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Quantum Bit String Comparators
(QBSC) operate on two sequences of n-
qubits, enabling the determination of their
relationships, such as equality, greater
than, or less than. This is analogous to
the way conditional statements are used
in programming languages. Consequently,
QBSCs play a crucial role in various algo-
rithms that can be executed or adapted
for quantum computers. The development
of efficient and generalized comparators
for any n-qubit length has long posed
a challenge, as they have a high-cost
footprint and lead to quantum delays.

Comparators that are efficient are as-
sociated with inputs of fixed length. As
a result, comparators without a general-
ized circuit cannot be employed at a higher
level, though they are well-suited for prob-
lems with limited size requirements. In
this paper, we introduce a generalized de-
sign for the comparison of two n-qubit
logic states using just two ancillary bits.
The design is examined on the basis of
qubit requirements, ancillary bit usage,
quantum cost, quantum delay, gate opera-
tions, and circuit complexity, and is tested
comprehensively on various input lengths.
The work allows for sufficient flexibility in
the design of quantum algorithms, which
can accelerate quantum algorithm devel-
opment.

1 Introduction

Quantum computing and its related algorithms
have witnessed remarkable advances in recent
years, owing to the principles of quantum me-
chanics and enhanced computing power. They
offer the potential to efficiently solve many math-
ematical problems that are intractable for classi-

cal computers. For instance, Shor’s algorithm[7]
can achieve polynomial-time solutions for hard
problems such as integer factorization or discrete
logarithms. Similarly, Grover’s algorithm[7] can
provide a quadratic speedup for an unstructured
search problem.

The quantum bit string comparator (QBSC)
is a crucial component in quantum algorithms as
it incorporates conditional statements, expand-
ing the range of applications for quantum algo-
rithms. It allows quantum programmers to utilize
successful techniques from the classical computa-
tion that rely on comparisons [26]. In a classical
sense, a conditional statement leads to two mu-
tually exclusive states. However, in the quantum
domain, such conditional statements may lead
to the merging of both branches due to super-
position. Designing a comparator for quantum
circuits is a significant challenge for researchers
in the field. Existing quantum comparators are
not scalable in terms of input size, as the circuit
size depends on the number of inputs. Therefore,
these quantum comparators, which lack a gen-
eralized circuit, are not suitable for higher-level
applications, although they can handle problems
with small size requirements. However, many ap-
plications, such as integer factorization, optimiza-
tion, option pricing [11], and risk analysis, often
require one of the inputs to be classical.[1] This
necessitates a generalization of the circuit, espe-
cially when further computations are involved.

Numerous approaches have been put forth to
effectively devise quantum comparators. These
include the serial-based approach [22, 23, 26,
27], the tree-based approach [24, 25] and the
Quantum Fourier transform (QFT) [1]. In the
serial-based quantum comparator, comparisons
of quantum bits are executed sequentially from
the least significant bit to the most significant
bit. Conversely, a tree-based quantum compara-
tor can evaluate quantum bits for comparison in
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|a⟩ X |a′⟩

Figure 1: NOT Gate representation for |a′⟩ = X |a⟩

parallel. Although it holds an advantage over
the serial-based approach in terms of time de-
lay, it still falls short in terms of quantum cost.
However, both approaches require one or two bits
for comparison, along with two or more ancillary
bits. This current study presents a generalized
quantum comparator having a minimal quantum
cost and optimized quantum delay that can com-
pare two classical numbers of any size in binary
form using a quantum circuit. The data on qubits
remains unchanged and can also be used for other
operations. Our quantum comparator has a lin-
ear scaling of Qubit resources with respect to the
size of the input numbers. For example, it takes
two ancillary qubits to compare two n-bit num-
bers. This is an improvement over some existing
quantum comparators that require more ancillary
qubits or have a higher quantum cost and higher
quantum delays [22, 23, 24, 25, 26, 27]. The
research analyzes the comparator qubit require-
ments, gate operations, and circuit complexity for
various input sizes. Our proposed comparator’s
performance is comprehensively analyzed with re-
spect to quantum cost, quantum delay, and ancil-
lary bits. Since quantum comparators are funda-
mental in many quantum algorithms and appli-
cations; e.g. integer factorization, optimization,
option pricing, and risk analysis, the work holds
good promise for the design and development of
quantum algorithms [1].

1.1 Quantum Gates for GQBSC

Quantum gates are analogous to the application
of various transformations on input states repre-
sented through qubits. In this section, we de-
scribe some fundamental gates that are used in
GQBSCs. Each of the gates here performs some
specific unitary operation, and as such, they are
also represented using unitary matrices [28, 29].

A single-qubit unitary case is that of the NOT
gate, which is used for bit-flip operations, and is
given in Fig. 1 along with its mathematical rep-
resentation. The gate represents the Pauli X op-
erator and exhibits the properties X2 = I, where
I is the Pauli Identity operator. The bit-flip here
is geometrically interpreted a half turn about the

|a⟩ • |a⟩
|b⟩ |a⟩ |b⟩ ⊕ |a⟩

Figure 2: CX Gate representation for
|a⟩ |b⟩ = |a⟩ |b⟩ ⊕ |a⟩

|a⟩ • |a⟩

|b⟩ V+ V + |b⟩

Figure 3: Controlled V + Gate representation for
|a⟩ |b⟩ 7→ V +(|b⟩) (unitary transformation)

x-axis in a Bloch sphere.

Moving on, we have the CX gate, also known as
the CNOT gate, which is a two-qubit gate having
one control and one target qubit. It performs a
NOT operation on the target qubit if the control
qubit is in the state |1⟩, and is given in Fig. 2.
Here, the black dot within the CNOT gate sig-
nifies that when the controlling bit (represented
by the black dot) holds the value 1, the NOT
gate on the target bit is activated. Conversely,
the white dot indicates that when the controlling
bit is 0 the NOT gate operates on the target bit.
Both the NOT and the Controlled NOT are fun-
damental gates for having a quantum cost and
delay of 1 [27]. We use the definition of quantum
cost as the number of fundamental unitary and
binary reversible gates (e.g. NOT and CNOT)
that are used in the design of a gate in a general
decomposition sense [24]. This is then extended
to quantum delay, defined as the measure of the
logical depth of a circuit, such that the delay of
fundamental unitary and binary reversible gates
would be 1∆ [24].

V and V + represent two useful quantum gates
with a quantum cost and delay each equivalent
to 1 [24, 27]. These gates are defined by their
respective unitary matrices, which adhere to the
mathematical property V V + = V +V = 1, signi-
fying their unitarity and the inherent reversibil-
ity of quantum operations. Geometrically, these
gates are interpreted as a quarter turn about the
x-axis in a Bloch sphere. These matrices are pre-

|a⟩ • |a⟩

|b⟩ V− V − |b⟩

Figure 4: Controlled V Gate representation for |a⟩ |b⟩ 7→
V −(|b⟩) (unitary transformation)
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|a⟩ • |a⟩
|b⟩ • |b⟩
|c⟩ |a⟩ |b⟩ |c⊕ ab⟩

Figure 5: CCX Gate representation for
|a⟩ |b⟩ |c⟩ = |a⟩ |b⟩ |c⊕ ab⟩

|a⟩ • • • |a⟩
|b⟩ • • |b⟩

|c⟩ V V V + |a⟩ |b⟩ |c⊕ ab⟩

Figure 6: CCX Gate Representation using V and V+
gate

cisely defined as:

V = i+ 1
2

(
1 −i
−i 1

)
(1)

V + = 1− i
2

(
1 i
i 1

)
(2)

where i represents the imaginary unit.
A ternary case is that of the CCX gate; also

known as the Toffoli gate. It operates on 3-qubits
by performing a bit-wise logical AND on the first
two qubits and then applies its result to the third
qubit as an XOR, resulting in a flip in |c⟩, pro-
vided that both the first and second qubits are in
state |1⟩. This is illustrated in Fig. 5. The quan-
tum cost of a Toffoli gate is determined by consid-
ering the number of fundamental quantum gates
it comprises, such as CNOT gates, controlled-V
gates, and controlled-V + gates. In the case of
a Toffoli gate, it involves two CNOT gates, two
controlled-V gates, and one controlled-V + gate.
Therefore, both the quantum cost and delay of
a Toffoli gate are evaluated at 5△ [24, 27]. The
CCX can be realized through the use of XOR and
AND operations. Considering the case of |a⟩, |b⟩,
and |c⟩ (Figure 5), then CCX can be achieved as
|a⟩ |b⟩ |c⊕ ab⟩. This is realized in the first step
through an AND x = a2 ∧ b2. The intermediate
x is then passed as an XOR to get the final result
x′ = c⊕ x.

In the next sections, we discuss techniques that
implement the GQBSC using these gates.

2 Related Work
There have been various quantum comparators
reported in the literature. Wang et al. intro-

Figure 7: The reversible comparator presented by Want
et al. [22].

duced a quantum comparator that accomplishes
the comparison of two quantum logic states, each
having n quantum bits, in a sequential manner
[22]. The circuit involves the use of 2n − 2 an-
cillary input bits, as depicted in (Figure 7). In
this diagram, |e0⟩ and |e1⟩ represent the meaning-
ful outcomes. Al-Rabadi proposed a sequentially
structured quantum comparator that links to-
gether a sequence of 1-bit comparators, as shown
in (Figure 8). This arrangement requires 6 an-
cillary input bits for each 1-bit comparator [23].
Thapliyal et al. devised a tree-based comparator,
illustrated in (Figure 10), wherein every node cor-
responds to a 2-bit comparator demonstrated in
(Figure 10). This specialized comparator can as-
sess 2-bit binary numbers [24]. Vudadha et al.
enhanced the tree-based comparator using a pre-
fix tree [25]. This design comprises three stages:
the initial stage integrates a 1-bit comparator fea-
turing two meaningful outputs. The outputs of
the 1-bit comparator phase are then grouped in
the second stage using prefix grouping to generate
the final outputs G. While the tree-based quan-
tum comparator surpasses the sequential-based
comparator in terms of time delay, it lags behind
the sequential-based comparator in the number
of ancillary bits required. Xia et al. proposed a
new serial base comparator (Figure 9) that can
compare two n-size numbers using one ancillary
qubit, but the quantum cost and delay are still
high [27].
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Figure 8: The comparator presented by Al-Rabadi et al.
[23].

Figure 9: The comparator presented by Haiying Xia et
al.[27].

Figure 10: There are (a) and (b) the tree-based com-
parator presented by Thapliyal et al. [24].

Figure 11: The comparator presented by David et al.[26].

3 Proposed GQBSC

Our objective is to conduct a comparison between
two n-bit numbers, denoted as a and b, utilizing
only two ancillary bits. We employ two binary
strings of length n such that a is represented as
an−1 . . . a0, where a0 is the most significant bit.
Similarly, b is represented as bn−1 . . . b0, where b0
is the most significant bit. In case the strings
are unequal, padding is performed on the smaller
string up to the length of the larger string. To
characterize the outputs of ai, and bi, we now
present a discussion of our proposed approach,
described in Algo. 1.

The approach takes as input the vectors |a⟩,
|b⟩, and registers |r0⟩, |r1⟩ initialized to |0⟩. The
algorithm returns |r0⟩, |r1⟩ as classical variables
c0 and c1. The algorithm works by performing
a 1-bit quantum bit string comparator (Algo. 2)
on the most significant bit a0 and b0 and collects
its intermediate output in r0 and r1. For each of
the remaining bit string lengths, the intermedi-
ate outputs are approximated against |0⟩, and if
true, the 1-bit GQBSC is carried out for the next
significant bit. However, if r1 is approximated to
|1⟩, a bit flip is carried out on r0 (through Pauli
X gate).

The 1-bit GQBSC (Algo. 2) is the realization
of the quantum circuit given in Fig. 12. It is es-
sentially a core component of our proposed model
and utilizes four qubits; |a⟩ and |b⟩ for storing the
two input bitstrings, and |r0⟩ and |r1⟩ for stor-
ing intermediate comparisons. The comparison
is itself carried out through the successive appli-
cation of multiple NOT and CCX gates as shown.
The intermediate states are then stored in clas-
sical registers cr through Z-measurement gates.
The output of the proposed circuit exhibits four
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possible binary states; 00 indicating a ≈ b, 10
indicating a > b, and 01 and 11 both indicating
a < b.

Data: |a⟩, |b⟩, |r0⟩ = |r1⟩ = |0⟩
Result: c0, c1
[r0, r1]← 1BITGQBSC(a0, b0, r0, r1)
for i in 1 . . . n− 1 do

if (r0 ≈ |0⟩) and (r1 ≈ |0⟩) then
[r0, r1]←
1BITGQBSC(ai, bi, r0, r1)

end
if (r1 ≈ |1⟩) then

r0 ← Xr0
end

end
[c0, c1]← [r0, r1]

Algorithm 1: Generalized Quantum Bit
String Comparator(GQBSC)

Result: r0, r1
1BITGQBSC (|a⟩ , |b⟩ , r0, r1)

b← Xb
r0 ← r0 ⊕ (a1 ∧ b1)
a← Xa
b← Xb
r1← r1⊕ (a1 ∧ b1)
a← Xa

end
Algorithm 2: One bit Quantum Bit String
Comparator (1BITGQBSC)

The above is a description of the formation
of a generalized GQBSC circuit. The mean cir-
cuit size grows and shrinks on the basis of input
lengths. While Fig. 12 illustrates a circuit for 1-
bit GQBSC requiring 4 qubits, Fig. 13 shows the
pattern by which it grows for a two-bit size, hav-
ing a requirement of six qubits. Here, a0 and a1
are used for storing the information of the first
number, while b0 and b1 are used for storing the
second number. The 1-bit Comparator is succes-
sively applied to Qubits a0 and b0, and then to a1
and b1 after Z-measurements. Similar represen-
tation are provided for 3-bit (Fig. 14) and 5-bit
(Fig. 15) inputs.

4 Results
Quantum computing relies on precise measure-
ments for computation outcomes. Traditionally,

a : • X • X
b : X • X •
r0 :
r1 :
cr : /2 0

��
1
��

Figure 12: Generalized Quantum Bit String Comparator
(GQBSC) Circuit for two inputs with a maximum size of
1 bit

a0 : X

1BC

0

a1 :

1BC

0

b0 : X 1

b1 : X 1

r0 : 2 2 X
r1 : 3 3

cr : /2 0x0 0
��

1
��

0x0 0
��

1
�� •

0x2 0
��

1
��

Figure 13: Generalized Quantum Bit String Comparator
(GQBSC) Circuit for two-bit size.

measurements were only done at the end to pre-
vent errors. IBM’s new hardware-based approach
allows dynamic circuits and mid-computation
measurements, offering three key benefits; re-
duced qubit usage, fewer additional operations,
and improved accuracy [2].

Given our model, we now present a discussion
on its validation, verification, and behavior, all of
which are tested with respect to different numbers
of input sizes. The Verification of each test case
is carried out from single-bit up to 1000-bits; a
portion of which is illustrated in Table. 1.

Validation of the n-bit GQBSC model is estab-
lished on the metrics of quantum cost, quantum
delay, and ancillary bit quantity. These are com-
pared against equivalent QBSC circuits of Wang
et. al. [22], Al-Rabadi et. al. [23], Thapliyal
et. al. [24], Vudadha et. al. [25], David et. al.
[26], and Xia et. al. [27]. A comparative anal-
ysis of these methods is presented in Table. 4.
Here, methods 1-5 are dependent linearly on the
input length for the allocation of ancillary qubits,
whereas in our case, they remain fixed. This is
illustrated in (Fig. 16a). Method 6 has a lower an-
cillary bit count but has a higher quantum cost
and longer quantum delays. The quantum cost
of our proposed approach is the same as Method
4 if both |a⟩ and |b⟩ are comparable, and slightly
larger otherwise by a factor of (n − 1)/2 (Also
illustrated in Fig. 16b). Here, Method 1 demon-
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a0 : X

1BC

0

a1 : X

1BC

0

a2 : X

1BC

0

b0 : 1

b1 : X 1

b2 : X 1

r0 : 2 2 X 2

r1 : 3 3 3

cr : /2 0x0 0
��

1
��

0x0 0
��

1
�� •

0x2 0x0 0
��

1
��

Figure 14: Generalized Quantum Bit String Comparator(GQBSC) Circuit for 3-bit input size.

a0 : X

1BC

0

a1 : X

1BC

0

a2 : X

1BC

0

a3 : X

1BC

0

a4 : X

1BC

0

b0 : 1

b1 : 1

b2 : 1

b3 : 1

b4 : X 1

r0 : 2 2 X 2 2 X 2

r1 : 3 3 3 3 3

cr : /2 0x0 0
��

1
��

0x0 0
��

1
�� •

0x2 0x0 0
��

1
��

0x0 0
��

1
�� •

0x2 0x0 0
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Figure 15: Generalized Quantum Bit String Comparator(GQBSC) Circuit for 5-bit input size.
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Sr. (|a⟩) bin (|a⟩) (|b⟩) bin (|b⟩) (|a⟩) ≈ (|b⟩) (|a⟩) > (|b⟩) (|a⟩) < (|b⟩) Verification
r0, r1 r0, r1 r0, r1

1 0 0 0 0 00 - - verified
2 1 1 0 0 - 01 - verified
3 0 0 1 1 - - 10 verified
4 3 11 3 11 00 - - verified
5 3 11 1 01 - 01 - verified
6 1 01 3 11 - - 10 verified
7 7 111 7 111 00 - - verified
8 7 111 3 011 - 01 - verified
9 3 011 7 111 - - 10 verified
10 31 11111 31 11111 00 - - verified
11 31 11111 30 11110 - 01 - verified
12 30 11110 31 11111 - - 10 verified
13 120 1111000 120 1111000 00 - - verified
14 127 1111111 63 0111111 - 01 - verified
15 100 1100100 127 1111111 - - 11 verified
16 600 1001011000 600 1001011000 00 - - verified
17 700 1010111100 420 0110100100 - 01 - verified
18 630 1001110110 800 1100100000 - - 11 verified
19 1500 10111011100 1500 10111011100 00 - - verified
20 1400 10101111000 200 00011001000 - 01 - verified
21 560 01000110000 1137 10001110001 - - 11 verified

Table 1: Verification and Demonstration of various Input Sizes and Expected Outcome of GQBSC on Simulators(statevector and qasm)

strates exponential cost while the remaining are
in linear order. The quantum delay of the pro-
posed approach is illustrated in (Fig. 17c). Here,
method 6 exhibits the highest delays due to the
complexity of the comparator design. This is fol-
lowed by methods 2, 5, and 6 in linear order. The
delay of method 1 at the start is close to methods
3 and 4 but as the size increases its delay grows
linearly. Our proposed method shows the least
delay amongst the linear ordered methods. The
least delay is noticeable for methods 3-4 which
are of logarithmic order. For small input sizes,
our proposed method presents a relatively close
delay to that of methods 3-4, but for small input
sizes only.

The GQBSC circuit was tested on IBM Sys-
tem (ibm_perth and ibm_lagos). The details of
the input tests conducted on these systems and
their resulting state probabilities are presented in
Table 3. Given that these systems are equipped
with a limited number of 7 qubits, the testing was
conducted for a maximum of three-bit numbers.

The table is divided into two sections: one for
the results obtained on ibm_perth and the other
for ibm_lagos. It is evident that the results of

our proposed GQBSC on ibm_perth outperform
those on ibm_lagos. The proposed circuit was
executed for 1024 shots for each input, and the
probabilities of the four states are presented in
the table.

During the testing, it was observed that as we
move toward higher qubit numbers, the output
quality begins to deteriorate, and the quantum
system generates incorrect outputs.

The comparator design is further evaluated
through the number of gate operations and circuit
complexity and tested against bitstring inputs of
various sizes. This is presented in Fig. 17. Here,
(a) presents the design with respect to the num-
ber of X, CCX, 1BC, and Measurement gates,
(b) presents the number of qubits and accumu-
lative width of the quantum and classical reg-
isters. Fig. 17c represents the run-time dura-
tion when executed on a simulator. Notably, it
demonstrates a relatively constant runtime at the
outset, but as n grows larger, it exhibits an in-
crease.

The resource analysis reveals that the proposed
quantum comparator n qubit for holding the in-
formation and 2 ancillary qubit for storing the re-
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Sr. Output State Interpretation Remarks
r0, r1

1 00 (|a⟩) ≈ (|b⟩) Input-1 == Input-2
2 01 (|a⟩) > (|b⟩) Input-1 > Input-2
3 10 (|a⟩) < (|b⟩) Input-1 < Input-2
4 11 (|a⟩) < (|b⟩) Input-1 < Input-2

Table 2: Interpretation of GQBSC Output States

Sr. (|a⟩) (|b⟩) (|a⟩) ≈ (|b⟩) (|a⟩) > (|b⟩) (|a⟩) < (|b⟩) (|a⟩) < (|b⟩) HighestProb. Expected IBM
Input-1 Input-2 State(0, 0) State(0, 1) State(1, 0) State(1, 1) State State Machine

1 0 0 901 44 74 5 901 True

ibm_perth

2 0 1 116 10 861 37 861 True
3 0 2 110 190 8 716 716 True
4 0 3 95 218 5 706 706 True
5 1 0 97 726 20 181 726 True
6 1 1 912 31 63 18 912 True
7 1 2 127 172 12 713 713 True
8 1 3 106 241 13 664 664 True
9 2 0 327 462 7 228 462 True
10 2 1 176 389 3 456 456 True
11 2 2 276 505 6 237 505 False
12 2 3 155 638 2 229 638 True
13 3 0 136 310 4 574 574 True
14 3 1 265 349 3 407 407 True
15 3 2 175 606 4 239 606 True
16 3 3 152 657 4 211 657 False

17 0 0 759 87 166 12 759 True

ibm_lagos

18 0 1 160 31 782 51 782 True
19 0 2 217 154 6 647 647 True
20 0 3 273 142 9 600 600 True
21 1 0 197 712 40 75 712 True
22 1 1 795 83 145 37 795 True
23 1 2 263 202 8 551 551 True
24 1 3 228 209 11 567 567 True
25 2 0 261 446 4 313 446 True
26 2 1 179 347 31 467 467 True
27 2 2 335 357 7 325 357 False
28 2 3 261 338 9 416 416 True
29 3 0 236 443 10 338 443 True
30 3 1 218 308 35 468 468 True
31 3 2 262 304 14 444 444 True
32 3 3 203 301 31 489 489 False

Table 3: Result of various Input Sizes and Expected Outcome of GQBSC on real Quantum Computer
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Method Reference Anc. Bits Quantum Cost Quantum Delay
1. Wang et. al. [22] 2n O(n2)△ O(n2)
2. Al-Rabadi et. al. [23] 6n+ 1 (39n+ 9)△ 24n+ 9
3. Thapliyal et. al. [24] 4n− 3 (18n+ 9)△ 18 log(2 ∗ n) + 7
4. Vudadha et. al. [25] 4n− 2 (14n)△ 5 log(2 ∗ n) + 12
5. David et. al. [26] 3n− 1 (99(n− 1) + 12)△ 20n− 1
6. Xia et. al. [27] 1 (28n)△ 31n+ 2

7. Proposed Comparator 2 14n△; ifa == b 4n; ifa == b
(14n+ (n− 1)/2△; ifa ̸= b 4n+ (n− 1)/2; ifa ̸= b

Table 4: The ancillary qubit, quantum costs, and quantum delay of proposed method against available methods in literature
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Figure 16: Graphical plot of the number of (a) ancillary bits, (b) quantum cost, and (c) quantum delay of the
proposed method against comparable methods of literature.
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Figure 17: Graphical plot of (a) number of X, CCX, 1BC, and measurement gates, (b) number of Qubits and the
width of quantum and classical registers, and (c) run time in seconds, for the proposed method
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Figure 18: Graphical plot of the number of (a) and (b) show the different result of proposed method on IBM Systems
.

sult of comparison, where n represents the size of
the binary numbers being compared. This linear
scaling suggests that the comparator can handle
larger numbers with a manageable increase in re-
source requirements. The potential advantages
of quantum comparators over classical counter-
parts include parallel processing, reduced com-
putational complexity, and possible speedup in
specific applications.

We now present a behavior analysis of our pro-
posed n-bit quantum bit string operator by delin-
eating all the gate operations that it encompasses
in the algorithm. The representation allows us to
establish a composition-based mathematical rep-
resentation of the input bitstrings and the quan-
tum output states. This is expressed as in (Equ.
3):

|r0⟩ =



|r0⟩i ⊕ (|a1⟩i ∧ |b0⟩i) , if n = 1

[|r0⟩i ⊕ (|a1⟩i ∧ |b0⟩i)]
⊕
[
|a1⟩i+1 ∧ |b0⟩i+1

]
,

if n > 1, |r0⟩i = |0⟩ , |r1⟩i = |0⟩ , |r1⟩i+1 ̸= |1⟩

[|r0⟩i ⊕ (|a1⟩i ∧ |b0⟩i)]
⊕[|a1⟩i+1 ∧ |b0⟩i+1] · [X(|r0⟩i+1)],

if n > 1 |r0⟩i = |0⟩ , |r1⟩i = |0⟩ , |r1⟩i+1 = |1⟩

|r1⟩ =


|r1⟩i ⊕ (|a0⟩i ∧ |b1⟩i) , if n = 1

[|r1⟩i ⊕ (|a0⟩i ∧ |b1⟩i]
⊕
[
|a1⟩i+1 ∧ |b0⟩i+1

]
,

if n > 1, |r0⟩i = |0⟩ , |r1⟩i = |0⟩ , |r1⟩i+1 ̸= |1⟩

(3)

where n is the bit string length, |r0⟩ and |r1⟩ con-
tain the final results of the comparator, i < n is
the current iteration, and consequently i+1 is the
next iteration, and any |ψ⟩i represents the inter-

mediate results of a quantum state with respect
to the iterator i. The final output |r0⟩ and |r1⟩ is
conditional and depends on the bit string length,
and the intermediate result states approximation
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to either |0⟩ or |1⟩. By applying these conditions,
we can achieve the same outcome as that obtained
from our proposed method discussed in Algo. 1 or
illustrated in Figs. 12-15.

In Fig. 18, we have included some statistics
of the proposed GQBSC method applied to the
IBM System (ibm_perth and ibm_lagos), both
of which have a system size of 7 qubits. These
graphs clearly illustrate that as the input size
approaches the maximum capacity of the qubit
system, the performance of the proposed state
begins to deteriorate, and the probability of the
output state eventually declines for comparable
input sizes.

5 Conclusion
Quantum bit string comparators are essential
to many quantum algorithms as they provide
a means to compare two quantum states. In
this study, we have investigated the resource re-
quirements and scalability of our proposed quan-
tum comparator. The analysis demonstrates that
our approach efficiently compares input states of
varying sizes with an upper bound for resource
scaling of n+2 qubits. Holistically, our proposed
approach fares better when compared to other
methods based on ancillary qubits, quantum cost,
and quantum delay. These findings contribute to
the ongoing development of quantum algorithms.
The proposed approach is extensively tested, ver-
ified, and validated against other methods.
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