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Abstract 

Relativistic quantum mechanics and many experimental results and 
observations show that electron-positron annihilation can produce 
photons; photon-matter and photon-photon interaction can also create 
electrons and positrons. The photons have no rest mass, e.g. relative to 
Lab frame, and always travel at the speed of light in the vacuum. In this 
paper, a rotational moving electric dipole model with negative and positive 
charges was proposed for photons. In a vacuum, the electric dipoles are 
moving in a twisted helical motion around their propagation axis (their 
center of mass). Photon particles are traveling at the speed of light along 
the propagation axis. This pair of negative and positive charged particles 
exerts both electrostatic and magnetic force on each other. Both forces 
are attractive and act as a centripetal force to keep the electric dipole in a 
continuous helical motion around the axis of rotation. With this model, the 
wave-particle duality of photons can be described simultaneously. The 
space is filled by matter (having rest mass relative to Lab frame) and 
photons (without rest mass); it is a multicomponent mixture fluid. In 
“vacuum”, though there is no rest matter particle, but there are still photon 
gas particles, the total energy-momentum tensor should include rest 
matter particles and photon gas particles. 
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1 Introduction 

The prediction of the positron by the Dirac equation was a significant 
achievement in physics1. It indicates that a positron is the antiparticle of 
the electron with the same mass but opposite charge.  During the studying 
of the behavior of cosmic ray2- 5, Anderson observed the positively charged 
electron (hence the positron), as predicted by the Dirac equation. 
Hereafter, he produced the proof that is more conclusive by shooting 
gamma rays produced by the natural radioactive nuclide into other 
materials, resulting in the creation of electron-positron pairs, and 
confirmed by other experiments6,7. Electron-positron pairs are 
simultaneously ejected from the material8, and the experimental results 
indicate a common point of emitting origin of two particles.  In 
Feynman’s9,10 diagram, an electron and a positron can annihilate by 
emitting photons.  Today the Na-22 positron source (𝛽! decay emitting 
positrons) is widely applied as a non-destructive spectroscopy technique 
to study voids and defects in solids, where the positrons collide with 
electrons to become energetic photons. 
 
The photon-matter interaction shows the Thomson and Compton 
scattering phenomena within the mid-energy range. Blackett11 showed 
electron-position pairs could be created out of light particles for photon-
matter-interaction with high energy. A detailed and historical overview for 
electron-positron pair production by photons can refer to Hubbell’s paper 
and the literatures inside12.  
 
For photons with high energies, the photon splitting phenomena by 
photon-photon interaction can be observed13-18.  In the study of positron 
production of light-by-light scattering with high energy by Burk et al.19, 
electron-positron pairs are created by a collision between the high-energy 
photons. These results are astounding evidence that inelastic light-by-light 
scattering involving only real photons can produce electron-positron pairs.  
 
 
The PAMELA satellite20 observed an excess of positrons in the 
atmosphere during thunderstorms, indicating that a significant amount of 
positrons was produced. 
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The Fermi Gamma-ray Space Telescope by NASA has detected beams 
of streams of electrons and positrons, produced above thunderstorms on 
Earth. The result was presented by researchers in January 2011 at the 
217th American Astronomical Society Meeting of US21. The results 
affirmed that when gamma rays pass near the nuclei of atoms, they could 
turn their energy into two particles: an electron-positron pair. 
 
In July 2021, the STAR Collaboration team22 has shown the first direct 
evidence that two particles of light, or photons, crash into one another and 
produce an electron and its counterpart, a positron, the experimental result 
is consistent with the prediction by the Breit-Wheeler process23: the 
positron-electron pair is created from the direct collision of light with light. 

 

Relativistic quantum mechanics figure out that photons are constantly 
splitting into pairs of oppositely charged particles (negative and positive 
charges), which can re-annihilate into the photons. The above-mentioned 
experimental results show that not only electron-positron annihilation can 
produce photons, but photon-photon interaction can also create electrons 
and positrons. 

 

The above-mentioned observations with high energy gamma rays imply 
the gamma-ray is composed of electrons and positrons. It is mainstream 
known that photon (such as gamma rays) has no electrical charge. Indeed, 
if the spatial resolution of the measurement is not higher enough, finer 
details of the object being measured will be lost, or rather to say, are not 
distinguishable.  As a result, an electron-positron pair (a tiny electric dipole) 
will be thought of as a single particle. It appears electroneutral, if the 
measuring distance is far large compared to the size of an electric dipole. 
Besides, Photons do not have a rest mass (and hence no rest frame, at 
least for the Lab frame), and they always travel at the speed of light in the 
vacuum, the most common way to weigh the mass (relatively at rest) of a 
photon is not possible in the Lab frame. The Maxwell equations show that 
photons are electromagnetic waves that propagate through vacuum at the 
speed of light; however, they have energy and momentum (Planck-
Einstein relation, E=hν), namely, they exhibit also particle properties. The 
photon has properties of both a wave and a particle.  How do the photons 
act as both a wave and a particle all the time simultaneously? Based on 
the above experimental results and observations, in this paper, we 
propose a rotational moving model with negative and positive charges for 
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photons — a rotating moving electric dipole model. The negatively and 
positively charged pair is travelling helically twisted around its propagation 
axis (direction).   

This paper is organized as follows. Section 2 will focus on the wave 
properties of photons, while Section 3 covers the kinetic energy of moving 
photon particles. Section 4 will discuss the moving dipole interaction and 
Lorentz force. Finally, some typical values for representative wave 
frequencies will be provided in the discussion. The mathematical details 
related to these topics will be included in Appendix A and B. 

 

 
2 Helical Motion of Electric Dipoles and Different Wave Perspectives  

 
In this section, we will discuss the wave-like behaviors of the rotational 
electric dipole, which is propagating in space at the speed of light. The 
electric dipole can be represented as electrical vectors pointing from the 
positive to the negative charge. 

It is generally known that photons (electromagnetic waves) emitted from 
common sources (e.g. sunlight, light bulbs, etc.) are massive and 
randomly polarized, or rather to say, their propagation and polarization 
directions are randomly oriented and may propagate equally in all 
directions. Electromagnetic waves could be circularly polarized if their 
electrical field vectors are in two planes perpendicular to each other, equal 
in amplitude, but have a phase difference of π/2. One example is 
synchrotron radiation, where highly energetic charged particles move in a 
magnetic field and emit polarized electromagnetic waves (light). For 
simplicity of discussion, in this paper, we will discuss a simply organized 
light wave model — an isolated monochromatic circularly polarized wave 
that propagates in a vacuum. We will discuss several spatial perspectives 
of this type of wave, namely its electrical and magnetic field vectors. 

Fig. 1 gives the uniform helical motion of the negative-positive charged 
particle pairs in vacuum space. To avoid being messy, only the trajectory 
of the positively charged particle is shown in this figure.  

 

For the sake of discussion, the rotating plane is assigned to be the X-Y 
plane, and the negative-positive charged particle pairs travel along the Z-
direction at a speed of light, c, thus, z=ct. The coordinate origin is O, 
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namely, this is a right-handed circularly polarized light, as shown in Fig. 
1(a). 

 

If the trajectories of these electric dipoles (and hence the electromagnetic 
field vectors) are projected onto different planes or directions (subspace), 
we will have different spatial perspectives of the motion (as well as the 
electrical and magnetic field vectors). 
 

• If the motion is projected onto the Y-Z (or X-Z) plane, it exhibits a 
transverse electric wave (TE) profile along the direction of wave 
propagation (the time axis is ct, which serves also as the Z-axis). It can 

 
(a) 

  
(b) (c) 

Fig. 1. Uniform helical motion of electric dipoles 
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be read from the picture that the distance between the adjacent electric 
dipoles, along the propagation direction, is 1/4 wavelength (one-quarter 
of the wavelength), but perpendicular to each other, as shown in Fig. 
1(b). The electrical vectors can be expressed as a traveling plane wave 
(i.e. if we only have interest and measure the electromagnetic field. Fig. 
1(b) only shows some electric field lines for one dipole, they are curved 
and extend from the positive to the negative charge): 
 
 

𝐸"(𝑧, 𝑡) = 𝑅 sin(𝑘𝑧 − 𝜔𝑡), (1a) 

𝐸#(𝑧, 𝑡) = 𝑅 cos(𝑘𝑧 − 𝜔𝑡). (1b) 
 

 

• If the motion is projected onto the X-Y plane (and hence, the motion 
along the Z-direction is suppressed), the electric dipole displays a 
circular motion around the rotation axis (a circularly polarized light). As 
confirmed experimentally by Allen et al.24, the photon will show a well-
defined orbital angular momentum (OAM). If this circular motion is 
further projected onto the X-axis or Y-axis, we will observe two simple 
harmonic oscillations (SHO) of the electrical vector around the origin  ̶  
one along the X-axis, and another one along the Y-axis, as is shown in 
Fig. 1(c). (One circularly moving vector can be decomposed into two 
SHO vectors, which have a phase difference of π/2), for example. 

 

𝐸"(𝑡) = 𝑅 cos(𝜔𝑡), (2a) 

𝐸#(𝑡) = 𝑅 sin(𝜔𝑡). (2b) 
 

• If the motion is projected onto the Z(ct)-axis, it merely becomes a 1-D 
linear translational motion with a constant speed of light, c. 
 

𝑧 = 𝑐𝑡. (3) 
 

Moreover, if the photon rotational plane (XY-plane) has an angle with the 
projected (observed) plane, we will get other perspectives (such as 
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elliptical projection) of the electromagnetic wave vectors, depending on 
the projection directions25, 26.   

 

It can be recognized, with the projection procedure; we can get different 
spatial perspectives of the motion and the electromagnetic wave vectors, 
and measure it. However, we may lose some other information (and hence, 
the wave properties), for details see Appendix A.  

 

3 The Kinetic Energy (Lagrangian) of Photon Particle 

 

In this section, we focus on photon’s particle properties, namely its energy, 
and momentum. 

 

It should be stressed here that photons have no rest mass, and hence no 
rest frame (i.e. relative to the Lab frame). In fact, photons are always 
moving along the left and right light cones in the Z-ct coordinate in the Lab 
frame, see Fig. A1 for details. It is not possible to weigh the mass of a 
photon. An electric dipole as a whole will appear quasi electroneutral, if 
the measurement distance is far bigger than the size of the dipole – a so-
called point dipole, (the potential falls very fast, as the distance increases 
from electric dipole, the effects of positive and negative charges nullify 
each other). The usual method to determine the ratio of the charge to its 
mass, e/m, from the curvature of the path of the charged particle (e.g. an 
electron) in a magnetic field is also impossible.  However, according to the 
mass-energy equivalence principle, we can define a scalar parameter as 
a photon’s “kinetic” mass in Lab frame (we call it momentum and energy 
carrier), namely a photon’s energy equivalent mass, similar to the mass 
definition for other particles, e.g. for the mass definition of electrons.  

 

3.1 The Total Kinetic Energy 

 

The total kinetic energy of a photon particle can be broken up into two 
terms. The first is the kinetic energy of the center of mass, and the second 
is the kinetic energy of the particle relative to its center of mass. 
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The photon motion has two types of angular momentum, spin angular 
momentum (SAM) and orbital angular momentum (OAM)27-30.    

Thus, the particle motion can be decomposed into three parts:  

• uniform translational motion along the Z-direction;  
• rotational motion around the Z-axis (orbital), and  
• spinning motion around the center of mass of the particle. 

 

The total kinetic energy (translational, orbital, and spinning) of a helical 
moving particle is 

 

𝐸$%$ =
1
2
𝑚𝑣&#'( +

1
2
𝑚�⃗�$&)*( +

1
2
Ω;;⃗ +,- 𝐼.̿/')Ω;;⃗ +,, (4) 

 

 
The first two terms are the kinetic energy of the center of mass; the last 
term is the object’s spinning kinetic energy relative to its center of mass. 
𝐼.̿/') is the moment of inertia of the spin motion, it is a tensor (i.e. a matrix). 
Ω;;⃗ +, is the spin angular frequency vector, and Ω;;⃗ +,-  is its transpose (row 
vector). Because of the symmetric property of the inertia tensor, the last 
term can be re-written as follows: 
 
 

𝐸./') =
1
2
𝐿;⃗ ./') ∙ Ω;;⃗ +,, (5) 

 
where 𝐿;⃗ ./') is the spin angular momentum around particle’s center of 
mass. 
 
The orbital kinetic energy is: 
 
 

𝐸%01'$&2 =
1
2
𝑚�⃗�$&)*( =

1
2
𝑚𝑅(𝜔;;⃗ ∙ 𝜔;;⃗ . (6) 

 
where 𝜔;;⃗  is the angular velocity vector of the orbital motion, it is 
perpendicular to the orbital (rotational) plane. Recalling the angular 
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momentum definition, the kinetic energy of the orbital motion can be re-
written as, 
 

𝐸%01'$&2 =
1
2
𝐿;⃗ &#' ∙ 𝜔;;⃗ , (7) 

 
where 𝐿;⃗ &#' is the orbital angular momentum of the photon particle, pointing 
to its propagation direction (z-axis), it is defined as: 

 

𝐿;⃗ &#' = 𝑚𝑅(𝜔;;⃗ . (8) 

 

To keep it to be simple, hereafter we omit the vector notation for orbital 
angular velocity and momentum, thus, the total kinetic energy of the 
photon particle is 

 

𝐸$%$ =
1
2
𝑚𝑐( +

1
2
𝐿&#' ∙ 𝜔 +

1
2
𝐿;⃗ ./') ∙ Ω;;⃗ +,. (9) 

 
It can be re-written as: 
 
 

𝐸$%$ =
1
2
@
𝑚𝑐(

𝜔
+ 𝐿&#' +

𝐿;⃗ ./') ∙ Ω;;⃗ +,
𝜔

A ∙ 𝜔. (10) 

 

3.2 Translational and Rotational Energy Partition 

 

The total kinetic energy is the sum of translational, orbital, and spinning 
energy: 

 

𝐸$%$ = 𝐸$0&).2&$'%) + 𝐸%01'$&2 + 𝐸./'). (11) 

 

Translational kinetic energy thereof is (the propagation velocity is c): 
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𝐸$0&).2&$'%) =
1
2
𝑚𝑐(. (12) 

 

According to Einstein’s mass-energy equivalence principle, the total 
energy is defined as 

 

𝐸$%$ = 𝑚𝑐(. (13) 

 

The 1D linear momentum projected onto the propagation direction (along 
Z-axis) is 

 

𝑝 = ±𝑚𝑐. (14) 

 

The positive and negative sign depends on the light propagation directions. 
This definition can ensure the energy-momentum vector to be a null vector 
(null cone) in the Minkowski space for photon particle motion (for details 
see Appendix A), 

 

𝑃3 = E
𝐸$%$
𝑐
𝑝
F = G

𝑚𝑐
±𝑚𝑐H = G 1±1H (𝑚𝑐). (15) 

 

Provided we make a Lorentz boost along the Z-direction, the following 
relation is always true (the Lorentzian inner product is zero along the light 
cone surface), observed by different inertial frames (also by the observer 
in the Lab frame), regardless of their relative velocities of different 
observers: 

 

I
𝐸$%$
𝑐
J
(
− 𝑝( = 0. (16) 

 
Accordingly, the sum of the orbital and spinning energy, thus, is: 
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𝐸%01'$&2 + 𝐸./') =
1
2
𝑚𝑐(. (17) 

 
Actually, the left and right light cones are eigenvectors of the Lorentz 
transformation, for details, please refer to Appendix A. 

 

3.3 The Planck Constant and Equivalent Angular Momentum 

 

Photons exist as moving particles (at least for the observer in the Lab 
frame). The Planck-Einstein relation says that the energy of photons 
depends on their frequency. It is directly proportional to the frequency. 

 

𝐸$%$ = ℏ𝜔				𝑜𝑟				𝜔 =
𝐸$%$
ℏ

 (18) 

 

where ℏ is the reduced Planck constant, and 𝜔 is the angular frequency 
of a photon wave. 

 

Combining eq. (10), (13), and (18), we can get the reduced Planck 
constant expression as: 

 

ℏ = 𝐿&#' +
𝐿;⃗ ./') ∙ Ω;;⃗ +,

𝜔
. (19) 

 

Here, we can define an equivalent angular momentum, perpendicular to 
the rotational plane, as: 

 

ℏ = 𝐿456 = 𝐿&#' +
𝐿;⃗ ./') ∙ Ω;;⃗ +,

𝜔
. (20) 
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From the above equation, we can recognize that the reduced Planck 
constant is equal to an equivalent angular momentum of the photon 
particle motion, including the orbital and spin angular momentum 
components. 

 

Finally, from equations (13), (18), and (20), we can get the photon particle 
mass expression as (observed in the Lab frame): 

 

𝑚 =
ℏ𝜔
𝑐(

=
𝐿456𝜔
𝑐(

. (21) 

 

This is the energy equivalent mass definition for photons, measured in 
the Lab frame, if we define the observed angular frequency in the Lab 
frame as 𝜔. 

  

3.4. De Broglie Relation for Photons — Duality Property 

 

With the definitions of eq. (13) and (14), we have 

 

𝑝 =
𝐸$%$
𝑐
.	 (22) 

 

Substituting (18) into (22), hence, 

 

𝑝 =
ℏ𝜔
𝑐
.	 (23) 

 

Recalling the dispersion relation for plane wave in vacuum, and the 
equation of the reduced Planck constant with the equivalent angular 
momentum definition, eq. (20), finally, we get the De Broglie relation for 
photons: 
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𝑝 = ℏ𝑘 = 𝐿456𝑘					𝑜𝑟					𝑘 = 	
𝑝
𝐿456

	 (24) 

 

Substituting the eq. (18) and (24) into the eq. (1a), in a vacuum, we can 
get a plane wave equation for the photon, i.e. a wave function, propagating 
in the positive Z-direction, as:  

 

𝜓(𝑡, 𝑟) = 𝑅 exp -−𝑖 0
(𝐸!"!𝑡 − 𝑝𝑧)

𝐿#$%
56 = 𝑅 exp -−𝑖 0

𝑚𝑐
𝐿#$%

5 (𝑐𝑡 − 𝑧)6. (25) 

 

where the minus sign in front of the imaginary unit, 𝑖, represents clockwise 
rotational motion, if observed from positive Z-direction.   

 

It can be shown that the Klein-Gordon equation for photon particles can 
be expressed as: 

 

	P
1
𝑐(

𝜕(

𝜕𝑡(
−
𝜕(

𝜕𝑧(
R𝜓 = 0. (26) 

 

Mathematically it stands for a homogeneous wave transport equation 
without any source. 

Schrödinger equation for this type of rotational motion, expressed by the 
eq. (25), in the matter rest frame (or we call it matter co-moving frame) 
reads: 

 

T𝑖ℏ
𝜕
𝜕𝑡
+ P

ℏ(

2𝑚
R
𝜕(

𝜕𝑧(
+
3
2
(𝑚𝑐()W 𝜓 = 0.  (27) 

 

 

As shown by eq. (20), here the reduced Planck constant is equal to the 
equivalent angular momentum of the photon particle rotational motion. 
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4 The Dipole Interaction and Lorentz Force 

 

4.1 The Geometrical Arrangement of the Electric Dipoles  

In the following discussion, the gravitational force (and hence the 
gravitational energy) is neglected, since it is too small compared with 
electromagnetic force, as discussed in section 3, the Lagrangian has only 
the kinetic energy.  

 

It is assumed that the electric dipoles are arranged in such an orientation 
that every electric dipoles feel a net-zero electrostatic force, exerted by its 
adjacent pairs through electrostatic interaction. Since the opposite-signed 
charges are at the same distance as the like-signed charges, as shown in 
Fig. 2, each charged particle of the electric dipole B feels a net-zero 
electrostatic force exerted by the A and C pairs. Because of the 
geometrical symmetries and motion symmetries of this arrangement, the 
electric dipole B feels also a net-zero magnetic force exerted by A and C 
pairs. (The direction of magnetic field produced by adjacent charge is 
perpendicular to the plane containing the line from source charge to field 

point and the charge velocity vector, the exerted forces by adjacent 
charges balance out). This arrangement is reasonable, thus to keep each 
pair feeling a net-zero force exerted by the neighbor pairs. In fact, electric 
dipole B is in the center plane of A and C pairs (YZ-plane), where the 
electrical potential is zero, produced by A and C pairs. 

 

Fig.2 The electric dipole geometrical arrangements in space 
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Thus, we will discuss the interaction (force) between the negatively and 
positively charged particles in one pair in the following section. 

 

 

4.2 The Lorentz Force as Centripetal Force 

 

As an approximation, we ignore the magnetic field produced by the 
spinning motion of the charged particles (to neglect the spin-orbit 
interaction effect). 

 

Along the Z-direction, negative and positive particles have no relative 
motion; the electron-positron pair exerts a mutual electrostatic attractive 
force through electrostatic interaction with each other. Fig 3. (a) shows this 
mutual electrostatic attractive force. 

 

The electric field strength at a point only depends on the inverse square 
of the distance to the charge.  e.g., suppose the positively charged particle, 
+q, is located at (𝑥, 𝑦, 𝑧) = (0, −𝑅, 𝑐𝑡), and the negatively charged particle, 
-q, is located at (𝑥, 𝑦, 𝑧) = (0, 𝑅, 𝑐𝑡), see Fig. 3(a). 

 

The electric field strength at point (0, 𝑅, 𝑐𝑡), produced by the positively 
charged particle is: 

 

𝑬;;⃗ 5!(𝒓\) =
1

4𝜋𝜀7
𝑞!
𝑑(
𝒅c =

1
16𝜋𝜀7

∙
𝑞!
𝑅(
𝒓\ (28) 

 

The attractive electrostatic force on the negatively charged particle, due 
to the electric field produced by the positively charged particle, thus, is: 

 

𝑭;;⃗ 5" = (−𝑞) ∙ 𝑬;;⃗ 5!(𝒓\). (29) 
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This force vector points to the negative Y-direction (the rotational axis, 
namely, their common center of mass). 

 

 

However, in the XY-plane, the negative and positive charged pair have 
relative motion with each other, with a constant speed of a tangent velocity 
relative to the rotational axis. Due to their relative motions, each charged 
particle appears to create a magnetic field around itself, which can be 
explained by special relativity and the electromagnetic field tensor. The 
induced magnetic field is perpendicular to the XY-plane, namely, 
perpendicular to the orbital rotating plane, or rather, parallel to the 
propagation direction of Z (ct). This induced magnetic field direction can 

be read in Fig. 3(b). As a result, each particle feels a magnetic force 
exerted by its corresponding partner.  With the help of the “Right-Hand-
Rule”, we can know the direction of this mutual magnetic force is also an 
attractive force, as shown in Fig 3(b). The magnetic field, in the space at 
the location of the negatively charged particle (-q), produced by the moving 
positive charged particle is given by the Biot-Savart law, 

 

𝑩;;⃗ 5!(𝒓\) =
𝜇7𝑞
4𝜋

P
𝒗;;⃗ $&)* × 𝒅c

𝑑(
R =

𝑞
16𝜋𝜀7𝑐(

P
𝒗;;⃗ $&)* × 𝒓\

𝑅(
R. (30) 

 

  
Fig. 3 (a) Mutual electrostatic attractive force, and (b) magnetic attractive force. 
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Using the Lorentz force law, the force felt by the negatively charged 
particle (or exerted by the positively charged particle) is  

 

𝑭;;⃗ 5"$%$ = (−𝑞)j𝑬;;⃗ 5! + 𝒗;;⃗ $&)* × 𝑩;;⃗ 5!k. (31) 

 

Note, here the negatively charged particle moving velocity relative to its 
position is 𝑣$&)*. 

 

The first term is the electrostatic force, and the second term represents 
the magnetic force. 

 

5 “Vacuum” is not Vacuum and the Multicomponent Mixture in 
Space 

 

The space is filled with different type of particles (e.g. electrically charged 
or electrically neutral), with rest mass (having co-moving frame) or without 
rest mass (without co-moving frame). For simplification, in this paper, we 
consider only electrically neutral charged rest matter (hereafter we call it 
matter) and without rest mass, (the representative is the photon or neutrino 
particle, actually, if an electric dipole pair is regarded as a whole particle it 
can be called electrically neutral, e.g. the rotational radius is very tiny). For 
that, we introduce a matter (and a photon) particle distribution function in 
space, which is defined to be 

 

𝐻(𝑡, 𝑥) = m1 𝑖𝑓	𝑚𝑎𝑡𝑡𝑒𝑟	𝑒𝑥𝑖𝑠𝑡𝑠	𝑎𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑥	𝑎𝑛𝑑	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (32) 

 

As an approximation, we assume here matter and photon particles do 
not occupy a same spatial position at same time.  

 

Then we can define a scalar field of mass, composited by matter mass 
and photon mass. 
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𝑚(𝑡, 𝑥) = 𝐻(𝑡,𝑚8)𝑚8 + 𝐻j𝑡,𝑚9k𝑚9.  (33) 

 

where, 𝑚8 represents rest mass and 𝑚9 is the photon mass. 

 

If we assume the photon gas and matter as a homogenous fluid mixture, 
according to the mass-energy equivalence principle, the energy field can 
be expressed as 

 

𝐸(𝑡, 𝑥) = 𝑚𝑐( = u𝐻(𝑡,𝑚8)𝑚8 + 𝐻j𝑡,𝑚9k𝑚9v𝑐(.  (34) 

 

Following this mass and energy field definition, the total energy-
momentum tensor is sum of the rest matter and photon gas energy-
momentum tensors: 

 

𝑇$%$&2
3: = 𝐻(𝑡,𝑚8)𝑇8

3: + 𝐻j𝑡,𝑚9k𝑇9
3:.  (35) 

 

If we assume the energy-momentum tensor for rest mass as dust particles, 
the matter particle energy-momentum tensor reads: 

 

𝑇8
3: = 𝑃83⊗𝑈8

: .  (36) 

 

and the photon particle energy-momentum tensor is: 

 

𝑇9
3: = 𝑃93⊗𝑈9

:.  (37) 

 

where the 𝑃83  and 𝑃93  are 4-momentum vectors for matter and photon 
particles, respectively, and the 𝑈8

:  is the 4-velocity of matter particle, 𝑈9
: 

is 4-velocity of photon gas. 
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The local formulation of the conservations of the energy-momentum for 
matter fluid and photon gas mixture then reads 

 

𝜕3𝑇3: = 𝛼8𝜕3𝑇8
3: + (1 − 𝛼8)𝜕3𝑇9

3: = 0.  (38) 

 

where 𝛼8  is the matter volume fraction. If we deal with 𝑇3:  as one 
mathematical object, this is the assumption of the homogenous flow model, 
as if they mix very well and there is only one phase. 

 

In this mixture fluid model, according the above assumption, in “vacuum”, 
though there is not rest matter particle, but there are still photon gas. The 
above conservation equation thus degrades to 

 

𝜕3𝑇3: = 𝜕3𝑇9
3: = 0.  (39) 

 

This photon gas energy-momentum tensor can be regarded as dark 
energy in the absence of matter particles in space. In this tensor, we 
consider only the matter particles (with rest mass) and photon particles 
(without rest mass); in fact, the total energy-momentum tensor in space 
should also include other type of effects, e.g. include other electrically 
charged particles, it is out of the scope of this paper. 
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Appendix A. Motion Projection and Light Cone 

 

A helix running particle around the Z(ct)-axis has a parametrization 
position vector (here the spinning motion is ignored) of: 

 

𝑟 = T
𝑥
𝑦
𝑧
W = E

𝑅𝑠𝑖𝑛(𝜔𝑡)
𝑅𝑐𝑜𝑠(𝜔𝑡)

𝑐𝑡
F, (A1) 

 

where 𝑅 is the rotational radius, and 𝜔 is the angular frequency.  
 

If this motion is projected onto the XY-plane, we observe (measure) the 
photon motion perpendicular to the propagation direction (z-direction), it 
will give: 

 

E
𝑥′
𝑦′
𝑧′
F = 𝑃#"𝑟 = E

𝑅𝑠𝑖𝑛(𝜔𝑡)
𝑅𝑐𝑜𝑠(𝜔𝑡)

0
F. (A2) 

 

where the projection matrix is 

 

𝑃#" = E
1 0 0
0 1 0
0 0 0

F. (A3) 

 

The projected motion will appear as a circularly polarized light (the electric 
dipole forms a rotational electrical vector), and the circularly polarized light 
will emerge with orbital angular momentums (OAMs)24-30,32-36. As indicated 
by Shen et al.29, analogous to the hydrodynamic vortices, an optical vortex 
will appear as an isolated dark spot in the center. 

 

Furthermore, if this motion is projected onto X-axis, it will give 
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E
𝑥′
𝑦′
𝑧′
F = 𝑃#𝑃#"𝑟 = E

𝑅𝑠𝑖𝑛(𝜔𝑡)
0
0

F. (A4) 

 

where  

𝑃# = E
1 0 0
0 0 0
0 0 0

F. (A5) 

 

It will appear as a simple harmonic oscillation (SHO) along the X-axis. 

 

If the helix running position vector is projected onto the X-Z(ct) plane, it 
gives 

 

E
𝑥′
𝑦′
𝑧′
F = 𝑃#;𝑟 = E

𝑅𝑠𝑖𝑛(𝜔𝑡)
0
𝑐𝑡

F, (A6) 

 

where the projection matrix is 

 

𝑃#; = E
1 0 0
0 0 0
0 0 1

F. (A7) 

 

This motion can be expressed as a traveling-plane wave of an electric 
field along the ct-direction: 

 

𝐸"(𝑧, 𝑡) = 𝑅 ∙ 𝑐𝑜𝑠[𝑘(𝑧 − 𝑐𝑡)] = 𝑅 ∙ 𝑐𝑜𝑠 ~2𝜋 I
𝑧
𝜆
−
𝑡
𝑇
J�, (A8a) 

𝐸#(𝑧, 𝑡) = 𝑅 ∙ 𝑠𝑖𝑛[𝑘(𝑧 − 𝑐𝑡)] = 𝑅 ∙ 𝑠𝑖𝑛 ~2𝜋 I
𝑧
𝜆
−
𝑡
𝑇
J�. (A8b) 
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or as shown by eq. (25), It can be expressed as a particle wave function.   

 

In this circumstance, the projected motion appears as linearly polarized 
light, traveling in the z-direction (the electric dipole forms a transverse 
electric vector (or magnetic vector) in  𝑥\	(𝑜𝑟	𝑦\	) direction); it is easy to see 
that linearly polarized light cannot show orbital angular momentum (OAM), 
or rather to say, on this spatial projection perspective, we cannot measure 
out the OAM.  

 

Furthermore, the projection onto the Z-axis will give the following results 

 

E
𝑥′
𝑦′
𝑧′
F = 𝑃;𝑟 = E

0
0
𝑐𝑡
F = E

0
0

(𝜆𝑓)𝑡
F, (A9) 

 

where the projection matrix is 

 

𝑃; = E
0 0 0
0 0 0
0 0 1

F. (A10) 

 

From above discussion, it can be recognized that if we simply regard 
(namely, projected onto the Z(ct)-axis) the photon particle as a 1-D linear 
motion, a piece of significant information about the particle motion is 
therefore lost, i.e., we completely lost the circulation motion information in 
the XY-plane. 

 

We can also see from the above project matrices, mathematically, they 
are not invertible, if we project the motion onto the subspaces. 
Accompanied by the projection procedure is the loss of information, even 
the loss of valuable information. In other word, from the projected 
information to re-construct the original motion is impossible. 
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Fig. A1 shows the ct-Z diagram of the projected photon motion, in the 
picture; the projected 1-D photon motion trajectory is the left and right light 
cones.   

 

 
Fig. A1. The helical motion is projected onto the Z-coordinate (1-D); the 
moving information on the circular motion in the X-Y plane is lost. In the 
ct-Z coordinate system, the 1-D light travels along the left and right light 

cones. 

 

The photon travels along the light cone surface in Minkowski spacetime.  
The world line is just the light cone surface. The left and right light cones 
can be expressed as two vectors in the Lab frame; they are orthogonal to 
each other. 

 

𝑒< = G𝑐𝑇−𝜆H ;				𝑒= = G𝑐𝑇𝜆 H. (A11) 

 

where 𝑇 and 𝜆 are the wave period and wavelength, respectively. 

 

Recalling the relation of the wave phase dispersion for a plane wave in a 
vacuum: 
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𝜆 = ±𝑐𝑇. (A12) 

 

where the positive and negative sign represent the right and left light cone. 
The wavelength and period is a linear function, or rather to say, the 
wavelength and frequency function is a hyperbola: 

 

𝜆 =
𝑐
𝑓
. (A13) 

 

It is a null vector in the Minkowski space, to be specific: 

 

𝜆( − (𝑐𝑇)( = 0. (A14) 

 

The left and right light cones are eigenvectors of Lorentz transformation37. 
Taking a Lorentz boost, for example, along the Z-direction, the 
transformed wavelength and period have the following relation 

 

G𝑐𝑇
>

𝜆>
H = ~ 𝛾 ±𝛾𝛽

±𝛾𝛽 𝛾 � G𝑐𝑇𝜆 H. (A15) 

 

where 𝛾 is the Lorentz factor and 𝛽 is the ratio of the relative velocity of 
two observers, v to c, and v<c. The positive and negative sign depends on 
the relative velocity directions.  

 

By applying the relation of the wave phase dispersion of eq. (A12), thus, 
we have 

 

G𝑐𝑇
>

𝜆>
H = (𝛾 ± 𝛾𝛽) G11H 𝑐𝑇 =

(𝛾 ± 𝛾𝛽) G11H 𝜆. (A16) 
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In fact, the Lorentz transformation for light cone vectors is a scale 
transformation37. The coefficients (scale factors) of the above vector are 
the eigenvalues of the Lorentz transformation, 

 

𝜖?,( = 𝛾(1 ± 𝛽) = �
1 ± 𝛽
1 ∓ 𝛽

			𝑤𝑖𝑡ℎ			𝜖? ∙ 𝜖( = 1.	 (A17) 

 

After the Lorentz boost, the left and right light cones still form null (Eigen-) 
vectors in the Minkowski space (or Lorentz transformation maps light 
cones onto light cones37,38), (𝜖? ∙ 𝜖( = 𝛾((1 − 𝛽() = 1), 

 

𝜆>( − (𝑐𝑇>)( = 0					𝑜𝑟					𝜆> = ±𝑐𝑇>. (A18) 

 

where the positive sign means the wave traveling to the left cone and the 
negative sign traveling to the right cone. In fact, after the transformation, 
the wavelength and frequency function is still a hyperbola.  

 

By default, we observe the light wave propagation in the Lab frame. In this 
reference frame, if we apply the light speed as the reference velocity to 
define the photon linear translational energy and momentum for left and 
right light cone (keeping in mind, we lost the information about the 
rotational motion in the XY-plane, and simply think it as a 1D motion along 
the Z-direction), 

 

𝐸<_$0&) =
1
2
𝑚(−𝑐)(			𝑎𝑛𝑑				𝑃< = −𝑚𝑐, (A19a) 

𝐸=_$0&) =
1
2
𝑚𝑐(								𝑎𝑛𝑑						𝑃= = 𝑚𝑐. (A19b) 

 

If we use this linear translational energy and momentum to construct 
vectors, to ensure that they are null vectors (travelling along the light cone 
surface) for the left and right cone in the Minkowski space, the possibility 
is 
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E
2𝐸<_$0&)

𝑐
𝑃<

F = �G 1−1H�
(𝑚𝑐)					𝑎𝑛𝑑				 E

2𝐸=_$0&)
𝑐
	𝑃=

F = �G11H�
(𝑚𝑐). (A20) 

 

Comparing eq. (15), (16) and (A20), we have the following relation 
between the total energy and the linear translational energy for the left or 
right cone,  

 

𝐸$%$ = 2𝐸<_$0&) = 2𝐸=_$0&) = 𝑚𝑐(. (A21) 

 

According to this definition, the total energy and linear momentum can only 
form a null vector in the Minkowski space, in such a way as to ensure it is 
a Lorentz invariance: 

 

𝜂3: @E
𝐸$%$
𝑐
𝑝
F , E

𝐸$%$
𝑐
𝑝
FA = 0. (A22) 

 

That is exactly the eq. (16), where 𝜂3: is the Lorentzian metric tensor: 

 

𝜂3: = G1 0
0 −1H. (A23) 

 

According to the special relativity theory, eq. (A22) is valid for the light 
cone (null cone). With this energy definition or partition, the sum of the 
orbital and spinning energy, i.e. the eq. (17), equals the linear translational 
energy.  

 

Thus, we have the energy for photon particle, corresponding to a specific 
frequency of 𝜔, observed in Lab frame: 
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𝐸$0&).2&$'%) =
1
2
𝐿456𝜔 =

1
2
ℏ𝜔, (A24a) 

𝐸%01'$&2 + 𝐸./') =
1
2
𝐿456𝜔 =

1
2
ℏ𝜔, (A24b) 

𝐸$%$ = 𝐿456𝜔 = ℏ𝜔. (A24c) 

 

The 1-D linear momentum along the Z-direction is expressed by the eq. 
(23) and (24), namely, 

 

𝑝 = ±
1
𝑐
𝐿456𝜔 = ±

1
𝑐
ℏ𝜔 = ±

𝐸$%$
𝑐
. (A25) 

 

 

 

Appendix B. Tangent Velocity and Radius 

 

From eqs. (28) – (31), we have the Lorentz force 

 

𝐹< = P1 +
𝑣$&)*(

𝑐(
R

𝑞(

16𝜋𝜀7𝑅(
. (B1) 

 

With the tangential velocity and rotational radius relation of 

 

�⃗�$&)* = 𝜔;;⃗ × 𝑅;⃗ , (B2) 

 

thus, we have 

 

𝐹< = P1 +
𝑅(𝜔(

𝑐(
R

𝑞(

16𝜋𝜀7𝑅(
. (B3) 
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This force serves as the centripetal force to keep the dipole rotation. The 
tangent velocity can be very high, thereby relativistic effect cannot be 
neglected; this force can be written in terms of the orbital angular velocity, 
so the centripetal force can be expressed as 

 

𝐹B = 𝛾𝑚
𝑣$&)*(

𝑅
= 𝛾𝑚𝑅𝜔( =

𝑚𝑅𝜔(

�1 −
𝑣$&)*(

𝑐(

=
𝑚𝑅𝜔(

�1 − 𝑅
(𝜔(

𝑐(

. 
(B4) 

 

The eq. (B3) is equal to (B4), hence, 

 

𝑚𝑅𝜔(

�1 − 𝑅
(𝜔(

𝑐(

= P1 +
𝑅(𝜔(

𝑐(
R

𝑞(

16𝜋𝜀7𝑅(
. 

 

(B5) 

According to the mass energy equivalence definition, the mass is 

  

𝑚 =
ℏ𝜔
𝑐(
. (B6) 

 

 With a bit of algebra manipulation, finally we get 

 

(ℏ𝜔C)𝑅C − ��1 −
𝑅(𝜔(

𝑐(
�P

𝑞(𝜔(

16𝜋𝜀7
R𝑅( − ��1 −

𝑅(𝜔(

𝑐(
�
𝑞(𝑐(

16𝜋𝜀7

= 0. 

(B7) 

 

Given the angular frequency, we can estimate the rotational radius using 
eq. (B7). With the estimated radius and eq. (B2), we can get the tangent 
velocity. Furthermore, the orbital angular momentum of a photon particle 
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can be got by eq. (8). Finally, we can estimate the orbital energy and spin 
energy using the eq. (6) and (17), respectively.  

 

For the calculation of the radius and tangential velocity for different angular 
frequencies, we assume a same charge value of 𝑞 = 1.6022 × 10D?E	(𝐶) 
despite of the frequencies and do not consider the spin-orbit interaction. 

 

With the rotational moving electric dipole model, we can estimate a 
number of  values for different photon wave frequencies. Here we choose 
some typical electromagnetic wave frequencies, from the normal radio 
wave range, EUV to a typical gamma-ray range. 
 
For the calculation of the total energy, we apply the Einstein-Planck 
relation of eq. (18). The Planck constant is ℎ = 6.62607 × 10DCF	(𝐽 ∙ 𝑚).  
The estimation of the energy equivalent mass is based on the light speed 
of 𝑐 = 2.99792458 × 10G	(𝑚/𝑠). The vacuum permittivity and permeability 
values are 𝜀7 = 8.854188 × 10D?(	(𝐹 ∙ 𝑚D?) and 𝜇7 = 4𝜋 × 10DH	(𝐻 ∙ 𝑚D?), 
repectivily.  

 

Table B1. Some photon values for different wave frequency 

Wave type Frequen
cy  (Hz) 

Total 
Energy 
(keV) 

Mass (kg) Radius 
(nm) 

E_orbital 
(KeV) 

E_spin 
(Kev) 

Lorentz 
force (N) 

Radio 3.0•105 1.24•10-12 2.21•10-45 1.948•1010 9.31•10-15 6.11•10-13 1.54•10-31 

Microwave 2.45•109 1.01•10-8 1.81•10-41 2.39•106 7.60•10-11 4.99•10-9 1.03•10-23 

Infrared 3.0•1013 1.24•10-4 2.21•10-37 194.8 9.31•10-7 6.11•10-5 1.54•10-15 

Visible light 6.0•1014 2.48•10-3 4.42•10-36 9.74 1.86•10-5 1.22•10-3 6.17•10-13 

EUV 2.2•1016 0.092 1.64•10-34 0.263 6.89•10-4 4.53•10-2 8.46•10-10 

X-ray 3.0•1018 12.41 2.21•10-32 1.948•10-3 0.0931 6.111 1.54•10-5 

Gamma-ray 3.0•1020 1241 2.21•10-30 1.948•10-5 9.3081 611.1 0.154 

 

The calculated tangent velocities for different wave frequencies are the 
same. It gives 	𝑣$&)* = 3.67198 ×	10H	(𝑚/𝑠) . The ratio of tangential 
velocity to light propagation speed of c is  𝛽- = 𝑣$&)* 𝑐⁄ = 0.122484. The 
calculated orbital angular momentum (OAM) of a photon particle is 𝐿&#' =
1.58234 ×	10DCI	(𝐽 ∙ 𝑠). The equivalent angular momentum is equal to the 
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reduced Planck constant, 𝐿456 = ℏ . Since there are no experimental 
values for the spinning angular velocity, SAM cannot be directly estimated. 
The spin energy is much higher than the orbital energy. The calculated 
ratio of wavelength to the radius, 𝜆 𝑅⁄ = 51.298, without considering the 
spin-orbit interaction27-30, see Fig. 1(b). 

 

In order to compare different photons with an electron clearly, here we give 
also out the electron values. For electron, we use the CODATA 
recommended values for reference31. 

 

Table B2 Reference values of electron 

 unit Value 

Mass (𝑚!) kg 9.1094•10-31 

Unified atomic mass in u u 5.4858•10-4 

Mass energy equivalent (𝑚!𝑐") J 8.1871•10-14 

Mass energy equivalent in keV KeV 511.7 

Charge (−𝑒) C 1.6022•10-19 

Charge to mass quotient (−𝑒 𝑚!⁄ ) C kg-1 1.7588•1011 
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