
11 February 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Heuristics Based on Adjacency Graph
Packing for DCJ Distance Considering
Intergenic Regions

Gabriel Siqueira1, Alexsandro Oliveira Alexandrino1, Andre Rodrigues Oliveira2, Zanoni Dias1

1. Instituto de Computação, Universidade Estadual de Campinas (Unicamp), Brazil; 2. Faculdade de Computação e Informática,

Universidade Presbiteriana Mackenzie, São Paulo, Brazil

In this work, we explore heuristics for the Adjacency Graph Packing problem, which can be applied

to the Double Cut and Join (DCJ) Distance Problem. The DCJ is a rearrangement operation and the

distance problem considering it is a well established method for genome comparison. Our heuristics

will use the structure called adjacency graph adapted to include information about intergenic

regions, multiple copies of genes in the genomes, and multiple circular or linear chromosomes. The

only required property from the genomes is that it must be possible to turn one into the other with

DCJ operations. We propose one greedy heuristic and one heuristic based on Genetic Algorithms. Our

experimental tests in artificial genomes show that the use of heuristics is capable of finding good

results that are superior to a simpler random strategy.

1. Introduction

In biology, it is often important to have metrics to compare genomes of different individuals. Such

metrics can be used to infer evolutionary distance for the construction of phylogenetic trees. These

metrics can also help in the identification of ortholog genes (genes separated by speciation).

Many metrics for genome comparison were proposed over time, including the well established

rearrangement distance[1]. The rearrangement distance is a measure of the number of rearrangement

operations, large scale mutations affecting the order and orientation of the genetic material, needed

to transform one genome into another. One of the most studied rearrangement operations is the

Double Cut and Join (DCJ). The DCJ operation consists of cutting a genome in two points and joining

the resulting parts.

Qeios

qeios.com doi.org/10.32388/NCI96C 1

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Initially, the DCJ distance was studied in genomes with a single copy of each gene, and the orientation

of the genes was taken into account[2]. In that scenario, there is an exact polynomial time algorithm to

compute the distance in linear time[3]. A generalized version of the DCJ Distance Problem considers

any two genomes as long as they have the same set of genes. In this case, the DCJ Distance Problem is

NP-hard[4] and some proposed solutions for it include an integer linear programming

formulation[4] and an -approximation algorithm[5], where is the maximum number of copies

of a gene in the genomes.

In more recent works, a new approach was proposed to include information about intergenic

regions[6][7][8][9]. The usual representation in these works considers the number of nucleotides

between genes, which is called the size of the intergenic region between these genes. With this

representation, the DCJ Distance Problem is already NP-hard, even if the genomes have a single copy

of each gene and there is a -approximation algorithm for it[6].

The main structure proposed to deal with the DCJ Distance Problem is the adjacency graph. This graph

was initially proposed for the problem without gene repetition[3] and is capable of representing

multiple chromosomes, that can be linear or circular. This structure was later adapted to deal with

multiple gene copies[4][10] or intergenic regions[6]. However, as far as we know, there is still no work

combining multiple genes and intergenic regions for the DCJ Distance Problem.

This work proposes heuristics based on the adjacency graph for the DCJ Distance Problem considering

genomes with repeated genes and taking into account intergenic regions and gene orientation. The

heuristics are capable of dealing with genomes containing multiple circular or linear chromosomes.

We assume that the genomes have the same set of genes. The next section introduces some definitions

and formally states the problems. In Section 3, we describe the developed heuristics. In Section 4, we

describe some experimental tests, and we conclude the paper in Section 5.

2. Definitions

We represent a genome as a set of chromosomes. Each chromosome is encoded by a pair ,

composed of a string of size , representing the genes, and a list of non-negative integers of

size , representing the intergenic regions. Each character of has an associated sign or to

represent the orientation of the correspondent gene. We use the term label to the symbol used to

represent a character, disregarding the sign. Genes that are considered equal will be represented by

O(k) k

4/3

C (S,)S̆

S |S| S̆

| |S̆ S + −

qeios.com doi.org/10.32388/NCI96C 2

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

characters with the same label. Our representation will allow for both linear and circular

chromosomes. Figure 1 shows two genomes.

In linear chromosomes, we apply a process called capping for the representation. In this process, we

insert a character at the beginning and at the end of . We call these characters caps. They do not

correspond to real genes, but to simplify our definitions they are treated as genes at the beginning and

end of the chromosome. Considering this process, if is linear, than . If is circular, then

.

The -th character of , denoted by , represents the -th gene of the chromosome, if it is linear. If

the chromosome is circular, we list the genes by cutting it at some point and assume that and

 are adjacent. The -th integer of , denoted by , represents the size of the intergenic region

between and . In circular chromosomes, the integer represents the size of the intergenic

region between and .

Two genomes are called balanced if all labels, except , appear in the same number of genes, and the

sum of the intergenic region sizes is the same in both genomes. In this work we only consider balanced

genomes. Additionally, until the genomes have the same number of chromosomes, we add in the

genome with fewer chromosomes linear chromosomes with two caps and an intergenic region of size

 between them. With this addition of chromosomes the genomes remain balanced and have the same

number of characters with the label .

Figure 1. Two balanced genomes and . The chromosomes of are represented by the following pairs

of strings and list of integers , , and

. The chromosomes of are represented by the following pairs of

strings and list of integers , , and

. The linear chromosomes are capped and one chromosome was included in to ensure

the same number of chromosomes in both genomes.

+# S

C |S| = | | + 1S̆ C

|S| = | |S̆

i S Si i

S1

S|S| i S̆ S̆ i

Si Si+1 S̆
| |S̆

S|S| S1

#

0

#

G1 G2 G1

([+#, +B, +#], [2, 1]) ([+A, −B], [2, 1])

([+#, −C , −A, +A, +#], [1, 4, 2, 2]) G2

([+B, −B, −A], [2, 2, 3]) ([+#, +A, +A, +C , +#], [1, 4, 2, 1])

([+#, +#], [0]) G2

qeios.com doi.org/10.32388/NCI96C 3

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Given two genomes and , the adjacency graph is composed of the vertex set , edge

set (separated in two subsets and), and weight function . For each character in

a string from a chromosome of or , we have two vertices and in , if is not a cap, or

we have one vertex in , if is a cap. To simplify our examples, we will use the labels to represent

the vertices (adding and accordingly). The edges in are called reality edges and connect vertices

of two consecutive characters and as follows:

 is connected with , if both have sign .

 is connected with , if both have sign .

 is connected with , if has sign and has sign .

 is connected with , if has sign and has sign .

If or is a cap, just consider the above cases without the or in the vertex correspondent to

this cap.

The edges in are called desire edges and connect the vertices from a character of a string in a

chromosome of to the vertices of each character of a string of with the same label as . If

 is a cap, is connected with . Otherwise, is connected with and is connected with

.

Two vertices and from the same character are called twin vertices and two desire edges

connecting with and with are called twin edges.

The weight function is used to include intergenic region information in the graph. For each reality

edge connecting a vertex of with a vertex of , we have . Figure 2 shows an adjacency

graph created from the genomes in Figure 1.

Figure 2. The adjacency graph from the genomes in Figure 1. The reality edges are shown as continuous

lines, whose labels represent the weights, and the desire edges are shown as dashed lines.

G1 G2 AG(,)G1 G2 V

E Er Ed w : → NEr Si

S G1 G2 vt
Si

vh
Si

V Si

vSi V Si

h t Er

Si Si+1

vh
Si

vt
Si+1

+

vt
Si

vh
Si+1

−

vh
Si

vh
Si+1

Si + Si+1 −

vt
Si

vt
Si+1

Si − Si+1 +

Si Si+1 h t

Ed Si S

G1 Rj R G2 Si

Si vSi vRj
vt
Si

vtRj
vh
Si

vhRj

vt
Si

vh
Si

Si

vt
Si

vtRj
vh
Si

vhRj

w

e Si Si+1 w(e) = S̆ i

qeios.com doi.org/10.32388/NCI96C 4

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

The Double Cut and Join (DCJ) operation can be described using the adjacency graph. Consider four

vertices , , and , correspondent to characters of , and two integers and , such that there

is a reality edge connecting with and a reality edge connecting with . Besides, we

require that and . The operation removes the edges

 and and adds new edges connecting with and connecting with . The new edges have

weights and , respectively. This operation can be interpreted as cutting

the genome in two intergenic regions and joining the resulting parts. The points where the genome

is cut can be joined in different ways, depending on the order in which the vertices are passed as

arguments to . The representation of the genome has the signs of the reversed parts flipped, except

caps that always have a positive sign. Figure 3 shows two examples of the DCJ operation.

v1 v2 v3 v4 G1 x y

e1 v1 v2 e2 v3 v4

0 ≤ x ≤ w()e1 0 ≤ y ≤ w()e2 dcj(, , , ,x,y)v1 v2 v3 v4

e1 e2 v1 v3 v2 v4

x + w() − ye2 y + w() − xe1

G1

dcj

qeios.com doi.org/10.32388/NCI96C 5

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Figure 3. Two applications of the DCJ operation in the genome of Figure 1 and in the graph of Figure 2.

The first operation is , the cut and formed intergenic regions and edges are marked

in red. The second operation is , the cut and formed intergenic regions and edges are

marked in blue.

The DCJ Distance Problem consists of finding the minimum number of DCJ operations to transform a

genome in another genome .

An alternating cycle is a cycle that alternates between reality and desire edges. An alternating cycle is

balanced if the sum of weights from the reality edges of one of the genomes is equal to the sum of

G1

dcj(, , , , 1, 2)Ah Bh C t Ah

dcj(#, , , , 1, 0)Bt At At

G1 G2

qeios.com doi.org/10.32388/NCI96C 6

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

weight from the reality edges of the other genome. An alternating cycle packing of the adjacency graph

is a set of alternating cycles that do not share edges, contain all vertices, and every desire edge that

has a twin edge in a cycle is also in a cycle.

An alternating cycle packing corresponds to an assignment of the genes of to the genes of by

following the desire edges. With this assignment we can treat the genomes as if they do not have

replicated genes. In that case, there is a known -approximation algorithm for the DCJ Distance

Problem[6]. So we are interested in finding a cycle packing that tries to produce an assignment that

leads to the shortest DCJ distance. As the DCJ Distance Problem is NP-hard, we will use the -

approximation algorithm instead of the exact distance.

3. Proposed Heuristics

We are going to adapt the heuristics proposed for a similar cycle packing problem[10], where there are

no intergenic regions and each genome has a single linear chromosome. Our heuristics are based on

the idea of producing multiple cycle packing and selecting the best one by some criterion. This

criterion can be the DCJ distance approximation, but to increase the efficiency of the algorithms we

use only the number of balanced cycles in the packing as the selection criteria. The number of

packing to be produced is the same for all heuristics.

The first heuristic, called Simple Random (SR), uses a simple random generation to generate the

 packings. At each step, we select a random desire edge that is not the only desire edge incident to its

vertices, and remove all other desire edges incident to its vertices. If that edge has a twin we do the

same for it.

The second heuristic, called Greedy BFS (GBFS), uses a greedy approach by selecting a random vertex

and applying a breadth-first search to find the shortest alternating cycle containing that vertex. For

every edge selected for the cycle remove all other desire edges incident to its vertices and, if it has a

twin, we remove all other desire edges incident to the vertices of this twin. We repeat this process until

all vertices are in a cycle. During the breadth-first searches we must keep track of the edges that have

to be removed to ensure that the cycle respects the restriction that every edge must have its twin in a

cycle as well. Algorithm 1 shows a pseudo-code of this heuristic, and Figure 4 shows the production of

one cycle packing.

G1 G2

4/3

4/3

r

r

qeios.com doi.org/10.32388/NCI96C 7

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

qeios.com doi.org/10.32388/NCI96C 8

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Figure 4. Example of the construction of one packing from the GBFS heuristic applied to the adjacency

graph from Figure 2. The cycles obtained on each breadth-first search are marked with an indicating the

starting vertex of the search. The resulting packing has two balanced cycles.

The last heuristic uses a Genetic Algorithm (GA) approach[11] to produce the set of packings. This

approach is inspired by evolution and consists of producing an initial set of individuals, called

×

qeios.com doi.org/10.32388/NCI96C 9

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

population, and then applying crossovers and mutations to generate new populations. The individuals

are evaluated by a fitness function, which, in our case, is the number of balanced cycles in the packing.

The algorithm stops when a fixed number of individuals are generated.

Besides the total number of individuals , our genetic algorithm is specified by two parameters: the

size of the population () and the mutation rate (). An initial population is

generated by the GBFS heuristic. Until a total of individuals are produced, at each iteration the

algorithm produces a new population of new individuals by applying the following steps:

Selection: At this step, the algorithm selects, with repetition, individuals to take part in the

crossovers. The selection of each individual is by tournament, in which two individuals are

randomly chosen and the one with the highest fitness is selected.

Crossover: The selected individuals are paired, and the algorithm applies the crossover

operation in each pair to generate a new individual. Given two cycle packings and of an

adjacency graph, a crossover of and is a new cycle packing created by the following procedure.

Let and be two randomly ordered lists of the cycles from and , respectively. Starting with

an empty set and with the original adjacency graph, while is not a cycle packing and there

are cycles in or , remove a cycle from or (with a 50% probability to remove from each list,

or 100% probability to remove from one list if the other is empty), and add it to if all its edges

are still available. As in the GBFS heuristic, remove the necessary edges from the graph to ensure

the restriction about the twin edges. If both lists and are empty and is not yet a cycle

packing, use breadth-first searches, as in the GBFS heuristic, to complete the packing. Figure 5

shows an example of crossover.

Mutation: After the new individuals are generated, a mutation is applied to each one in order to

increase the diversity of the population. In the mutation of a cycle pack , we remove each cycle

of with probability and create a new packing from the remaining cycles of using breadth-

first searches.

Elitism: As we are going to replace the old population with the new one, we cannot guarantee the

quality of the new population. So, to ensure that at least the best individual is kept, we replace the

individual with the lowest fitness from the new population with the individual with the highest

fitness from the old population, if the old individual has a higher fitness than the new one.

Algorithm 2 shows a pseudo-code of the GA heuristic.

r

p 0 ≤ p ≤ r m 0 ≤ m ≤ 1

r

p

2p

2p

P P
′

P P
′

L L′ P P
′

P
′′

P
′′

L L′ L L′

P
′′

L L′ P
′′

P
′′

P
′′ m P

′′

qeios.com doi.org/10.32388/NCI96C 10

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

qeios.com doi.org/10.32388/NCI96C 11

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Figure 5. Example of the crossover of two cycle packing of the graph in Figure 2. Two cycles are selected

from the first packing, two from the second packing, and one new cycle is inserted by a breadth-first

search to complete the packing.

4. Experiments

The instances used in our experiments and the implementation of the heuristics (in C++) are available

at a public repository1. The following tests were conducted on a computer equipped with an “Intel(R)

Xeon(R) CPU E5-2470 v2” with 40 cores at 2.40GHz, 32GB of RAM, and 9GB of swap space.

We created a database of simulated genomes to test our heuristics. We produced pair of

genomes separated into groups of . Each group is defined by the number of labels used and the

25000

1000 ℓ

qeios.com doi.org/10.32388/NCI96C 12

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

number of DCJ operations applied. We created each pair by the following process (each random

selection is uniformly distributed):

We randomly produced characters picking the label from a set with symbols and choosing the

signs randomly.

We randomly chose integers in the interval to represent the intergenic regions.

We produced a genome containing a single linear chromosome with the chosen characters and

intergenic regions.

We created the first genome of the pair by applying DCJ operations in .

We created the second genome of the pair by applying DCJ operations in .

For our tests all heuristics produced a set of alternating cycle packings. For the GA heuristic,

we chose the parameters and .

In Table 1 and Table 2 we can see the results of our experiments. For each heuristic and each group of

instances, we show, in Table 1, the average and standard deviation of the distance computed from the

best cycle packing found and, in Table 2, the average and standard deviation of the execution time (n

seconds) of the algorithms. In both tables the standard deviation is shown as a percentage of the

mean.

We can see that GA found the shortest distance on average, followed by GBFS and SR. That indicates

that using a more sophisticated strategy to produce the packings results in a better result. The largest

difference between the average distances found by GA and by GBFS is for and ,

while the shortest such difference is for and . Considering the standard deviation,

the distinction between the distances found by GA and by GBFS is clearer with larger values of .

Additionally, the running time of GA was shorter than the running time of the other heuristics. This is

a consequence of the fact that the GA heuristic does not produce all cycle packings from scratch, but

produces most packings from crossovers and mutations.

o

200 ℓ

201 [0, 100]

G

o/2 G

o/2 G

r = 1000

m = 0.2 p = 100

54.44 o = 40 ℓ = 40

6.29 o = 10 ℓ = 50

o

qeios.com doi.org/10.32388/NCI96C 13

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

GA GBFS SRo ℓ

10 10 145.03 ± 15.21% 172.02 ± 10.86% 204.44 ± 11.14%

10 20 59.03 ± 51.18% 108.45 ± 35.98% 148.47 ± 33.12%

10 30 25.60 ± 66.17% 51.23 ± 64.45% 87.31 ± 63.51%

10 40 16.15 ± 63.07% 27.74 ± 75.39% 54.80 ± 86.22%

10 50 12.01 ± 44.94% 18.30 ± 73.85% 35.55 ± 99.68%

20 10 163.85 ± 9.80% 186.75 ± 6.25% 214.11 ± 5.70%

20 20 103.75 ± 28.18% 152.03 ± 14.79% 182.64 ± 13.58%

20 30 59.35 ± 38.88% 109.22 ± 30.38% 146.76 ± 26.82%

20 40 37.29 ± 43.65% 75.06 ± 43.67% 109.62 ± 41.23%

20 50 28.58 ± 37.72% 52.02 ± 49.17% 81.83 ± 52.58%

30 10 175.16 ± 7.61% 194.90 ± 5.45% 217.66 ± 4.02%

30 20 135.22 ± 17.37% 172.33 ± 8.77% 196.27 ± 7.93%

30 30 96.39 ± 27.27% 147.38 ± 14.37% 172.66 ± 13.77%

30 40 68.36 ± 34.96% 120.39 ± 22.65% 149.94 ± 19.43%

30 50 51.12 ± 32.35% 93.15 ± 30.95% 123.60 ± 29.17%

40 10 185.00 ± 5.75% 201.67 ± 4.20% 219.28 ± 3.38%

40 20 156.60 ± 10.76% 184.72 ± 6.37% 203.64 ± 5.53%

40 30 119.66 ± 18.99% 165.50 ± 9.60% 186.53 ± 8.91%

40 40 92.53 ± 24.36% 146.97 ± 13.69% 169.63 ± 12.04%

40 50 75.16 ± 26.47% 127.49 ± 17.35% 151.83 ± 16.10%

50 10 191.97 ± 4.72% 205.41 ± 3.74% 221.23 ± 2.86%

50 20 168.78 ± 7.91% 192.35 ± 5.03% 208.59 ± 4.08%

50 30 144.03 ± 12.30% 178.56 ± 7.17% 195.46 ± 6.28%

50 40 117.53 ± 18.38% 163.73 ± 9.80% 182.52 ± 8.61%

50 50 98.91 ± 21.72% 147.36 ± 12.51% 168.67 ± 11.39%

qeios.com doi.org/10.32388/NCI96C 14

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Table 1. Average and standard deviation for the DCJ distances resulting from the heuristics.

qeios.com doi.org/10.32388/NCI96C 15

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

GA GBFS SR

10 10 36.78 4.11% 213.56 26.05% 40.78 14.53%

10 20 25.73 7.41% 136.13 41.69% 40.61 13.82%

10 30 16.10 6.94% 67.38 37.00% 38.25 13.56%

10 40 11.88 5.58% 37.31 28.46% 37.52 12.81%

10 50 10.31 4.05% 22.75 19.60% 34.95 11.60%

20 10 37.91 3.46% 225.08 23.60% 39.70 14.25%

20 20 32.76 6.35% 172.17 35.19% 39.64 14.05%

20 30 26.04 8.09% 119.97 44.08% 39.62 13.48%

20 40 19.13 8.04% 82.09 43.96% 38.43 12.97%

20 50 15.39 7.88% 56.28 38.76% 36.28 11.96%

30 10 38.07 3.45% 232.65 24.05% 41.24 14.62%

30 20 37.30 5.73% 195.65 29.77% 40.57 14.26%

30 30 33.24 7.82% 164.24 40.45% 40.24 13.33%

30 40 29.02 9.58% 132.96 47.19% 39.22 13.39%

30 50 24.13 9.82% 102.31 49.57% 37.05 12.37%

40 10 39.03 3.38% 240.62 21.66% 41.05 14.24%

40 20 39.48 4.90% 202.19 29.20% 40.69 14.11%

40 30 38.01 6.84% 180.91 36.32% 40.47 14.18%

40 40 35.15 8.67% 160.33 45.16% 40.09 13.15%

40 50 31.70 9.77% 139.39 47.48% 38.39 12.49%

50 10 39.62 3.54% 243.66 20.86% 41.44 14.56%

50 20 40.99 4.98% 211.95 28.17% 39.90 13.85%

50 30 41.46 6.53% 194.58 36.40% 40.08 13.76%

50 40 39.86 8.21% 180.37 43.45% 40.55 13.47%

50 50 38.77 9.86% 161.15 46.69% 39.22 13.08%

o ℓ

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

qeios.com doi.org/10.32388/NCI96C 16

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

Table 2. Average and standard deviation for the running times of the heuristics (in seconds).

5. Conclusion

We described and tested three heuristics for Adjacency Graph Packing that can be used to estimate DCJ

distances. One of the heuristics is based on a simple random strategy (SR), another uses a greedy

strategy based on BFS (GBFS), and the last one is based on Genetic Algorithms (GA). These heuristics

were tested on a database of simulated genomes and GA found the shorter distances on average with

the shortest running time.

This work can be further extended to consider genomes with distinct sets of genes, as was done for the

original heuristics developed for unichromosomal genomes without intergenic regions[12]. There are

known algorithms for rearrangement distances with intergenic regions and distinct sets of genes, but

without gene replicas[13][14]. It is also relevant to explore other approaches to the problem, including

exact and approximation algorithms. The use of String Partition problems with intergenic regions can

be one approach to develop approximations[15][16].

Another path for future works is the application of the proposed algorithms to compare real genomes.

These tests can include the integration of the algorithms in bioinformatic tools used in the

construction of phylogenetic trees or detection of orthologous genes.

Acknowledgements

This work was supported by the São Paulo Research Foundation, FAPESP (grant 2021/13824-8).

Notes

This work appeared in the Proceedings of the XVII Brazilian Symposium on Bioinformatics

(BSB’2024), https://doi.org/10.5753/bsb.2024.245554.

Footnotes

1 https://github.com/compbiogroup/Heuristics-based-on-Adjacency-Graph-Packing-for-DCJ-

Distance-Considering-Intergenic-Regions

qeios.com doi.org/10.32388/NCI96C 17

https://doi.org/10.5753/bsb.2024.245554
https://github.com/compbiogroup/Heuristics-based-on-Adjacency-Graph-Packing-for-DCJ-Distance-Considering-Intergenic-Regions
https://github.com/compbiogroup/Heuristics-based-on-Adjacency-Graph-Packing-for-DCJ-Distance-Considering-Intergenic-Regions
https://www.qeios.com/
https://doi.org/10.32388/NCI96C

References

1. ^Fertin G, Labarre A, Rusu I, Tannier É, Vialette S. Combinatorics of Genome Rearrangements. Computa

tional Molecular Biology. London, England: The MIT Press; 2009.

2. ^Yancopoulos S, Attie O, Friedberg R (2005). "Efficient Sorting of Genomic Permutations by Translocati

on, Inversion and Block Interchange". Bioinformatics. 21 (16): 3340–3346.

3. a, bBergeron A, Mixtacki J, Stoye J (2006). "A Unifying View of Genome Rearrangements". In: Internatio

nal Workshop on Algorithms in Bioinformatics. Springer. p. 163–173.

4. a, b, cShao M, Lin Y, Moret BM (2015). "An Exact Algorithm to Compute the Double-Cut-and-Join Dista

nce for Genomes with Duplicate Genes". Journal of Computational Biology. 22(5): 425-435.

5. ^Rubert DP, Feij\u00e3o P, Braga MDV, Stoye J, Martinez FHV (2017). "Approximating the DCJ Distance

of Balanced Genomes in Linear Time". Algorithms for Molecular Biology. 12 (1): 1--13.

6. a, b, c, dFertin G, Jean G, Tannier E (2017). "Algorithms for Computing the Double Cut and Join Distance

on both Gene Order and Intergenic Sizes". Algorithms for Molecular Biology. 12 (1): 16.

7. ^Brito KL, Jean G, Fertin G, Oliveira AR, Dias U, Dias Z (2020). "Sorting by Genome Rearrangements on

both Gene Order and Intergenic Sizes". Journal of Computational Biology. 27 (2): 156–174.

8. ^Oliveira AR, Jean G, Fertin G, Brito KL, Bulteau L, Dias U, Dias Z (2021). "Sorting Signed Permutations

by Intergenic Reversals". IEEE/ACM Transactions on Computational Biology and Bioinformatics. 18(6):

2870–2876.

9. ^Oliveira AR, Brito KL, Alexandrino AO, Siqueira G, Dias U, Dias Z (2024). "Rearrangement Distance Pro

blems: An updated survey". ACM Computing Surveys. 56 (8): Article 206, 27 pages.

10. a, bSiqueira G, Oliveira AR, Alexandrino AO, Dias Z (2021). "Heuristics for Cycle Packing of Adjacency Gr

aphs for Genomes with Repeated Genes". In: Proceedings of the 14th Brazilian Symposium on Bioinform

atics (BSB'2021). Springer International Publishing. p. 93–105.

11. ^Mitchell M. Introduction to Genetic Algorithms. Cambridge, MA, USA: Springer Berlin Heidelberg; 200

8. ISBN 9783540731894.

12. ^Siqueira G, Oliveira AR, Alexandrino AO, Jean G, Fertin G, Dias Z (2024). "Assignment of orthologous g

enes in unbalanced genomes using cycle packing of adjacency graphs". Journal of Heuristics. (2024).

13. ^Alexandrino AO, Brito KL, Oliveira AR, Dias U, Dias Z (2021). "Reversal Distance on Genomes with Diffe

rent Gene Content and Intergenic Regions Information". In: Proceedings of the 8th International Confer

qeios.com doi.org/10.32388/NCI96C 18

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

ence on Algorithms for Computational Biology (AlCoB'2021), Springer International Publishing; 2021.

p. 121-133.

14. ^Alexandrino AO, Oliveira AR, Dias U, Dias Z (2021). "Incorporating Intergenic Regions into Reversal an

d Transposition Distances with Indels". Journal of Bioinformatics and Computational Biology. 19(06): 2

140011.

15. ^Siqueira G, Alexandrino AO, Oliveira AR, Dias Z (2021). "Approximation Algorithm for Rearrangement

Distances Considering Repeated Genes and Intergenic Regions". Algorithms for Molecular Biology. 16

(1): 1–23.

16. ^Siqueira G, Alexandrino AO, Dias Z (2022). "Signed Rearrangement Distances Considering Repeated G

enes and Intergenic Regions". Proceedings of 14th International Conference on Bioinformatics and Com

putational Biology (BICoB'2022). 83:31–42.

Declarations

Funding: This work was supported by the São Paulo Research Foundation, FAPESP (grant 2021/13824-

8).

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/NCI96C 19

https://www.qeios.com/
https://doi.org/10.32388/NCI96C

