, indicating a

higher probability of high-energy events under Negative Information Temperature, re�ecting the self-organizing

nature of the system. By de�ning and deriving the characteristics of Equilibrium Flow systems, we have demonstrated

how Negative Information Temperature and energy limits drive Complex Systems to spontaneously reach self-

organized critical states, improving information processing e�ciency. Furthermore, the event probability distribution

exhibits Fermi-Dirac distribution characteristics, providing a theoretical basis for understanding the statistical

behavior of Complex Systems.

5. Conclusion

This article revisits Brownian motion from the perspective of Information Theory, introducing the single-particle

discrete Brownian motion model (SPBM) to demonstrate the equivalence between prior information and constraint

conditions, and revealing the interplay between local randomness and global probability distributions. Extending to

multi-particle systems, it presents "Energy as Encoding" and "Information Temperature" to explain how energy

distribution shapes information structures, and proposes the concept of "Equilibrium Flow" to describe self-

organizing behaviors under energy constraints and Negative Information Temperature, applying these ideas to the

training of large language models (LLMs). While the work o�ers a uni�ed theoretical framework connecting

Information Theory, Thermodynamics, and Complex Systems, it primarily provides theoretical insights without

extensive empirical validation or detailed mathematical proofs, which may limit its immediate applicability. Future

research could focus on rigorous mathematical formalization, empirical testing of the proposed concepts, and

exploring practical applications in complex systems and arti�cial intelligence.
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