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Abstract

In this article, we study the Hawking radiation of the Schwarzschild black hole within the bum-

blebee gravity model (SBHBGM). Considering classical approaches involving Killing vectors and

the standard Hamilton-Jacobi method, the Hawking radiation of SBHBGM is computed. The

Painlevé-Gullstrand, ingoing Eddington-Finkelstein, and Kruskal-Szekeres coordinate systems are

introduced as alternatives to the naive coordinates, providing insights into gravitational behav-

ior around massive objects like black holes. Incorporating the Generalized Uncertainty Principle

(GUP) into the Hamilton-Jacobi equation, a modified equation characterizing particle behavior

near the event horizon is obtained. By calculating the tunneling probability using the modified

action, the GUP-induced modifications to the emitted particle’s behavior are considered, resulting

in the derivation of the modified temperature of the SBHBGM. Finally, we study the quantum-

corrected entropy of the SBHBGM and discuss the findings with possible future projects.
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I. INTRODUCTION

Hawking radiation, a groundbreaking theoretical prediction introduced by Stephen Hawk-

ing [1–3], revolutionized our understanding of black holes and the fundamental interactions

between gravity and quantum mechanics [4]. This phenomenon proposes that black holes are

not entirely black; they emit radiation due to quantum effects near their event horizons, thus

gradually losing mass and energy over time [5–15]. Hawking radiation challenges classical

notions of black holes as inexorable gravitational sinks by highlighting the intricate interplay

between quantum physics and general relativity in extreme gravitational environments [16].

To comprehend the implications of Hawking radiation fully and explore its various facets,

a multitude of calculation methods have been developed by physicists [17–22]. These meth-

ods provide distinct perspectives on the underlying mechanisms, enabling us to decipher the

enigmatic nature of black hole evaporation. In this discourse, we delve into the concept of

Hawking radiation, followed by an exploration of the diverse methods employed to quan-

2



tify and understand this phenomenon. The conventional formulation of Hawking radiation

emerges from the principles of quantum field theory in curved spacetime. This approach

considers virtual particle-antiparticle pairs [23] that momentarily appear near the event hori-

zon. While one of these particles may fall into the black hole, the other escapes to infinity

as real Hawking radiation. The energy needed to create these particles is borrowed from the

black hole’s mass, ultimately leading to its evaporation [24–26].

Several calculation methods have been proposed to derive the properties of Hawking ra-

diation and elucidate its intricate details (see Ref. [22] and references therein). One notable

avenue involves tortoise coordinate transformations, as explored by Damour, Ruffini, and

Sannan [27–34]. This method facilitates the analysis of particle trajectories near the event

horizon, allowing for a comprehensive understanding of how particles escape the black hole’s

gravitational grasp. Additionally, researchers such as Chandrasekhar, Bonner, and Vaidya

demonstrated the separation of the Dirac and Maxwell equations in stationary spacetimes

[35]. Such separations help us understand quantum behavior near event horizons and con-

tribute to our knowledge of Hawking radiation. Another significant approach, pioneered by

Parikh and Wilczek [36], interprets Hawking radiation as a quantum tunneling process. This

method, known as the null geodesic method, draws parallels with particle tunneling through

classically forbidden energy barriers. The utilization of the Hamilton-Jacobi method [37–43]

further enriches the exploration of particle tunneling and provides a distinctive perspec-

tive on the mechanisms underlying Hawking radiation. Moreover, the advent of the GUP

has spurred investigations into the effects of quantum gravity on Hawking radiation. The

incorporation of GUP into the analysis necessitates innovative calculation techniques, as

emphasized in some remarkable studies [44–50]. This avenue opens up new paths for under-

standing the interplay between quantum mechanics and gravity in the context of Hawking

radiation.

In this work, we consider the SBHBGM spacetime, which was derived by Casana et al

[51]. The addition of the bumblebee field complicates the equations for gravitational fields

[52]. The bumblebee field affects the geometry of spacetime, leading to deviations from the

classical Schwarzschild solution. Besides, this solution allows researchers to study how the

bumblebee field modifies the physical properties around the black hole [53–57]. We then em-

bark on a comprehensive journey through the phenomenon of Hawking radiation and some of

its calculation methods. By examining these various approaches, we aim to deepen our grasp
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of the intricate processes occurring near black hole event horizons, ultimately advancing our

comprehension of the profound interplay between quantum phenomena and the fabric of

spacetime. To this end, we first compute the Hawking radiation of SBHBGM with classical

methods: methods of Killing vectors and standard (without GUP) Hamilton-Jacobi method,

respectively. When using the classical Hamilton-Jacobi method, three additional and regu-

lar coordinate systems, the Painlevé-Gullstrand (PG), ingoing Eddington-Finkelstein (IEF),

and Kruskal-Szekeres (KS) coordinates are considered alongside the naive coordinates (see

Refs. [58, 59] and references therein). These alternative coordinate choices in general rela-

tivity provide valuable insights into the behavior of gravitational fields, particularly around

massive objects like black holes. Those regular coordinate systems are distinct from the

standard Schwarzschild coordinates and are often used to gain a clearer understanding of

the physics involved particularly near event horizons. The PG coordinates were introduced

as an attempt to make the time coordinate more physically intuitive. In the Schwarzschild

metric, the time coordinate is the same as the Schwarzschild time, which is not the ”proper

time” experienced by an observer falling into a black hole [60]. The PG coordinates address

this issue by defining the time coordinate in such a way that it corresponds to the proper

time experienced by a freely falling observer. The IEF coordinates take into account the one-

way nature of light propagation and describe the radial position of light rays as they move

toward the black hole [26, 61]. The metric in these coordinates remains regular at the event

horizon, which makes it convenient for studying the behavior of particles and light as they

cross the horizon. Devised independently by Martin Kruskal and George Szekeres [62, 63],

KS coordinate system offers a perspective that simplifies the mathematical representation

of the complex spacetime curvature near a black hole’s event horizon. By transforming the

conventional Schwarzschild coordinates, the KS coordinates unveil the intriguing properties

of black hole interiors and exteriors, allowing for a clearer understanding of phenomena

like gravitational time dilation, trapped surfaces, and the path of light. Then, we incorpo-

rate the GUP modification into the Hamilton-Jacobi equation [64], which yields a modified

equation that describes the behavior of particles near the SBHBGM’s event horizon. Using

the modified action, we calculate the tunneling probability for particles to escape the event

horizon. This probability takes into account the GUP-induced modifications to the emit-

ted particle’s behavior near the horizon. Since the tunneling probability is related to the

Hawking temperature and radiation spectrum of the black hole, by considering the GUP
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effects, we derive the modified temperature of the SBHBGM. While the Bekenstein-Hawking

formula [26] successfully relates the entropy to the black hole’s macroscopic properties, it

does not account for quantum effects that occur near the event horizon. As black holes can

emit Hawking radiation due to quantum fluctuations, these quantum effects are expected to

modify the entropy and other thermodynamic quantities. Quantum-corrected (QC) entropy

[65, 66] attempts to incorporate these quantum corrections into the expression for entropy.

Various approaches, including loop quantum gravity and string theory, have explored these

corrections [67, 68]. These modifications to the entropy formula are often subtle and may

depend on the specific quantum gravity theory being considered. The concept of quantum-

corrected entropy is not limited to black hole physics. It has broader applications in the

context of the holographic principle and the AdS/CFT correspondence [69–71], where it

suggests a deep connection between gravitational physics and quantum field theories. We

also study the QC entropy of the SBHBGM and explore how quantum fields near the event

horizon impact the black hole’s entropy. This investigation contributes to our understanding

of the intricate connection between quantum mechanics and gravitational physics in extreme

environments.

The paper is organized as follows: In Sec. II, we provide a brief introduction to the

SBHBGM and examine its fundamental characteristics. In Sec. III, we focus on calculating

the classical (without considering the GUP effects) Hawking radiation of the SBHBGM via

the Hamilton-Jacobi method. We also attempt to demonstrate the coordinate independence

of the Hawking radiation obtained through quantum tunneling by extending our findings to

regular coordinates, which are PG, IEF and KS coordinate systems. Section IV is devoted to

the GUP-modified Hawking radiation of the SBHBHM. We analyze the QC entropy of the

SBHBGM in Sec. V. Finally, in Sec. VI, we present our concluding remarks. (Throughout

the paper, we use geometrized units: c = G = ℏ = kB = 1.)

II. SBHBGM GEOMETRY AND ITS PHYSICAL FEATURES

According to extended Einstein field equations of bumblebee gravity theory [51, 72, 73],

we have

Gµν = Rµν −
1

2
Rgµν = 8πGNTµν (1)
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where GN is the Newtonian constant, Gµν represents the Einstein tensor, while Tµν corre-

sponds to the overall energy-momentum tensor originating from both the matter sector’s

contribution (TM
µν) and the effects of the bumblebee field (TB

µν): Tµν = TM
µν + TB

µν . A reader

can find the detailed derivation of the field equations and their corresponding metric solu-

tion for the SBHBGM in Ref. [51], which serves the following spherically symmetric vacuum

solution:

ds2 = −fdt2 + Ξf−1dr2 + r2dθ2 + r2 sin2 θdϕ2, (2)

where Ξ = 1 + ℓ in which ℓ is the positive Lorentz symmetry-breaking parameter [51].

Metric (2) represents a purely radial Lorentz-violating solution outside a spherical body

characterizing a modified black hole solution. The metric function (f) is given by f = 1− 2M
r

in which rh = 2M represents the event horizon and M denotes the mass. This solution

for a black hole describes a situation where Lorentz violation occurs exclusively in the

radial direction beyond a spherical object, defining a modified black hole solution. As the

parameter ℓ approaches zero, it is evident that the conventional Schwarzschild metric is

regained. In the context of the metric labeled as Eq. (2), the Kretschmann scalar [26] can

be computed as follows:

K = RµνλσRµνλσ =
4 (12M2 + 4ℓMr + ℓ2r2)

r6Ξ2
, (3)

which is distinct from the Kretschmann scalar of a Schwarzschild black hole. This indicates

that none of the coordinate transformations establish a connection between metric (2) and

the usual Schwarzschild black hole metric. When r is equal to 2M , the curvature of space-

time remains finite, implying that a proper coordinate transformation can eliminate the

coordinate singularity. However, in the scenario where r equals 0, the physical singularity

cannot be eliminated. Therefore, it can be observed that the characteristics of the physical

singularity at r = 0 and the coordinate singularity at r = rh = 2M (event horizon) of the

Schwarzschild black hole remain intact in the SBHBGM solution. On the other hand, the

Hawking temperature [1] can be computed as

TH =
κ

2π
=

1

4π
f ′ (rh) =

1

8πM
√
Ξ
, (4)

where κ denotes the surface gravity [26]:

κ = ∇µχ
µ∇νχ

ν =
1

4M
√
Ξ
, (5)
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by which χµ is the timelike Killing vector field and the prime (dash) symbol in Eq. (4) is

used to denote the derivative of a function with respect to its argument. As can be seen

from Fig. 1, the non-zero Lorentz symmetry breaking parameter ℓ has the effect of reducing

the Hawking the temperature of a Schwarzschild black hole solution.

M

TH

M

ℓ= 0

ℓ = 0.1

ℓ = 0.5

ℓ = 1

FIG. 1: Graph of TH versus mass M . The considered Lorentz symmetry-breaking

parameters ℓ are depicted with different colors. Plots are governed by Eq. (4)

.

III. HAWKING RADIATION OF SBHBGM VIA HAMILTON-JACOBI

METHOD: SEMI-CLASSICAL APPROACH (WITHOUT GUP)

The section focuses on elucidating the process of deriving Hawking radiation for black

holes resembling the Schwarzschild metric within the framework of bumblebee gravity,

which introduces the Lorentz-violating term. Through the utilization of the Hamilton-
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Jacobi method, the section outlines the step-by-step mathematical procedure to uncover

the radiation emitted by these modified black holes. To this end, let us first consider the

Hamilton-Jacobi equation [37] :

gµν
(
∂P

∂xµ

)(
∂P

∂xν

)
+m2 = 0, (6)

in which m and gµν are the mass of the particle and the inverse metric tensor, respectively.

Besides, P is the classical action of a relativistic particle that satisfies the Hamilton-Jacobi

equation (6). Setting [38–41]

L2 = gθθ(∂θP )2 + gϕϕ(∂ϕP )2, (7)

which is a constant associated with the particle’s angular momenta. Thus, we get

− 1

f

(
∂P

∂t

)2

+
f

Ξ

(
∂P

∂r

)2

+ L2 +m2 = 0. (8)

Taking the Killing vectors of SBHBGM spacetime (2) into account, one can set

P (r, t) = −ωt+W (r), (9)

where ω is the particle energy measured by an observer located at spatial infinity and W (r)

is the time-independent function, which is called Hamilton’s characteristic function. After

some manipulations, one can obtain:

W±(r) = ±
∫

ω
√
Ξ

f
dr. (10)

With the help of residue theory, the near-horizon solution yields

W±(rh) = ±2iπωM
√
Ξ. (11)

Using the tunneling probability (P) with the Boltzmann formula [22], we get

P =
Γout

Γin
==

exp (−2ImW+(rh))

exp (−2ImW−(rh))
= exp

(
−8πMω

√
Ξ
)
= exp

(
−ω

T

)
, (12)

which yields the surface temperature of the SBHBGM as follows:

TSr =
1

8Mπ
√
Ξ
, (13)

which is nothing but the statistical Hawking temperature obtained in Eq. (4): TSr = TH .

Besides its naive coordinates, we also consider two regular coordinate systems: PG and

IEF coordinates. Detailed quantum tunneling calculations will be reevaluated using the HJ

method within these coordinates, and the preservation of TH invariance will be examined

within each coordinate system in the following section.
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A. Hawking Radiation of SBHBGM within PG Coordinate System

The PG coordinate system [58] is a specific coordinate system used in the study of black

hole physics, particularly in the context of general relativity. It was introduced to provide

a more intuitive and physically transparent description of the spacetime geometry around a

spherically symmetric black hole compared to the commonly used Schwarzschild coordinates.

In the Schwarzschild coordinate system, which is often used to describe the geometry of a

non-rotating (static) black hole, the coordinate singularity at the event horizon makes it

difficult to interpret the physical behavior of particles falling into the black hole. The PG

coordinates were designed to address this issue. In the PG coordinates, the metric is chosen

in such a way that the radial coordinate follows the motion of a freely-falling observer. This

means that the coordinate system is adapted to an observer who is ”riding” along with a

falling particle. As a result, the coordinate singularity at the event horizon is removed,

and the metric becomes regular at the horizon. The PG coordinates have the following

properties:

Regular Horizon: The event horizon of the black hole appears as a regular surface in

these coordinates, making it easier to analyze the behavior of particles and light near the

horizon.

Non-Static Behavior : Unlike the Schwarzschild coordinates, the PG coordinates exhibit

non-static behavior. This makes it easier to analyze the infall of matter into the black hole

and the associated effects.

Negative Energy Particles : These coordinates can accommodate negative energy particles

that move outward from the black hole, which can provide insights into the dynamics of black

hole evaporation.

In this section, we shall use the PG coordinates for the SBHBGM as a regular coordinate

system in the HJ equation and show how it gives the true Hawking temperature. Let us

start with the following transformation:

dr −→
√
Ξdr̃, (14)

dt −→ dt̃+

√
1 + f

f
dr, (15)

f̃ = 1− 2M

r̃
. (16)
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Thus, metric (2) transforms into its PG form as

ds2 = −f̃dt̃2 + 2

√
1− f̃dt̃dr̃ + dr̃2 + r̃2dΩ2. (17)

where

dΩ2 = dθ2 + sin2 θdϕ2, (18)

which is the metric on a unit two-sphere S2. Employing the Hamilton-Jacobi equation (6)

with ansatz P (r̃, t̃) = −ω̃t̃ + W̃ (r̃) and making some straightforward calculations, one can

get two near-horizon solutions for Hamilton’s characteristic function W̃ (r̃):

W̃−(r̃h) = 0, (19)

W̃+(r̃h) = +4iπω̃M
√
Ξ. (20)

Therefore, the tunneling probability of radiating particles from the black hole geometry (17)

is found as;

P̃ =
exp

(
−2ImW̃+(r̃h)

)
exp

(
−2ImW̃−(r̃h)

) = exp
(
−8πMω̃

√
Ξ
)
= exp

(
−ω̃

T̃

)
. (21)

Thus, one can read the black hole temperature of SBHBGM defined in PG coordinates as

follows

T̃ =
1

8Mπ
√
Ξ
, (22)

which equals to the statistical Hawking temperature (4).

B. Hawking Radiation of SBHBGM within IEF Coordinate System

The IEF coordinates [74] offer a unique perspective on the geometry of spacetime sur-

rounding a black hole, particularly in the context of ingoing particles such as photons. These

coordinates are meticulously designed to maintain regularity at the black hole’s event hori-

zon, simplifying the analysis of particles as they approach this boundary and providing

insight into the behavior of matter and radiation near the event horizon.

To pass to the IEF coordinate system, let us use the following transformation [59]:

dt = dν − dr∗, (23)
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where ν is a new null coordinate, the so-called advanced time and r∗ denotes the tortoise

coordinate:

dr∗ =

√
Ξdr

f
. (24)

Thus, the SBHBGM metric (2) recasts in

ds2 = −fdν2 + 2dνdr + r2dΩ2. (25)

In this coordinate system, the scalar particle’s energy can be measured by an observer as

E = −∂vP , due to the Killing vector field of ξµ = ∂v in metric (25).

P (ν, r, θ, ϕ) = −ων +WIEF (r) + J
(
xi
)
, (26)

in which ∂iP = Ji’s are constants and i = 1, 2 labels the angular coordinates θ and ϕ,

respectively. Employing the Hamilton-Jacobi equation (6) for the metric (25), the final

result for WIEF (r) can be found as

W±
IEF (r) = ω

∫
Ξ

f

(
1±

√
1− ρf

ω2

)
dr, (27)

where

ρ = m2 +
J2
θ

r2
+

J2
ϕ

r2 sin2 θ
. (28)

The expression for WIEF (r) simplifies to the following expression in the vicinity of the event

horizon:

W±
IEF (r) = ω

∫
Ξ

f
(1± 1)dr. (29)

Thus, one gets

W−
IEF (rh) = 0, (30)

W+
IEF (rh) = +4iπωM

√
Ξ. (31)

In the sequel, we find out the tunneling probability of the emitted quanta from the SBHBGM

defined in the IEF coordinates:

PIEF =
exp

(
W+

IEF (rh)
)

exp
(
W−

IEF (rh)
) = exp

(
−8πMω

√
Ξ
)
= exp

(
−ω

TIEF

)
. (32)

As a result, we get

TIEF =
1

8Mπ
√
Ξ
, (33)

which fully agrees with Eq. (4).
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C. Hawking Radiation of SBHBGM within KS Coordinate System

Introduced by Martin Kruskal and George Szekeres [62, 63], the KS coordinate system

offers a unique perspective for understanding the geometry and behavior of black holes,

particularly those described by the family of Schwarzschild solutions. By transforming the

standard metric into a new set of coordinates, the KS coordinates unveil the underlying

structure of spacetime around a black hole, enabling insights into phenomena such as event

horizons and the nature of singularities. This coordinate system proves indispensable in

simplifying the mathematical representation of these complex gravitational systems and

illuminating their intriguing properties. In this section, we will use the Hamilton-Jacobi

equation to represent how to obtain TH through the KS form of the SBHGBGM. To this

end, let us rewrite the metric (2) in the following form:

ds2 = −f

(
dt2 − Ξ

f 2
dr2
)
+ r2dΩ2, (34)

which can be transformed to

ds2 = −f du dv + r2 dΩ2, (35)

by the following coordinate transformations:

du = dt− dr∗, dv = dt+ dr∗. (36)

Recall that the definition of tortoise coordinate was given r∗ in Eq. (24), which can be

written explicitly as follows:

r∗ =
√
Ξ
(
r + rh ln

( r

rh
− 1
))

. (37)

After establishing new coordinates (U, V ) that are determined by the surface gravity (5):

U = −e−κu, V = eκv, (38)

one can redefine metric (34) in the KS coordinate system:

ds2 = −L dU dV + r2 dΩ2, (39)

in which

L = − f

κ2UV
=

4Ξr3he
(− r

rh)

r
. (40)
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With the exception of the physical singularity r = 0, this metric is regular everywhere.

Alternatively, metric (39) can be changed into

ds2 = −L
(
dT 2 − dR2

)
+ r2 dΩ2, (41)

which can be made by the following transformations

T =
1

2
(V + U) = e

√
Ξr

(
r

rh
− 1

)√
Ξrh

sinh

(
t

2rh
√
Ξ

)
, (42)

R =
1

2
(V − U) = e

√
Ξr

(
r

rh
− 1

)√
Ξrh

cosh

(
t

2rh
√
Ξ

)
. (43)

One can observe directly from above that

R2 − T 2 = e2
√
Ξr

(
r

rh
− 1

)2
√
Ξrh

(44)

which indicates that the future and past horizons are represented by R = ±T . In this case,

on the other hand, ∂T is not a timelike Killing vector for the metric (39). Therefore, it is

advantageous to take into account the metric’s timelike Killing vector in the following form:

∂T = N (R∂T + T ∂R) , (45)

where N denotes the normalization constant. The determination of the normalization con-

stant N is crucial in calculating the norm of the Killing vector, which attains a negative

unity value at either spatial infinity or the position of the observer measuring the tempera-

ture of the SBHBGMM. Therefore, at spatial infinity, the normalization constant is found

to be

N =
1

2rh
√
Ξf

∣∣∣∣
r=∞

= κ. (46)

Without loss of generality, one might consider the (1+1)-dimensional form of the KS metric

(41) which is

ds2 = −L
(
dT 2 − dR2

)
. (47)

In this situation, the Hamilton-Jacobi method’s calculations become simpler. The above

metric’s Hamilton-Jacobi equation (6) is as follows:

−L−1
[
(∂T P )2 − (∂RP )2

]
+m2 = 0. (48)

According to this equation, the ansatz for the P could be expressed as

P = ρ(y) + J
(
xi
)
, (49)
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where y = R−T and ρ(y) is a function to be determined. To make things even simpler, we

can set J (xi) = 0 and m = 0. The energy is now described as

E = −∂TP = −κ (R∂T P + T ∂RP ) . (50)

Using the above equation with ansatz (49), one derives the following expression

ρ(y) =

∫
2Erh

√
Ξ

y
dy. (51)

The above expression has a divergence at the horizon yh = 0, namely R = T . Thus, it

leads to a pole at the horizon which could be overcome by doing a semi-circular contour of

integration in the complex plane. The result is found to be

Im ρ(yh) = 2πErh
√
Ξ =

πE

κ
. (52)

which leads to the following tunneling probability of the emitted quanta from the SBHBGM

defined in the KS coordinates (39):

PKS = exp (−2 Im ρ(yh)) = exp

(
−E

TKS

)
, (53)

which results in

TKS =
1

4πrh
√
Ξ
. (54)

Equation (54) is nothing but the Hawking temperature seen in Eq. (4). Namely, we have

impeccably recovered the TH in the background of the KS metric of the SBHBGM.

IV. HAWKING RADIATION OF SBHBGM VIA HAMILTON-JACOBI

METHOD: SEMI-CLASSICAL APPROACH (WITH GUP)

In this section, our focus revolves around the intricate interplay between the GUP and

the Hawking radiation of the SBHBGM, employing the highly insightful Hamilton-Jacobi

method. Quantum gravity theories, spanning a spectrum of perspectives, consistently pos-

tulate the intriguing concept of a minimal length, which finds its roots in the very fabric

of the quantum realm. Within this theoretical framework, the realization of this minimal

length manifests through various avenues. Among these, a particularly noteworthy route
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involves the application of the GUP. To embark on our exploration, we commence by delv-

ing into the modified Hamilton-Jacobi equation [64] tailored for scalar particles, as elegantly

articulated below:

g0j (∂0S) (∂jS) +
[
gkk (∂kS)

2 +m2
]
×
{
1− 2β

[
gjj (∂jS)

2 +m2
]}

= 0, (55)

where k, j = 1, 2, 3, β is the GUP parameter, and Eq. (55) yields the following expression

with the use of metric (2) and ansatzes (7) and (9):

−2f 2β(drW )4

Ξ2
− f(4βL2 + 4βm2 − 1)(drW )2

Ξ
−2(L2+m2)2β+m2+

−ω2 + fL2

f
= 0. (56)

In Eq. (56), only the leading orders of β are considered and the higher order terms of β are

neglected since they have negligibly low values. In the sequel, if one solves that equation for

W0 and W1, the following expressions are obtained around the horizon:

W0 = ±2iπωM
√
Ξ, (57)

W1 = ±4iπω3M
√
Ξ, (58)

which belong to

W±
GUP = W0 + βW1 = ±2iπωM

√
Ξ
(
1 + 2βω2

)
. (59)

We calculate the tunneling probability as;

PGUP =
exp

(
−2ImW+

GUP

)
exp

(
−2ImW−

GUP

) =
exp

(
−4πωM

√
Ξ(1 + 2βω2)

)
exp

(
4πωM

√
Ξ(1 + 2βω2)

) = exp

(
−ω

TGUP

)
, (60)

whence the GUP-modified Hawking temperature of the SBHBGM can be found to be

TGUP =
1

8Mπ
√
Ξ(1 + 2βω2)

. (61)

The term 1
1+2βω2 in the expression implies that as the frequency and/or β increase, the

modification due to GUP becomes more prominent, leading to a reduction in the modified

Hawking temperature compared to the conventional value of TH presented in Eq. (4). This

alteration can be seen as an intricate consequence of the underlying quantum gravitational

effects, where the minimal length scale encoded by β influences the radiation process. Below

is the correlation between the conventional Hawking temperature and the modified version:

TGUP =
TH

1 + 2βω2
≈ TH(1− 2βω2) +O(β2). (62)
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The approximated form of the expression, TH (1− 2βω2)+O (β2), further simplifies the rela-

tionship, highlighting the primary influence of the GUP-induced modification. The first term

TH (1− 2βω2) denotes the dominant effect of GUP on the modified temperature, showcasing

how the presence of the minimal length scale affects the energy emission. The additional

term O (β2) accounts for higher-order corrections stemming from the GUP, contributing to

the refinement of the temperature modification.

V. QC ENTROPY OF SBHBGM

A fundamental aspect of black hole thermodynamics lies in the concept of entropy, which

plays a central role in connecting the macroscopic behavior of black holes with the underlying

microscopic degrees of freedom. The QC-induced modifications give rise to a revision of the

black hole entropy expression, incorporating corrections that diverge from the traditional

Bekenstein-Hawking formula [26]. The underlying physics driving these corrections is rooted

in the profound changes to the density of states for quantum states near the Planck scale,

thereby influencing the counting of microscopic configurations responsible for the black hole

entropy. Consequently, the QC-modified entropy not only offers a tantalizing link between

quantum gravity phenomena and black hole thermodynamics but also holds the potential

to address long-standing issues such as the black hole information paradox [75–77].

In this section, we delve into the QC entropy within the framework of the SBHBGM. We

begin by outlining the fundamental principles of entropy and the first law of thermodynamics.

Building upon this foundation, we proceed to derive the QC-modified expression for the black

hole entropy. Through a careful analysis of the QC-modified entropy formula, we aim to

illuminate the role of quantum gravity effects in reshaping the thermodynamic properties

of the SBHBGM and to uncover potential avenues for testing these modifications through

astrophysical observations and experimental scenarios.

The Bekenstein-Hawking entropy formula, a cornerstone of modern theoretical physics,

provides a simple yet powerful expression for the entropy of a black hole, denoted as SBH :

SBH =
AH

4
, (63)

which recasts in the following expression for the SBHBGM:

SBH = πr2H = 4πM2. (64)
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Let us now take a closer look at the first law of thermodynamics:

dE = THdSBH , (65)

which yields

dSBH = 8πMdM. (66)

Recalling the Hawking temperature (4), Eq. (65) becomes

dE =
1

8πM
√
Ξ
8πMdM =

dM√
Ξ
. (67)

By integrating Eq. (67), we get

E =
M√
Ξ
, (68)

which demonstrates that the total thermal energy of the black hole, E, is proportional to

the inverse square root of the quantity Ξ, which is influenced by the bumblebee parameter ℓ.

This implies that deviations from Lorentz invariance, introduced by the parameter Ξ, have

a direct impact on the scaling of the thermal energy with respect to the black hole’s mass.

After combining Eqs. (64) and (68), one obtains

SBH = 4πΞE2. (69)

Equation (69) highlights the LIV-modified Bekenstein-Hawking entropy SBH that accounts

for the influence of the LIV parameter ℓ. The existence of Ξ parameter in Eq. (69) signifies

a departure from the traditional entropy formula (SBH = 4πE2) due to the LIV parameter,

resulting in a deviation from the standard black hole thermodynamics dictated by general

relativity. In summary, the provided expressions elucidate the intricate interplay between

black hole thermodynamics, Lorentz invariance violation through the parameter ℓ, and the

resulting modifications to the black hole’s thermal energy and entropy. These modifications

introduce a departure from conventional expectations, underscoring the potential influence

of new physics, such as deviations from Lorentz invariance, on the behavior of black holes

and their thermodynamic attributes.

On the other hand, In the framework of string theory and loop quantum gravity, the

concept of quantum corrected entropy SQG emerges as a pivotal element. This quantum

correction is described by the following expression [67, 68]:

SQG = SBH + α ln(4SBH), (70)
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where SBH is the Bekenstein-Hawking entropy and α signifies a parameter linked to quantum

corrections. This expression captures the interplay between the intrinsic entropy of the black

hole and quantum modifications arising from these theories. The shift in quantum-corrected

entropy is then given by:

∆SQG = SQG(E − ω)− SQG(E)

= 4πΞ(E − ω)2 + α ln
(
16πΞ(E − ω)2

)
− 4πE2Ξ− α ln(16πΞE2). (71)

This equation portrays the change in quantum-corrected entropy due to variations in energy

E and angular frequency ω, incorporating both the bumblebee factor Ξ and the quantum

correction parameter α. Expanding Eq. (71) with a Taylor series with respect to ω, by

keeping the leading order, yields:

∆SQG ≈ −
(
8πΞE +

2α

E

)
ω = −

(
1

TH

+
2α

E

)
ω. (72)

This equation unveils a connection between the modified factors due to quantum corrections

and the Hawking temperature TH , highlighting the intricate interplay between thermody-

namics and quantum effects.

The quantum-corrected tunneling rate, denoted as ΓQG, is described by:

ΓQG ∼ ∆SQG = − ω

TQG

, (73)

whence the modified temperature TQG, at the leading order of α, reads

TQG ≈ .TH

(
1− 2αTH

E

)
. (74)

Remarkably, as the quantum correction parameter α approaches zero, TQG converges to-

wards the standard Hawking temperature TH representing the classical regime. The ex-

pression (74) elucidates the dependence of the modified temperature TQG on the bumblebee

parameter ℓ and the quantum correction parameter α, highlighting their joint influence on

the temperature deviation from the classical value TH .

In summary, the presented equations intricately interweave the quantum-corrected en-

tropy, modified tunneling rates, and temperature deviations, offering a glimpse into the

profound relationship between black hole thermodynamics, quantum gravity theories, and

the underlying microscopic quantum effects that potentially reshape our understanding of

these enigmatic cosmic objects.
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VI. CONCLUSION

In conclusion, the features of the SBHBGM spacetime were explored within the context of

bumblebee gravity theory. The extended Einstein field equations, incorporating the effects

of the bumblebee field, were introduced. The modified black hole solution (SBHBGM)

is characterized by a radial metric function grr = Ξ
1− 2M

r

, showcased the influence of the

Lorentz symmetry-breaking or the bumblebee parameter ℓ on the spacetime curvature. The

Kretschmann scalar(3) demonstrated the distinct nature of the metric compared to the

conventional Schwarzschild black hole.

By employing the Hamilton-Jacobi method, Hawking radiation for the SBHBGM was

investigated. Different regular coordinate systems — PG, IEF, and KS coordinates —

were considered to analyze the radiation process. In each coordinate system, the tunneling

probability and temperature of the black hole were computed. Remarkably, the Lorentz

symmetry-breaking parameter ℓ influenced the Hawking temperature, with non-zero ℓ lead-

ing to a reduction in temperature compared to the Schwarzschild case. The effects of Lorentz

invariance violation were emphasized, introducing intriguing deviations from the standard

Hawking temperature. Thus, we have also demonstrated that Hawking radiation possesses

an independent invariant physical property regardless of the coordinate system.

Furthermore, the impact of the GUP was integrated into the analysis. The GUP-modified

Hamilton-Jacobi equation was employed to derive tunneling probabilities and temperatures,

unveiling the intricate interaction between the GUP, Lorentz symmetry violation, and Hawk-

ing radiation. The GUP-induced modifications were introduced with a new parameter β,

which played a role in reducing the modified Hawking temperature. The relationship between

the conventional Hawking temperature and the GUP-modified temperature was elucidated,

offering insights into how quantum gravitational effects influence the radiation process.

Finally, the concept of QC entropy was introduced within the SBHBGM framework.

The interplay between black hole thermodynamics and quantum gravity effects, incorporat-

ing both the Lorentz symmetry-breaking parameter ℓ and a quantum correction parameter

α, was explored. The expressions for QC entropy and modified temperature underscored

the intricate connection between quantum corrections, thermodynamic properties, and the

underlying microscopic quantum behavior.

In conclusion, the investigation of the SBHBGM spacetime within the framework of
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bumblebee gravity, along with the incorporation of quantum gravity effects, provided a

comprehensive understanding of the modifications introduced by Lorentz invariance violation

and the GUP. These modifications have the potential to manifest as observable deviations

from classical black hole thermodynamics, offering a unique opportunity to probe the effects

of quantum gravity at astrophysical scales. In the future, this research can be extended

to investigate the behavior of rotating black holes within the bumblebee gravity theory

[73, 78]. The study of rotating black holes introduces new complexities due to frame-dragging

effects and angular momentum considerations. The analysis could involve exploring the

modifications to the metric, coordinate systems, and thermodynamic properties induced

by the presence of rotation. Moreover, the exploration of quantum-corrected entropy and

tunneling rates in the context of rotating black holes could provide valuable insights into

the impact of quantum gravity effects on these objects. All of these are within the scope of

our near-future work agenda.
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