
Qeios PEER-APPROVED

v1: 13 May 2024 Research Article

Current Trends in the Use of
Machine Learning for Error
Correction in Ukrainian Texts

Peer-approved: 13 May 2024

© The Author(s) 2024. This is an
Open Access article under the CC BY
4.0 license.

Qeios, Vol. 6 (2024)
ISSN: 2632-3834

Rostyslav Fedchuk1, Victoria Vysotska1

1. Lviv Polytechnic National University, Ukraine

The article's authors have provided a detailed problem description of
identifying and correcting errors in Ukrainian-language texts. This paper
provides a detailed analysis of the latest research and publications aimed at
solving the problems of identifying and correcting errors in Ukrainian-
language texts. The analysis of modern tools related to error correction in
texts is presented along with a comparative description. Investigated the
existing data corpora for the Ukrainian language so that they are relevant to
solving GEC tasks. Discovered the need to create a large annotated data
corpus, which will be prepared by a special team with linguistic expertise.
Analysed the opportunities, advantages and disadvantages of modern
machine learning models that interpret the task of detecting and correcting
errors in texts as classification or machine translation. Introduced the need
to develop a machine-learning algorithm that will take into account the
specifics of morphologically complex languages, such as Ukrainian.
Demonstrated the work of the modern models and provided screenshots.
Revealed the need for further research in the Ukrainian segment of machine
learning to solve the problems of correcting errors in texts using various
methods and approaches.

Corresponding authors: Rostyslav Fedchuk,
rostyslav.b.fedchuk@lpnu.ua; Victoria Vysotska,
victoria.a.vysotska@lpnu.ua

Introduction
The Ukrainian language knowledge is an indicator of
education and patriotism, but it is quite important not
only to know it but also to use it correctly. This
became especially important and key precisely with
the beginning of a full-scale invasion, since through
typical errors in the texts it is possible to detect fakes
or propaganda of the enemy. The problem of using the
Ukrainian language to create textual content is the
presence of errors that may occur during the writing,
editing and publishing of texts. These errors can be
different: from spelling and grammar to stylistic.
Even the most experienced authors sometimes make

inaccuracies, which can affect the understanding of
the text and cause misunderstandings among readers.

The relevance of this problem becomes especially
important in the context of the large amount of
information published online and offline. The
growing number of websites, blogs, social media and
other sources of information lead to the need for
quality and accuracy of published texts. In addition,
the Ukrainian language as a national resource is of
great importance for the preservation of cultural
heritage and the development of Ukrainian society.

Errors in texts can become an obstacle to the correct
perception of information, which negatively affects
communication and understanding of important
issues. This can affect the level of trust in the source
of information, reducing its authority and influence.

qeios.com doi.org/10.32388/N4VGBJ 1

mailto:rostyslav.b.fedchuk@lpnu.ua
mailto:victoria.a.vysotska@lpnu.ua
https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


Formulation of the problem
The beginning of the era of artificial intelligence
opened new horizons for automatic natural language
analysis and processing. Natural Language Processing
(NLP) is an artificial intelligence branch that deals
with the understanding, interpretation and
generation of human language by computer systems.
The main goal of NLP is to make machines able to
analyse, understand and reproduce human language
in the same way that humans do. To achieve this goal,
NLP includes a wide range of methods and techniques
for text pre-processing, including segmentation,
tokenization, lemmatization, syntactic, discourse, or
semantic analysis.

NLP is used in various fields such as search engines,
Chabot’s, machine translation, social media
sentiment analysis, fraud detection, automatic text
processing, etc. Using NLP to identify and correct
errors in texts is one example of its application.

Grammar Error Correction (GEC) is detecting and
correcting grammatical errors process in text using
software or machine learning algorithms. The main
purpose of GEC is to detect and correct spelling,
syntactic and stylistic errors that can affect the
understanding of the text and its quality. As of today,
most researches for solving GEC problems are focused

on error correction in English-language texts [1]. The
GEC task for the Ukrainian language is an open
challenge for many reasons. Firstly, due to the
morphological complexity of the language, existing
algorithms and machine learning models for the
English language are not ideal candidates for their use
for error correction in Ukrainian-language texts.
Secondly, there is still a small amount of research,
tools or NLP corpora for solving the GEC problem for
the Ukrainian language. Third, manual data
annotation requires a lot of effort by professional
linguists, which makes the creation of text corpora a
time- and resource-consuming process. The biggest
difficulty is that the Ukrainian language is resource-
poor and to date, there is only one annotated GEC

dataset  [2]  and few high-quality pre-trained
transformer models compared to the English
language. In addition, the Ukrainian language
contains many exceptions and does not have a clear
word order. All this greatly complicates language
analysis.

Analysis of recent research and
publications
Starting from the 80s of the 20th century, society
began to develop the first systems for identifying and
correcting errors in texts. Such systems were based on

rules [3].

Rule-based methods for correcting errors in text are
based on defined rules that account for common
grammatical and spelling errors. These may include
spelling rules, grammar rules, stylistic rules, etc. After
creating a set of rules, the text is analysed according
to these rules to detect errors. In some cases, there
may be a need for recursive text analysis, when
correcting one error may cause others to appear.

The advantage of rule-based methods is their
transparency and the ability to precisely control the
error correction process. However, these methods
may be limited in that they may miss complex or
contextual errors that do not follow established rules.
This method requires a very large number of rules to
work effectively with various types of text and
therefore requires knowledge of linguistics.
Therefore, the main drawback of this approach is the
impossibility of covering all possible errors with rules.

Syntax-based methods for text error correction use
structural properties of language, such as grammar
and syntactic relationships between words, to detect
and correct errors. This method uses parsers that
assign a tree-like structure to each sentence. It is
important to identify syntactic structures in the text,
which may include identifying the parts of speech of
each word, analysing the structure of the sentence,
determining the relationships between words and
phrases, etc.

Advantages of syntax-based methods include their
ability to detect grammatical and syntax errors that
are not always detected by other methods. However,
the syntactic approach has a major problem: it
requires a complete grammar that covers all types of
texts. To date, there is still no reliable parser with
wide coverage available in the public domain. In
addition, parsers suffer from the inherent ambiguity
of language, so it's common to return more than one
result even for correct sentences.

Statistical methods for correcting errors in the text
are based on the analysis of the statistical properties
of the text to determine the probability of matching a
specific word or phrase with the standard correct
version. Using statistical methods requires a large
corpus of valid texts on which the model will be

qeios.com doi.org/10.32388/N4VGBJ 2

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


trained. For each word in the text, the probabilities of
its correction, replacement, deletion, or insertion are
calculated based on the probabilities defined in the
model. For example, a word with a low probability can
be removed or replaced with a more likely word. After
calculating the probabilities for different error
correction options, the one with the highest
probability is selected.

Statistical methods allow efficient correction of errors
in text, especially if a large variety of correct texts is
available for training the model. However, these
methods may also have limitations in correcting
complex or contextual errors that are not reflected in
the statistical properties of the text.

Machine learning methods for correcting errors in
the text are based on various mathematical and
statistical concepts and algorithms that allow
computers to predict the likely correction of the

text  [4]. While predictive algorithms are very
important, collecting a large amount of data that will
be used to train and test the model is equally
important. Data can be collected from various sources
such as the internet, books, news etc. The data is then
subjected to pre-processing including segmentation,
tokenization, lemmatization, de-noising, removal of
unnecessary characters, etc.

Advantages of using machine learning methods
include their ability to adapt to different types of
errors and text contexts, and their ability to
automatically learn on new data to continuously
improve performance. However, these methods
require large amounts of training data and can be
costly in terms of computing resources.

One solution is to treat GEC as a classification task.
This means that a system that works with GEC can
treat each piece of text as an individual example and
classify it based on whether it contains grammatical
errors or not. The basic idea is that the system
receives text as input and returns a classification of
each fragment of this text with further instructions.

On the other hand, the GEC task can be considered as
a machine translation (MT) task. To solve the GEC
problem using Machine Translation, we can use
similar approaches and models that are used to
translate text from one language to another. The
translation model is trained on pairs of sentences
where one sentence is "wrong" and the other is
"correct" and learns the correspondences between
them. Interpreting GEC as Machine Translation opens
up the possibility of using a wide range of methods
and techniques developed for machine translation.

Statistical Machine Translation (SMT) is an approach
to machine translation that uses statistical models to

translate text from one language to another  [5]. The
basic idea is to build a model that can produce the
most likely translation based on the statistical
analysis of a large number of parallel texts (texts
containing the same content but written in different
languages).

The conducted studies CoNLL-2013  [6]  and CoNLL-

2014  [7][8]  showed the effectiveness of using the
trained SMT model to correct various types of errors.
However, such models become less effective when
considering contexts for a long time.

Statistical machine translation was one of the popular
approaches to machine translation before the advent
of neural networks. Although it is still used in some
situations, many newer models of machine
translation have proven to be more effective.

In studies [9][10], NMT (Neural Machine Translation)
was presented for the GEC task, which uses deep
neural networks for automatic text translation, that
is, for modelling the mapping between input and
output texts. The main components of NMT are the
encoder, decoder, attention mechanism and loss
function.

The main advantage of NMT is that it can perform
error correction in context, that is, it takes into
account the semantics and grammar of the text when
generating the correction. This helps ensure better
quality and natural translations, especially in complex
or low-resource language pairs, such as Ukrainian.
NMT has proven to be very effective for many
machine translation tasks and is now widely used in
many translation systems and other areas of natural
language processing.

Recurrent neural networks (RNNs) are a class of
neural networks that are designed to work with
sequential data such as text or time series. One of the
key features of RNNs is their ability to remember and
use information from previous steps to process the
current input value. One of the main problems of
RNNs is the occurrence of the problem of vanishing
and fading gradients when training on long
sequences. This can result in the model not being able
to effectively account for remote dependencies in the
data.

To solve the problem of falling RNN gradients, a new

class of models, transformers, was proposed in [11].

Transformers are a deep learning architecture that
has gained wide popularity in recent years, especially

qeios.com doi.org/10.32388/N4VGBJ 3

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


in natural language processing. Transformers are
based on the attention mechanism and are an
effective tool for processing parallel data. This enables
transformers to better model long-term dependencies
in text and to achieve better results on many natural
language processing tasks.

The main advantages of transformers are as follows:

Versatility: does not require significant changes in
the architecture.
Context-aware: Considers the context of each word
in a sentence during processing.
Computational parallelism: allows processing of
large amounts of data.
Ability to learn long dependencies: able to learn
long dependencies in the text thanks to the

attention mechanism  [12], which allows them to
take into account the entire decision-making
context.
The possibility of pre-training on large data sets:
increases the efficiency of the model.

The transformer consists of two parts: an encoder and
a decoder (Fig. 1)

Fig. 1. Transformer architecture [4]

Let's look at an example of how the encoder works for
the text "This sentence is misspelt". For simplicity,
let's assume that we use a simple transformer with
one layer of the coding stack.

1. Tokenization: First, the text will be divided into
separate tokens. In this case, we can split it into
the following tokens: ["This", "sentence", "is",
"misspelt"]. Also, the input sequences are
preprocessed and the prepared input data is used
to train the sequential model. The trained
streaming model is then used to predict the
output for new input sequences. A very common
algorithm is to first pre-train the model weights
on a larger synthetic dataset and then train them
on a smaller set of GEC-specific texts in parallel.

The derivation stage produces the correct final
output sequence.

2. Embeddings: Each token will be converted into a
vector representation (embedding). This can be,
for example, one-hot encoding or a vector
representation based on a previously trained
word embedding. For example, "This" can be a
vector [0.2,-0.3,0.7,...], "sentence" -
[0.1,0.5,-0.2,...] and so on.

3. Submission to the encoder: Each token with its
embedding is submitted to the input of the
encoder. An encoder performs a sequence of
operations, including attention mechanisms and
neural layers, to process each token and its
context in the input sequence.

4. Encoder output: At the encoder output, we get a
sequence of internal representations of each
token after processing by the encoder. These
representations contain contextual information
about each token in the input text. For example,
the vector for "This" can look like
[0.1,0.3,-0.2,...], for "sentence" - [0.2,-0.1,0.5,...]
and so on.

The Attention Mechanism in transformers allows the
model to focus attention on different parts of the
input data (text) during processing. This mechanism
consists of three main components: query (query),
key (key) and value (value). Here's how it works:

1. Query is a vector that represents the current
token (word or symbol) in the output sequence
generated by the decoder (or the whole
representation of the input token in the encoder).
The query is used to calculate the similarity
between this token and all other tokens in the
sequence.

2. Each token in the input sequence (or encoder
output) is also assigned a key and a value. The
key is used to calculate the similarity between
the current query and other tokens, and the value
is the information associated with that token.

3. For each token in the input sequence (or encoder
output), a "complex" attention is calculated,
which takes into account the similarity between
the current query and the key. This calculation is
usually performed using a similarity function
such as dot product or cosine similarity. This
attention is then normalized to obtain an
attention distribution that sums to unity.

4. Finally, the model response is formed as a
weighted sum of values, where the weights are
determined by the calculated attention. This
allows the model to pay more attention to

qeios.com doi.org/10.32388/N4VGBJ 4

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


important parts of the sequence and less
attention to less important parts.

The decoder in the transformers, in turn, is used to
generate sequences based on the internal
representation of the input data that was created by
the encoder.

Initially, the decoder receives an input internal
representation that was created by the encoder. This
internal representation contains information about
the context of the source sequence that was used
when processing the input data. Like the encoder, the
decoder also uses positional embeddings to convey
information about the position of each token in the
sequence. This allows the decoder to take word order
into account when generating the output sequence.

During the generation of the source sequence, the
decoder uses self-similarity masks so that each token
in the source sequence does not have the opportunity
to "look" at future tokens. This helps ensure sequence
generation is correct.

The decoder also uses an attention mechanism to
focus on important parts of the input representation
when generating the output sequence. This helps the
decoder to consider the context of the input when
generating each token of the output sequence.

After the decoder has generated the output sequence,
the loss function compares it with the actual output
sequence. Based on this comparison, the parameters
of the model are updated to improve its quality.

In the end, the decoder generates the output sequence
of tokens, one by one, using the attention mechanism
and other mechanisms to take into account the
context of the input data. Each subsequent token is
generated based on the previous one and the context
of the input. This process continues until the final
length of the output sequence is reached or until a
special termination character appears.

Formulation of the purpose of the
article
The purpose of this work is the analysis and detailed
analysis of modern trends in the use of machine
learning for the identification and correction of errors
in texts in the Ukrainian language. To achieve the
goal, the following research tasks were defined:

Analysis of the problems of identification and
correction of errors in Ukrainian-language texts.
Analysis of the latest research and publications
aimed at solving the problem of identifying and

correcting errors in Ukrainian-language texts.
Analysis of modern tools related to the correction
of errors in texts and their comparative
characteristics.
Research of existing data corpora for the Ukrainian
language, which are relevant to solving GEC
problems.
Research the possibilities of applying artificial
intelligence methods, neural networks, and
machine learning algorithms to improve the
quality of automatic text correction and adapt the
system to new templates and text structures.

The object of the study is the process of identifying
and correcting errors in Ukrainian-language texts
based on Ukrainian corpora using various machine-
learning models.

The subject of the study is machine learning models
created to solve the problems of identification and
correction of errors in Ukrainian-language texts
learned from Ukrainian-language data corpora.

Available corpora of the Ukrainian
language
Machine learning algorithms have become an
important component for solving various tasks, their
capabilities in forecasting, classification and data
processing make them a powerful tool for solving
complex problems. However, it is important to
remember that the quality and effectiveness of
machine learning algorithms largely depend on the
quality and representativeness of the data they were
trained on. This is where corpora and data sets play a
role.

Corpora are collections of text or other data that are
used to train, test, and validate machine learning
models. They can be collected from a variety of
sources, including the Internet, books, scholarly
articles, social media, and more. Corpora enables
machine learning algorithms to learn patterns in data
and improve their predictive and analytical abilities.
They can also be used to generate new data, for
example, to develop and improve synthetic language
models.

However, corpora are only part of the data ecosystem.
Before processing, corpora often require cleaning,
annotation, and other preparation methods to ensure
high quality and representativeness.

As of now, there is already a considerable number of
corpora for machine learning, designed specifically
for the Ukrainian language. These corpora have

qeios.com doi.org/10.32388/N4VGBJ 5

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


become a key tool for the development and
improvement of machine learning models in the
context of the Ukrainian language. However,
compared to corpora for the English language, there
are still not many resources for the Ukrainian
language and they do not cover as many areas of NLP
as we would like.

Due to the lack of a large free corpus, in  [13]  the
authors created UberText 2.0. At the moment,
UberText 2.0 is one of the largest corpora for the
Ukrainian language, having 3.274 billion tokens,
consisting of 8.59 million texts and occupying 32
gigabytes. In addition to text, UberText 2.0 includes
text normalization, speech detection, sentence
segmentation, tokenization (with punctuation
preservation), lemmatization, and POS tagging.

Below are some of the most famous machine-learning
corpora for the Ukrainian language:

BRUK – a corpus of the modern Ukrainian

language [14], 1 million words.

GRAC – a reference corpus of the Ukrainian

language compiled by hand [15].
OSCAR – data extracted from Common Crawl, 28

GB [16].
Zvidusil – a web corpus with syntactic

annotation [17].

KUM – text corpus of the Ukrainian language [18].
ukTenTen – Ukrainian corpus from the Web, 7.5
billion tokens.
UberText 2.0 – news, Wikipedia, social, fiction and
legal literature.
Malyuk – a collection of OSCAR, UberText 2.0 and
Ukrainian News corpora, 113 GB of text
CC-100 – documents pulled from Common Crawl.
mC4 – data from Common Crawl, 196 GB.
Ukrainian Twitter corpus – Ukrainian Twitter
corpus for detecting toxic text.
Ukrainian forums – 250,000 sentences collected
from forums.
Ukrainian news headlines – news headlines, 5.2
million.
OPUS
Polish-Ukrainian Parallel Corpus
Back-translated monolingual Wiki data
Wiki Edits – 5 million sentences from the history
of Ukrainian Wikipedia edits.
ZNO – 4000 questions and answers.
UA-GEC – an annotated GEC corpus.
NER-uk – an annotated BRUK for entity discovery
(NER) problems.

Yakaboo Book Reviews – an annotated corpus of
book reviews, ratings, and descriptions.
ua-news – annotated corpus of news.
UA-SQuAD – an annotated corpus of data on
answers to questions.
WSC Dataset – an annotated corpus of manual
translation.
VESUM – a dictionary of POS tags.
obscene-ukr – dictionary of profanity.
Word stress dictionary – stress for 2.7M word
forms.
Heteronyms – a set of homonyms.

However, as of today, there is only one corpus that is
designed specifically for error correction for the
Ukrainian language - UA-GEC (Fig. 2).

Fig. 2. GEC datasets for different languages.

UA-GEC was created in 2021 and contained 1011 texts

with errors totalling 20715 sentences  [9]. These texts
have been collected from various sources, such as
chats, articles, posts from social networks, essays, or
even letters in a formal style. Professional editors
analyze texts for errors related to fluency, grammar,
punctuation and spelling.

Already in 2022, UA-GEC was updated to the second
version, which already includes twice as many

corpora, namely 34,000 sentences [19]. The categories
of grammar and stylistics have been separated, which
makes it possible to separately correct both
grammatical errors and the use of incorrect style,
which is a rather difficult task. Error categories
include punctuation, spelling, grammar, and style
(Fluency). In total, the Grammar category was
increased by 13 subcategories, and the Style category
by 5.

Spelling was recorded to account for 19% of
corrections, while punctuation corrections occur more
frequently due to strict punctuation rules in the
Ukrainian language.

The GEC+Fluency corpus includes data from 828
authors, 1,872 texts, 33,735 sentences, and 500,618

qeios.com doi.org/10.32388/N4VGBJ 6

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


tokens with an error rate of 8.2% for the entire corpus
(Figure 3).

Fig. 3. Statistics of the GEC+Fluency corpus [19].

The corpus is suitable for the development and
evaluation of GEC systems in the Ukrainian language,
as well as for the study of multilingual and low-
resource NLP, morphologically rich languages, and
document-level GEC, including language fluency
correction.

Below you can see the statistical data of the Ukrainian
GEC corpus in comparison with the corpora of other
languages (Fig. 4).

qeios.com doi.org/10.32388/N4VGBJ 7

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


Fig. 4. Comparative statistics of the UA_GEC corpus with other languages [19].

Natural language processing tools
for Ukrainian
As of now, all existing software tools for solving GEC
problems in the Ukrainian language use the Rule-
based approach. One such program is

LanguageTool  [20], which can check grammatical,
stylistic, and spelling errors in texts written in many
languages, including Ukrainian. However, there is a
specific project to demonstrate the LanguageTool API

for the Ukrainian language - NLP-UK [21]. This project
contains tools for normalization, cleaning,
tokenization, lemmatization, and POS tagging of
texts, as well as for working with ambiguities in the
Ukrainian language.

To solve NLP problems for the Ukrainian language,

you can use Stanza [22]. Stanza is a Python package for
tokenization, lemmatization, POS tagging,
dependency analysis, and NER problem-solving.

There is also another Python package - NLP-

Cube  [23], the purpose of which is to solve the
problems of tokenization, splitting sentences into
parts, multi-word tokenization, lemmatization,
tagging parts of speech, and dependency analysis.

In  [24]  presents a morphological analyzer for the
Russian and Ukrainian languages - pymorphy2. Its
functionality includes POS tagging, a word declension
engine, and lemmatization.

In  [25], a Stemmer for processing natural Ukrainian
language - Tree_stam is provided. It is based on
machine learning and is used to reduce a word to its
basic form. For example, for the words "running",
"runner" and "run" the stemmer can return the same
stem "run". This helps reduce the number of unique
words in the text and simplify further analysis.
Tree_stam outperforms all stemmers available today,
as well as some lemmatizers. It also has the lowest
percentage of underestimation errors compared to
existing recognition algorithms.

Pre-trained machine learning
models for the Ukrainian language
Practice shows that using pre-trained models has
several advantages compared to creating models
"from scratch", namely:

Efficient use of resources: Pre-trained models
already have a large number of parameters that

qeios.com doi.org/10.32388/N4VGBJ 8

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


have been optimized during training on large
volumes of data.
General knowledge of the data: This allows them to
make better generalizations and make more
accurate predictions.
Less need for training data.
Reduction of training time, as it will only be
necessary to adjust the model for specific data
(fine-tuning process).

It is important to understand that when choosing a
model for fine-tuning, you should take into account
the problem being solved. The model has been
previously trained on a similar or related problem and
with a similar architecture. For GEC models for the
Ukrainian language, you need to choose models that
are trained specifically on Ukrainian data. Algorithms
of GEC models in other languages will not always be
suitable, since the Ukrainian language is
morphologically complex, and therefore often
requires separate approaches.

Since the GEC task refers to text processing, the
architecture should be chosen as sequence2tagging,
NMT, or with the Transformer architecture.

Below is a list of pre-trained models that can be used
to solve GEC problems in the Ukrainian language:

M2M-100 – machine translation of Ukrainian
from/to 100 languages.
Sequence-to-sequence models
mBART50 is an advanced model of mBART and is
designed for multilingual translation.
mT5 – multilingual translation model.
aya-101 – a model that supports 101 languages. It
has 13 billion parameters.
pythia-uk – updated mT5 on wiki and oasst1 for
chats in Ukrainian.
UAlpaca – improved Llama fine-tuned to execute
machine translation instructions on the Alpaca
dataset.
XGLM – autoregressive model. It has 4.5 billion
parameters.
Tereveni-AI/GPT-2
uk4b and haloop inference toolkit – GPT-2 models
of small, medium and large sizes, trained on
Wikipedia, news and UberText 2.0 books.
xlm-roberta-base-uk – a shortened version of
XLM-RoBERTa for the Ukrainian language.
youscan/ukr-roberta-base – a model of the
Ukrainian language that solves the task of finding a
masked word - fill_mask.
Electra is one of the newest models in the field of
text representation, which is characterized by high

efficiency and accuracy. The main idea behind the
Electra model is that it uses two models that
interact with each other: a generator and a
discriminator. The generator creates noisy
examples by replacing some tokens of the input
text with artificially generated tokens. The
discriminator tries to distinguish the original
examples from those generated by the generator.
Electra uses a more efficient pre-training method
compared to BERT. Instead of training a model on
the token masking task, Electra trains a generator
to artificially create examples. Electra can achieve
high accuracy even with fewer parameters
compared to other architectures such as BERT or
GPT.
Helsinki-NLP – machine translation of Ukrainian
from/to 25 languages.
MITIE NER Model, ukr-models/uk-ner, lang-
uk/flair-uk-ner,
dchaplinsky/uk_ner_web_trf_large — models
for solving NER problems.
lang-uk/flair-uk-pos – a model for solving POS
tagging problems
uk-punctcase – punctuation and case recovery
model based on XLM-RoBERTa-Uk.
punctuation_uk_bert – Another punctuation and
case recovery model based on bert-base-
multilingual-cased.
ukrainian-word-stress – adds stress to words.

Application of machine learning
models and corpora for the
Ukrainian language
Most of the GEC systems for English that show the
best results in the tests are based on the NMT

architecture. In  [26], the Pravopisets team conducts
research on the use of data augmentation, that is, the
use of synthetically generated data for training the
GEC model. As a basis, mBart-50 was chosen as the
NMT model, XLM-ROBERTa as the seq2tag model, as
well as the UA_GEC corpus, on which training will be
carried out. For seq2tag, tokens were tagged with
KEEP, DELETE, APPEND, or REPLACE tags, depending
on what to do with them. The classification algorithm
was borrowed from the GECToR team.

The MBart-50-large model was configured with the
task of translation from Ukrainian to Ukrainian, fine-
tuned on the UA-GEC corpus with augmentation by a
synthetically generated data set. 5,000 sentences were
generated using circular transliteration (ukr-rus-
ukr), 10,000 sentences using the generation of

qeios.com doi.org/10.32388/N4VGBJ 9

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


punctuation errors, 2,000 blurring of the text, and
10,000 Russianisms were added to this model.

Below you can see examples of the work of the GEC
model of the Spellwriter team:

Fig. 5. An example of successful correction of
punctuation errors of the Speller team model.

Fig. 6. An example of successful correction of spelling
and punctuation errors

Fig. 7. An example of correcting not all errors in the text.

Fig. 8. An example of not being able to correct
Russianism in the text.

Fig. 9. An example of successful text formatting.

As a result, the NMT-based model performed better
than the rule-based model and the seq2tag model in
the evaluation test (Fig. 10).

Fig. 10. Comparison of indicators between different

models of the Speller team [26].

After researching most of the state-of-the-art GEC
approaches in the English language and trying to
adapt them to the Ukrainian language, it was found
that the most effective GEC system can be developed
using the NMT approach, but seq2tag has many
research opportunities. The best model scored 0.632
for F0.5 on the UA-GEC dataset. Moreover, the results
show that adding synthetic data to the UA-GEC
training data gives the best results. It becomes clear
that the quality of the data corpus is much more
important than the size of this set. Therefore, the

authors  [26]  concluded that the most promising
direction for future research is the use of human-
annotated GEC data.

GrammarUA (smartik/mbart-large-50-finetuned-
gec) uses the improved mBART50, which also showed
good results for languages with limited resources on

the joint task [27] (Fig. 11).

Fig. 11. An example of implementation of the
GrammarUA model.

The schhwmn/mt5-base-finetuned-ukr-gec model
was created and trained mT5 model on the UA-GEC
training corpus. The peculiarity of this model is that
the author did not use the entire UA-GEC corpus, but
only the part where there are errors. An example of
the operation of this model can be seen below:

Fig. 12. An example of successful execution of the model.

qeios.com doi.org/10.32388/N4VGBJ 10

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


Fig. 13. An example of incorrect text correction.

WebSpellChecker  [28]  used a proprietary transformer
architecture called RedPenNet. The architecture uses a
pre-trained MLM encoder together with a shallow
decoder to generate replacement tokens and gaps for
editing GEC instances. During the generation of edit
markers, the encoder and decoder attention weights
determine the edit ranges (start and end) that indicate
the position of the edit in the original sentence. Edit
tokens are predicted by autoregressive method.

The main advantage of RedPenNet is the ability to
implement any source-to-target transformation with
a minimal number of autoregression steps, which
enables efficient handling of GEC cases, including
correlated and multipoint edits. However, due to its
specific architecture, RedPenNet is not suitable for
training or fine-tuning. Thus, convenient tools such
as the HuggingFace infrastructure cannot be used to
quickly set up and deploy the model.

The best model for solving GEC problems for the

Ukrainian language is the QC-NLP team model  [29],

which was presented at a joint task  [27]. The team
tuned a large multilingual model (mT5) in two stages:
first on synthetic data and then on UA_GEC data. They
also used a smaller seq2seq Transformer model pre-
trained on synthetic data and refined on the UA_GEC
corpus. A key innovation pioneered by the QC-NLP
team is step-by-step tuning, first on synthetic and
then on "golden" data.

The model indicators are shown in the figure below.

Fig. 14. Indicators of the GEC model of the QC-NLP

team [29].

Conclusions
For now, existing GEC tools and systems for the
Ukrainian language are not always able to detect all
grammatical errors or provide accurate corrections.

They are still weak in declension, identifying
ambiguities, although they are quite good at
correcting punctuation errors.

Identifying grammatical errors often requires
understanding the context. GEC systems often do not
correctly interpret the meaning of a sentence and
therefore do not identify and correct errors
accordingly.

Further development of neural network architectures
may improve the quality of correction. Using more
powerful and deeper models can help improve the
situation. Models should take better account of
syntactic and semantic relationships between words.
Currently, all machine learning models use pre-
trained models that were not created taking into
account the morphological complexity of the
Ukrainian language, which is why the improvement of
GEC systems directly depends on an increasing
number of studies aimed at studying the peculiarities
of the Ukrainian language. Taking into account
declension, word formation and other features of the
language is important.

To sum up, it is necessary to concentrate attention
and efforts on creating a specialized model that will
take into account all the nuances of the Ukrainian
language. Moreover, it is needed to provide a much
larger "gold" standard hand case exclusively for GEC
tasks. Finally, it is necessary to continue research with
the training of models on synthetically created data
sets.

References

1. ^Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
(2022). Grammatical error correction: A survey of th
e state of the art. CoRR, abs/2211.05166.

2. ^Oleksiy Syvokon and Olena Nahorna. (2021). UA-G
EC: grammatical error correction and fluency corpus
for the ukrainian language. CoRR, abs/2103.16997.

3. ^Smith, O. B.; Ilori, J. O.; Onesirosan, P. (1984). The p
roximate composition and nutritive value of the win
ged bean Psophocarpus tetragonolobus (L.) DC for b
roilers. Anim. Feed Sci. Technol., 11: 231-237

4. a, bNaghshnejad, M.; Joshi, T.; Nair, V.N. (2020) Rece
nt Trends in the Use of Deep Learning Models for Gr
ammar Error Handling, arXiv:2009.02358.

5. ^Chris Brockett, William B. Dolan, and Michael Gam
on. (2006). Correcting ESL Errors Using Phrasal SMT
Techniques. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th

qeios.com doi.org/10.32388/N4VGBJ 11

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


Annual Meeting of the Association for Computationa
l Linguistics, pages 249–256, Sydney, Australia. Ass
ociation for Computational Linguistics.

6. ^I. Yoshimoto, T. Kose, K. Mitsuzawa, K. Sakaguchi,
T. Mizumoto, Y. Hayashibe, M. Komachi, and Y. Mat
sumoto. (Aug. 2013). «NAIST at 2013 CoNLL gramm
atical error correction shared task», in Proceedings o
f the Seventeenth Conference on Computational Nat
ural Language Learning: Shared Task. Sofia, Bulgari
a: Association for Computational Linguistics, pp. 26
–33.

7. ^M. J unczys-Dowmunt and R. Grundkiewicz. (Jun. 2
014). «The AMU system in the CoNLL-2014 shared t
ask: Grammatical error correction by data-intensive
and feature-rich statistical machine translation», in
Proceedings of the Eighteenth Conference on Compu
tational Natural Language Learning: Shared Task. B
altimore, Maryland: Association for Computational
Linguistics, pp. 25–33.

8. ^M. Felice, Z. Yuan, E. Andersen, H. Yannakoudakis,
and E. Kochmar. (Jun. 2014). «Grammatical error co
rrection using hybrid systems and type filtering», in
Proceedings of the Eighteenth Conference on Compu
tational Natural Language Learning: Shared Task. B
altimore, Maryland: Association for Computational
Linguistics, pp. 15–24.

9. a, bK. Cho, B. van Merrienboer, C¸. Gülc¸ehre, F. Boug
ares, H. Schwenk, and Y. Bengio (2014). «Learning p
hrase representations using RNN encoder-decoder f
or statistical machine translation».

10. ^Z. Yuan. (Mar. 2017) «Grammatical error correctio
n in nonnative English», University of Cambridge, C
omputer Laboratory, Tech. Rep.

11. ^A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. J
ones, A. N. Gomez, L. Kaiser, and I. Polosukhin. (201
7). «Attention is all you need».

12. ^Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangu
e, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz,
M.; et al. (Nov. 2020). Transformers: State-of-the-A
rt Natural Language Processing. In Proceedings of th
e Conference on Empirical Methods in Natural Lang
uage Processing: System Demonstrations, ACL Antho
logy, Online; pp. 38–45.

13. ^Dmytro Chaplynskyi. (2023). Introducing UberText
2.0: A Corpus of Modern Ukrainian at Scale. In Proce
edings of the Second Ukrainian Natural Language Pr
ocessing Workshop (UNLP), pages 1–10, Dubrovnik,
Croatia. Association for Computational Linguistics.

14. ^Vasyl Starko, Andriy Rysin, Olha Havura, and Natal
iia Cheilytko et al. (2016-2023). BRUK: Braunskyi ko

rpus ukrainskoi movy. Available online: https://gith
ub.com/brown-uk/corpus.

15. ^Maria Shvedova, Ruprecht von Waldenfels, Sergiy Y
arygin, Andriy Rysin, Vasyl Starko, and Tymofij Niko
lajenko et al. (2017-2022). GRAC: General regionall
y annotated corpus of Ukrainian.

16. ^Julien Abadji, Pedro Ortiz Suarez, Laurent Romary,
and Benoît Sagot. (2022). Towards a cleaner docum
ent-oriented multilingual crawled corpus. In Procee
dings of the Thirteenth Language Resources and Eva
luation Conference, pages 4344–4355, Marseille, Fr
ance. European Language Resources Association.

17. ^Natalia Kotsyba, Bohdan Moskalevskyi, and Mykha
ilo Romanenko et al. (2018). Laboratorija ukrajins’k
oji. Available online: https://mova.institute/

18. ^Nataliia Darchuk. (2017). Mozhlyvosti semantychn
oyi rozmitky korpusu ukrainskoyi movy (kum). Nauk
ovyi chasopys Natsionalnoho pedahohichnoho unive
rsytetu im. M.P. Drahomanova, abs/1911.02116:18–
–28.

19. a, b, cOleksiy Syvokon, Olena Nahorna, Pavlo Kuchmi
ichuk, and Nastasiia Osidach. (2023). UA-GEC: Gra
mmatical Error Correction and Fluency Corpus for th
e Ukrainian Language. In Proceedings of the Second
Ukrainian Natural Language Processing Workshop
(UNLP), pages 96–102, Dubrovnik, Croatia. Associat
ion for Computational Linguistics.

20. ^LanguageTool. About. Available online: https://lan
guagetool.org/about

21. ^LanguageTool API NLP UK. Available online: http
s://github.com/brown-uk/nlp_uk

22. ^Stanza – A Python NLP Package for Many Human
Languages. Available online: https://stanfordnlp.git
hub.io/stanza/.

23. ^NLP-Cube. Available online: https://github.com/ad
obe/NLP-Cube.

24. ^Pymorphy. Available online: https://github.com/py
morphy2/pymorphy2.

25. ^Tree_stem - Stemmer for the Ukrainian language.
Available online: https://github.com/amakukha/ste
mmers_ukrainian

26. a, b, cMaksym Bondarenko, Artem Yushko, Andrii Sh
portko, and Andrii Fedorych. (2023). Comparative St
udy of Models Trained on Synthetic Data for Ukraini
an Grammatical Error Correction. In Proceedings of t
he Second Ukrainian Natural Language Processing
Workshop (UNLP), pages 103–113, Dubrovnik, Croati
a. Association for Computational Linguistics.

27. a, bThe UNLP 2023 Shared Task on Grammatical Err
or Correction for Ukrainian. Available online: http
s://aclanthology.org/2023.unlp-1.pdf

qeios.com doi.org/10.32388/N4VGBJ 12

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ


28. ^Bohdan Didenko and Andrii Sameliuk. (2023). Red
PenNet for grammatical error correction: Outputs to
tokens, attentions to spans. In Proceedings of the Sec
ond Ukrainian Natural Language Processing Worksh
op, Dubrovnik, Croatia. Association for Computation
al Linguistics.

29. a, bFrank Palma Gomez, Alla Rozovskaya, and Dan R
oth. (2023). A low-resource approach to the gramm
atical error correction of Ukrainian. In Proceedings o
f the Second Ukrainian Natural Language Processing
Workshop, Dubrovnik, Croatia. Association for Comp
utational Linguistics.

Declarations
Funding: No specific funding was received for this work.
Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/N4VGBJ 13

https://www.qeios.com/
https://doi.org/10.32388/N4VGBJ

