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The denoising process of di�usion models can be interpreted as a projection of noisy samples onto the

data manifold. Moreover, the noise level in these samples approximates their distance to the underlying

manifold. Building on this insight, we propose a novel method to enhance sample generation by aligning

the estimated noise level with the true distance of noisy samples to the manifold. Speci�cally, we

introduce a noise level correction network, leveraging a pre-trained denoising network, to re�ne noise

level estimates during the denoising process. Additionally, we extend this approach to various image

restoration tasks by integrating task-speci�c constraints, including inpainting, deblurring, super-

resolution, colorization, and compressed sensing. Experimental results demonstrate that our method

signi�cantly improves sample quality in both unconstrained and constrained generation scenarios.

Notably, the proposed noise level correction framework is compatible with existing denoising schedulers

(e.g., DDIM), o�ering additional performance improvements.

1. Introduction

Generative models have signi�cantly advanced our capability of creating high-�delity data samples across

various domains such as images, audio, and text[1][2][3]. Among these, di�usion models have emerged as

one of the most powerful approaches due to their superior performance in generating high-quality

samples from complex distributions[1][2][4]. Unlike previous generative models, such as generative

adversarial networks (GANs)[5]  and variational autoencoders (VAEs)[6], di�usion models adds multiple

levels of noise to the data, and the original data is recovered through a learned denoising process[7][8].

This allows di�usion models to handle high-dimensional, complex data distributions, making them

especially useful for tasks where sample quality and diversity are critical[9]. Their capability to generate

complex, high-resolution data has led to widespread applications across numerous tasks, from image
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generation in models like DALL·E[10] and Stable Di�usion[11] to use in robotic path-planningand control[12]

[13], as well as text generation[14].

Previous studies[15][16]  have interpreted the denoising process in di�usion models as an approximate

projection onto the data manifold, with the noise level    approximating the distance between noisy

samples and the data manifold. This perspective views the sampling process an optimization problem,

where the goal is to minimize the distance between noisy samples and underlying data manifold using

gradient descent. The gradient direction is approximated by the denoiser output with step size determined

by the noise level schedule. However, the denoiser requires an estimate of the noise level as input. We

claim that accurately estimating the noise level during the denoising process—essentially the distance to

the data manifold—is crucial for convergence and accurate sampling.

The expressive capabilities of di�usion models have also made them a compelling choice for image

restoration tasks, where generating high-quality, detailed images is essential[17]. Di�usion models can be

used as an image-prior for capturing the underlying structure of image manifold and have shown

signi�cant promise for constrained generation such as image restoration[18][19][20]. Plug-and-play

methods were proposed to utilize pre-trained models without the need for extensive retraining or end-to-

end optimization for linear inverse problems such as super-resolution, inpainting and compressed

sensing[19][21][22]. These methods can be interpreted as alternating taking gradient steps towards the

constraint set (linear projection for linear inverse problems) and the image manifold (noise direction

estimated by the learned denoiser) to �nd their intersection. However, they may su�er from inconsistency

issues if, after each projection step, the noise level no longer approximates distance (2). Thus correcting

the noise level after each step could increase the accuracy of image restoration tasks.

Figure 1. Qualitative results of constrained image generation.
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In this work, we propose a novel noise level correction method to re�ne the estimated noise level and

enhance sample generation quality. Our approach introduces a noise level correction network that aligns

the estimated noise level of noisy samples more closely with their true distance to the data manifold. By

dynamically adjusting the sampling step size based on this corrected noise level estimation, our method

improves the sample generation process, signi�cantly enhancing the quality of generated data.

Furthermore, our approach integrates seamlessly with existing denoising scheduling methods, such as

DDPM (Denoising Di�usion Probabilistic Models)[7], DDIM (Denoising Di�usion Implicit Models)[23], and

EDM[24]. Furthermore, we extend the application of noise level correction to various image restoration

tasks, showing its ability to improve the performance of di�usion-based models such as DDNM (Di�usion

Null-Space Model)[22]. Our method achieves improved results across tasks including inpainting,

deblurring, super-resolution, colorization, and compressed sensing, as illustrated in Figure 1.

Additionally, we introduce a parameter-free lookup table as an approximation of the noise level correction

network, providing a computationally e�cient alternative for improving the performance of

unconstrained di�usion models. In summary, our contributions are:

We propose a noise level correction network that improves sample generation quality by dynamically

re�ning the estimated noise level during the denoising process.

We extend the proposed method to constrained tasks, achieving signi�cant performance improvements

in various image restoration challenges.

We develop a parameter-free approximation of the noise level correction network, o�ering a

computationally e�cient tool to improve di�usion models.

Through extensive experiments, we demonstrate that the proposed noise level correction method

consistently provides additional performance gains when applied on top of various denoising methods

2. Background

2.1. Di�usion Models

Di�usion models represent a powerful class of latent variable generative models that treat datasets as

samples from a probability distribution, typically assumed to lie on a low-dimensional manifold 

[2][7]. Given a data point  , di�usion models aim to learn a model distribution    that can

approximate this manifold and enable the generation of high-quality samples. The process involves

gradually corrupting the data with noise during a forward di�usion process and incrementally denoising it

to reconstruct the original data through a reverse generative process.

K ⊂ R
n

∈ Kz0 ( )pθ z0
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Di�usion (forward) process. In the forward process, noise is added progressively to the data. Starting with

a clean sample  , the noisy version at step  , denoted  , is a linear combination of   and Gaussian noise  :

where the noise schedule    controls the amount of noise injected at each step. Typically, 

, ensuring that    for large enough  [7]. For mathematical

convenience, a reparameterization is often employed, de�ning new variables  , which results

in:

Where   denotes the noise level. Note that the di�usion process is originally presented in variable  , we

use the formulation   to simplify the forward di�usion process and lays the groundwork for the

reverse denoising process. A similar formulation can be found in[25][24].

Denoiser. Di�usion models are trained to estimate the noise vector added to a sample during the forward

process. The learned denoiser, denoted as  , is to predict the noise vector   from the noisy sample   and

the corresponding noise level  . The denoiser is optimized using a loss function that minimizes the

di�erence between the predicted and true noise vectors:

Here,   is sampled from the data distribution,   drawn from a discrete prede�ned noise level schedule,

and    is drawn from a standard Gaussian distribution,  . Training is typically performed using

gradient descent, where randomly sampled triplets   are used to update the denoiser’s parameters 

. Once the denoiser is trained, we can apply a one-step estimation to approximate the clean sample 

:

Denoising (sampling) process. The one-step estimation, Eq. (5), may lack accuracy, in which case the

trained denoiser is applied iteratively through the denoising process. This process aims to progressively

denoise a noisy sample   and recover the original data  . Sampling algorithms construct a sequence of

intermediate estimates  , starting from an initial point    drawn from a Gaussian

distribution,  . One of the widely used samplers, the deterministic DDIM[23], follows the

recursion:

z0 t zt z0 ϵ

= + ϵ, where ϵ ∼ N (0, I),zt αt
−−

√ z0 1 − αt
− −−−−

√ (1)

αt

1 ≥ > > ⋯ > ≥ 0α1 α2 αT p( ) ∼ N (0, I)zT T

= /xt zt αt
−−√

= + ϵ, where ϵ ∼ N (0, I),xt x0 σt (2)

= , = , = .σt
1 − αt

αt

− −−−−−

√ xt
zt

αt
−−√

x0 z0 (3)

σt zt

=xt
zt

αt√

ϵθ ϵ xt

σt

L(θ) := E∥ ( , ) − ϵ = ∥ ( + ϵ, ) − ϵ .ϵθ xt σt ∥2
E ,t,ϵx0 ϵθ x0 σt σt ∥2 (4)

x0 σt

ϵ N (0, I)

( , ϵ, )x0 σt

θ

≈x̂0|t x0

= − ( , ).x̂0|t xt σtϵθ xt σt (5)

xT x0

( , , … , )xT xT−1 x0 xT

∼ N (0, I)xT

= + ( − ) ( , ) = + ( , )xt−1 xt σt−1 σt ϵθ xt σt x̂0|t σt−1ϵθ xt σt (6)
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where    is the predicted noise at step  . This iterative process continues until    is obtained, which

represents a denoised sample. On the other hand, the randomized DDPM[7] follows the update rule:

2.2. Additional Related Works

Di�usion models have gained signi�cant attention for their ability to learn complex data distributions,

excelling in diverse applications such as image generation[7][26], audio synthesis[27], and robotics[13].

Several methods have been proposed to improve the quality of generated samples while reducing the

number of iterations. These include techniques like distillation for reducing sampling steps[28],

progressive distillation[29], consistency models[8], and improved design space of di�usion models[24]. On

the theoretical side, signi�cant research has explored the non-asymptotic convergence rates of various

di�usion samplers, including DDPM[30]  and DDIM[31], contributing to a deeper understanding of the

optimization processes underlying di�usion-based models.

Di�usion models have also demonstrated e�ectiveness in image restoration tasks, including super-

resolution[19], inpainting[32], deblurring, and compressed sensing[22]. These tasks often require strict

adherence to data consistency constraints, making di�usion models particularly suitable for addressing

such challenges. Prior works such as DDRM[32]  and DDNM[22]  pioneered the use of di�usion models for

solving linear inverse problems by projecting noisy samples onto the subspace of solutions that satisfy

linear constraints. Other methods have employed alternative approaches, such as computing full

projections by enforcing linear constraints or using the gradient of quadratically penalized constraints[33]

[34]. Recent work has extended the application of di�usion models to more complex non-convex

constraint functions. In these cases, iterative methods such as gradient descent are utilized to guide the

sampling process toward satisfying the constraints, as demonstrated in Universal Guidance[35].

Furthermore, a provably robust framework for score-based di�usion models applied to image

reconstruction was introduced by[36], o�ering robust performance in handling nonlinear inverse problems

while ensuring consistency with the observed data.

= = ⋅ , ∼ N (0, I),xT
zT

αt
−−√

+ 1σ2
T

− −−−−−
√ zT zT (7)

ϵθ t x0

= + ( − ) ( , ) + η = + ( , ) + ηxt−1 xt σt′ σt ϵθ xt σt ωt x̂0|t σt′ϵθ xt σt ωt (8)

= , η = , ∼ N (0, I).σt′

σ2
t−1

σt
−σ2

t−1 σ2
t′

− −−−−−−−
√ ωt (9)
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3. Methods

3.1. Noise Level as Distance from Noisy Samples to the Manifold

This work builds on the insight that denoising in di�usion models can be interpreted as an approximate

projection onto the support of the training-set distribution. Previous studies[15][16] have established this

connection. The distance function of a set  , denoted as  , is de�ned as the minimum

distance from a point   to any point  :

The projection of    onto  , denoted  , refers to the point (or points) on    that achieves this

minimum distance. Assuming the projection is unique, we can express it as:

The Manifold Hypothesis suggests that many real-world datasets lie approximately on low-dimensional

manifolds embedded in high-dimensional spaces[37][38]. In this context, we assume that   is a manifold

of dimension  , where  . Leveraging this assumption, we outline the following informal theorem,

which summarizes results from[16] (for formal proofs refer to[16]):

Theorem 1 (Informal) Let  ,  , and  . De�ne  . Assuming the

manifold hypothesis holds:

a. Denoising as Approximate Projection:

when   satis�es:   for constants   and  .

b. Noise Level as Approximate Distance:

c. Projection Interpretation via DDIM: Assume    is the zero-error denoiser, and the initial distance

satis�es  . Then the DDIM sampler generates the sequence ( ) by performing

gradient descent on the objective function   with a step-size of  :

Theorem 1(a) demonstrates that the estimated clean sample generated by the denoising process 

, serves as an approximation of the projection of the noisy sample    onto the

K ⊂ R
n (x)distK

x ∈ Kx0

(x) := inf{∥x − ∥ : ∈ K}.distK x0 x0 (10)

x K (x)projK K

(x) := { ∈ K : (x) = ∥x − ∥}.projK x0 distK x0 (11)

K

d d ≪ n

∈ Kx0 > 0σt ϵ ∼ N (0, I) = + ϵ ∈xt x0 σt R
n

∥ − ( , ) − ( )∥ ≤ η ( )xt σtϵθ xt σt projK xt distK xt (12)

( , )xt σt ( ) ≤ ≤ ν ( )1
ν

distK xt n−−√ σt distK xt 1 > η ≥ 0 ν ≥ 1

≈ ( )n−−√ σt distK xt (13)

(x,σ)ϵ∗
θ

( ) =distK xT n−−√ σT , … ,xT x0

f(x) := (x1
2

distK )2 := 1 − /βt σt−1 σt

= − ∇f( ) = − ⋅ ( ) ⋅ ∇ ( ),xt−1 xt βt xt xt βt distK xt distK xt (14)

( ) = , ∇ ( ) = ( , )/distK xt n−−√ σt distK xt ϵ∗
θ
xt σt n−−√ (15)

= ( , )x̂0|t xtσtϵθ xt σt xt
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manifold  . Similarly, Theorem 1(b) establishes that the distance of a noisy sample   onto manifold  ,

can be approximated by the noise level  . With a zero-error denoiser, Theorem 1(c) shows that the

DDIM process generates a sequence that monotonically decreases the distance to the manifold by

following the gradient descent of the objective function  . Speci�cally, the distance of each noisy

sample from the manifold is determined by the noise level,  , while the direction of the

denoising process, or projection, is guided by the estimated noise vector  .

Figure 2. Denoising approximates projection. (a) Denoising process using DDIM. (b) Constrained denoising

process viewed as an alternative projection. Note that in both (a) and (b), the estimated noise level   does not

always match the distance  . (c) Constrained denoising process with noise level correction (NLC). By

replacing the prior noise level   with the more accurate noise level  , the projection more closely aligns with

the manifold  .

However Theorem 1(c), (15), relies on two key assumptions: (1) an zero-error denoiser, where 

, and (2) an initial condition where the distance at  ,  . For sample

generation, cumulative errors introduced during the denoising process can lead to biases due to the

imperfections of the denoiser[39]. These errors become particularly signi�cant by the �nal steps, where

deviations in the denoising process result in a large mismatch between the true distance   and the

estimated noise level  , as illustrated in Figure 2a. As observed, a mismatch between the true distance

and the estimated noise level can lead to the clean image estimation using eq. (5) falling outside the

manifold  . In constrained sample generation tasks, such as image restoration and guided sample

generation, this issue is further exacerbated. As shown in Figure 2b, deviations introduced by guidance

terms or projection steps onto the constraint   amplify the discrepancy between the estimated noise level 

 and the actual distance  . These deviations are particularly impactful in the later denoising

steps and can prevent the reconstructed sample from accurately lying on the data manifold  . Additional

details are provided in Appendix A.

K xt K

n−−√ σt

f(x)

( ) =distK xt n−−√ σt

∇ ( ) = ( , )/distK xt ϵ∗
θ
xt σt n−−√

σt

( )distK xt

σt σ̂t

K

( , ) =ϵθ xt σt ϵt t = T ( ) =distK xT n−−√ σT

( )distK xt

n−−√ σt

K

C

n−−√ σt ( )distK xt

K
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3.2. Noise Level Correction

To address the issue of inaccurate distance estimation caused by relying on a prede�ned noise level  , as

discussed in section 3.1, we propose a method called noise level correction to better align the corrected

noise level with the true distance. This approach replaces the prede�ned noise level scheduler    with a

corrected noise level    during the denoising process, enabling more accurate distance estimation and

improved sample quality. As shown in Figure 2c, using the corrected noise level brings the estimated clean

sample   closer to the data manifold   compared to the naive denoising process that relies solely on  .

The corrected noise level is de�ned as  , where   represents the residual

and can be modeled using either a neural network or a non-parametric function. This residual alignment

approach is e�ective because the residual   is stable across noise levels, making it easier to model, while

the noise level itself may become unbounded during large di�usion time steps.

For  , calculating the ground-truth distance to the manifold is generally not feasible. Instead, we

approximate it using the distance between the noisy sample and its clean counterpart in the forward

di�usion process. Speci�cally, given the noisy samples    generated by the di�usion process from 

  in eq. (2), we estimate the distance as  . This approximation is reasonable

because, according to the manifold hypothesis, the random noise    is orthogonal to the manifold  .

Therefore, the projection of   onto   satis�es  , as also illustrated in[16].

We introduce a neural network to learn   for noise level correction. To minimize additional

computational costs, we design the noise level correction network    to be small and e�cient. It

leverages the encoder module of the denoiser’s UNet architecture, followed by compact layers that fully

utilize the pre-trained denoiser’s capabilities. As shown in Figure 3, the denoiser network uses a UNet

structure to estimate the noise vector (denoising direction) based on the noisy image    and  .

Meanwhile, the noise level correction network utilizes the shared encoder, followed by additional neural

network blocks, to predict the residual noise level. We train the noise level correction network 

  alongside a �xed, pre-trained denoiser  , ensuring coordinated improvement in denoising

accuracy. In training, to further enhance the noise level correction network, we introduce a scaling factor 

  to expand the input-output space of    within the di�usion process. The objective function for

noise level correction is de�ned as:

The scaling factor    is sampled from a uniform distribution  , with    in our

experiment, to control the level of variation introduced into the noise level correction.

σt

σt

σ̂t

x̂0|t K σt

:= [1 + ] ≈ ( )/σ̂t σt r̂ t distK xt n−−√ r̂ t

r̂ t

( )distK xt

xt

∈ Kx0 ( ) ≈ | − |distK xt xt x0

ϵ K

xt K ( ) = ( + ϵ) ≈projK xt projK x0 σt x0

= ( , )r̂ t rθ xt σt

(⋅)rθ

xt σt

(⋅)rθ (⋅)ϵθ

λ ( , )rθ xt σt

:= E [∥ [1 + ( , )] − λ∥ ∥∥]Lrθ n−−√ σt rθ x̂t σt σt ϵt (16)

= + λ , ∼ N (0, I), λ ∼ U(1 − δ, 1 + δ)x̂t x0 σt ϵt ϵt (17)

λ U(1 − δ, 1 + δ) δ = 0.5
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Figure 3. Neural Network Architecture

3.3. Enhancing Sample Generation with Noise Level Correction

The trained noise level correction network   can be integrated into various existing sampling algorithms

to improve sample quality. For algorithms that include an initial sample estimate  , eq. (5), we can

reformulate the one-step estimation as follows:

We normalize the noise vector    during the sampling as in eq. (19), process to decouple noise level

(magnitude) correction    from direction estimation  . Empirical experiments show that normalizing 

 and using   to account for magnitude yields better results compared to not normalizing  . In the

training loss function eq. (16), normalization of the noise vector    is unnecessary because the randomly

sampled noise    naturally concentrates around the norm  . However, the neural network-estimated

noise vector   does not maintain a constant norm.

Using eq. (19), we integrate noise level correction into the DDIM and DDPM sampling algorithms, as

illustrated in Algorithm 1, with the modi�cations from the original DDIM/DDPM algorithms highlighted in

blue. In this algorithm, lines 3 and 4 represent the current and next-step noise level corrections,

respectively, while line 5 provides the normalized noise vector. Lines 6 through 8 follow the steps of the

original DDIM and DDPM algorithms. Similarly, noise level correction can be integrated into the EDM

sampling algorithm, as shown in Algorithm 3. Note that in EDM with noise level correction, we do not

normalize the noise vector  , since EDM employs a second-order Heun solver to improve noise

vector estimation. By incorporating noise level correction, these algorithms produce higher-quality

rθ

x0|t

= −x̂0|t xt σ̂t ϵ̂ t (18)

= [1 + ( , )], =σ̂t σt rθ x̂t σt ϵ̂ t n−−√
( , )ϵθ xt σ̂t

∥ ( , )∥ϵθ xt σ̂t
(19)

(⋅)ϵθ

σ̂t ϵ̂ t

(⋅)ϵθ σ̂t (⋅)ϵθ

ϵ

ϵ n−−√

(⋅)ϵθ

( , )ϵθ xt σ̂t
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samples with improved accuracy by considering both the direction and distance to the data manifold

during the denoising process.

3.4. Constrained Sample Generation

The noise level correction method can also improve performance in constrained sample generation tasks,

such as image restoration. Let   denote the data manifold, and let   represent speci�c constraints, such as

masked pixel matching in inpainting tasks. Constrained sample generation aims to generate samples 

 that satisfy both the manifold and constraint requirements, meaning  . Similar to DDIM-NLC

sampling approach in Algorithm 1, noise level correction can be incorporated into existing constrained

sample generation methods, such as DDNM[22], a DDIM-based image restoration algorithm. An example

of this is shown in Algorithm 4.

To further enhance constrained sample generation, we propose a �exible iterative projection algorithm

inspired by the alternating projection technique[40][41]. This approach iteratively projects samples onto

each constraint set to approximate a solution that lies in the intersection of    and  . The iterative

projection process can be expressed as follows:

Where   and   represent the  -th estimates of points satisfying   and  , respectively. The

iterative rule ensures that   approximates a point in  .   introduces a small noise term  , which

helps avoid convergence to local minima in non-�at regions. This noise term is analogous to the one used

in DDPM (eq. 8) and facilitates iterative re�nement toward the �nal clean samples. The noise term   can

be gradually reduced over iterations or set to zero once a satisfactory iteration    is achieved. At

this point, the algorithm returns a �nal estimate such that  .

K C

x x ∈ K ∩ C

K C

= ( ), = ( ), = + , k = 0, 1, ⋯x̂0|k projK x(k) x0|k projC x̂0|k x(k+1) x0|k ϵ̄ (20)

x̂0|k x0|k k x ∈ K x ∈ C

x0|k K ∩ C xk+1 ϵ̄

ϵ̄

k = Kmax

∈ K ∩ CxKmax
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Considering di�usion models, Theorem 1 demonstrates that the projection operator    can be

approximately computed using the denoising operator. Starting from an initial random point  ,

the projection onto the manifold   can be iteratively re�ned using eq. (18) and eq. (19), as follows:

For the additional constraint projection,  , the speci�c calculation depends on the nature of the

constraint. The constraints for many image restoration tasks are linear, including inpainting, colorization,

super-resolution, deblurring, and compressed sensing. For tasks with linear constraints, the projection

can be computed directly or optimized using gradient descent. Consider an image restoration task

formulated as  , where   represents the ground-truth image,   is the degraded observation, A is

the linear degradation operator. Given the degraded image   and the current estimate  , the projection

onto the constraint can be computed as:

Where   is the pseudo-inverse of A.In this work, we adopt the values of   for image restoration tasks as

provided in [22]. Here,   is the  th th estimate satisfying  . This iterative estimation requires

a prede�ned noise scheduler    to generate   and  . To allow �exible and potentially

unlimited re�nement steps, we de�ne the noise schedule   with a maximum noise level   and

a minimum level  , decaying by a prede�ned factor  . If the noise level reaches  , the process

can either stop with returning    or restart from  . This strategy permits an arbitrary number of

re�nement steps, stopping either at a desired loss threshold or continuing inde�nitely. Since 

  represents the distance of noisy samples from the manifold, this decaying schedule incrementally

reduces  ’s distance from the manifold.

(⋅)projK

= ϵx0 σmax

K

( ) = = −projK x(k) x̂0|k x(k) σ̂(k) ϵ̂ (k) (21)

(x)projC

y = Ax0 x0 y

y x̂0|k

= ( ) = y + (I − A)x0|k projC x̂0|k A† A† x̂0|k (22)

A† A†

x0|k k− ∈ K ∩ Cx0

, . . . , , . . .σ1 σ(k) x0|k x(k+1)

σ(k) =σ(0) σmax

σmin η < 1 σmin

x0|k σrestart

σ(k)

x(k)
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Algorithm 2 presents the proposed constrained generation approach, termed IterProj-NLC (Iterative

Projection with Noise Level Correction). Lines 3 to 5 project onto the data manifold  , while Line 6 projects

onto the constraint set  . Lines 7 to 10 update the noise level, and Lines 11 and 12 compute the next noisy

sample    from the current clean estimate  . This step also acts as a convex combination of the

current clean estimate   and the previous noisy sample  .

4. Experiments

4.1. Toy Experiments

We conducted a toy experiment to demonstrate the e�ectiveness of noise level correction in sample

generation for di�usion models. The objective was to generate samples on  -sphere manifold. The toy

training dataset was sampled from  -dimensional sphere manifold embedded within an  -dimensional

data space, where  . Detailed experimental design information is available in Appendix C.1.

After training, we applied the proposed 10-step DDIM with Noise Level Correction (DDIM-NLC), as

detailed in Algorithm 1 to generate samples. This method was compared to the 10-step DDIM baseline. Our

evaluation metric measured the distance between the generated samples and the ground-truth  -sphere

manifold    (where lower distance indicates better results). Figure 4a presents the sample quality

(measured as the distance to the manifold) for di�erent methods across each denoising step. As shown,

DDIM-NLC outperforms the baseline DDIM by generating samples that are consistently closer to the target

manifold.

K

C

x(k+1) xk|0

xk|0 x(k)

d

d n

d < n

d

K
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As we discussed in Theorom 1, the distance to the manifold can be approximated by the noise level, as

shown in eq. (13). We further evaluated the accuracy of the noise level correction by examining its

proximity to the actual distance  . Figure 4b displays the relative distance estimation bias during

sampling, calculated as

Where    for DDIM, and    for DDIM-NLC. The results show that DDIM-NLC

achieves a signi�cantly smaller distance estimation bias than DDIM, particularly in the later steps as

samples approach the manifold. The results of constrained sample generation are shown in Appendix C.2.

Figure 4. Results from experiments on toy models. (a) Generated sample quality was evaluated the distance to

the manifold. (b) Distance Estimation Error.

4.2. Unconstrained Image Generation

We conducted experiments to evaluate the e�ectiveness of noise level correction in unconstrained image

generation tasks. The noise level correction network was trained on top of a pre-trained denoiser network.

Notably, the noise level correction network is approximately ten times smaller than the denoiser network.

Additional details on the experimental setup are provided in Appendix D.1. We used the FID (Fréchet

Inception Distance) score as the evaluation metric to assess the quality of generated samples, where lower

scores indicate better quality, following standard practice in image generation tasks[42]. The experimental

results for the DDIM/DDPM framework on the CIFAR-10 dataset are shown in Table 1. As observed, DDPM-

NLC and DDIM-NLC, which incorporate noise level correction, outperform the original DDPM and DDIM

models across all sampling steps. Speci�cally, our proposed noise level correction approach improves

( )distK x̂t

Distance Estimation Bias = .
( ) −distK x̂t n−−√ σ̂t

n−−√ σt

=σ̂t σt = [1 + ( , )]σ̂t σt rθ x̂t σt
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DDIM performance by 32%, 31%, 22%, 33%, and 28% for 10, 20, 50, 100, and 300 sampling steps,

respectively.

Method\Step 1000 300 100 50 20 10

DDPM 2.99 2.95 3.37 4.43 10.41 23.19

DDPM-NLC 2.35 2.21 2.39 2.74 6.44 19.27

DDIM 4.29 4.32 4.66 5.17 8.25 14.21

DDIM-NLC 3.11 3.11 3.12 4.04 5.66 9.61

Table 1. FID on DDIM/DDPM sampling on CIFAR-10 with and without noise level correction.

We evaluate the e�ectiveness of noise level correction with EDM[24], as it achieves state-of-the-art

sampling quality with few sampling steps. Speci�cally, we assess the impact of NLC using both a �rst-

order Euler ODE solver and a second-order Heun ODE solver within the EDM framework. As shown in Table

2, the proposed NLC also enhances the performance of EDM-based sampling methods. Notably, as a robust

sampling technique, noise level correction improves the performance of the Heun sampler by 10% with

just 13 sampling steps.

Method\Step 35 21 13

Euler 3.81 6.29 12.28

Euler-NLC 2.79 4.21 8.17

Heun 1.98 2.33 7.22

Heun-NLC 1.95 2.22 6.56

Table 2. FID on EDM sampling on CIFAR-10 with and w/o NLC.
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4.3. Image Restoration

In this section, we evaluate the e�ectiveness of noise level correction on �ve common image restoration

tasks,    super-resolution (SR) using bicubic downsampling, deblurring with a Gaussian blur kernel,

colorization using an average grayscale operator, compressed sensing (CS) with a Walsh-Hadamard

sampling matrix at a 0.25 compression ratio, and inpainting with text masks. These experiments are

conducted on the ImageNet[43]  and CelebA-HQ[44]  datasets. We compare our method with recent state-

of-the-art di�usion-based image restoration methods, including ILVR[45], RePaint[46], DDRM[32], and

DDNM[22]. For a fair comparison, all di�usion-based methods utilize the same pretrained denoising

networks with the same 100-step denoising process (100 number of inference steps), following the

experimental setup in[22]. To evaluate sample quality, we use FID, PSNR (Peak Signal-to-Noise Ratio), and

SSIM (Structural Similarity Index Measure). For colorization, where PSNR and SSIM are less e�ective

metrics[22], we additionally use a Consistency metric, denoted as "Cons" and calculated as  . As

a baseline, we also include the inverse solution for each image restoration task, given by  , which

achieves zero constraint violation but lacks the data manifold information.

The results on the ImageNet dataset are summarized in Table 3, while those for CelebA-HQ are shown in

Table 4. Tasks not supported by certain methods are marked as “N/A.” As the results indicate, integrating

noise level correction (as in Algorithm 4) enhances sample generation performance for DDNM.

Furthermore, the proposed IterProj-NLC method (Algorithm 2), achieves the best performance across all

benchmarks. For instance, IterProj-NLC outperforms the baseline DDNM in FID score by 6%, 59%, 14%,

and 50% on   SR, Deblurring, CS 25%, and Inpainting tasks, respectively. It also improves Consistency in

colorization by 9%. Qualitative comparisons are shown in Figure 1, with additional results in Appendix E.1.

4×

∥A − yx0 ∥1

= yx̂ A†

4×
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ImageNet 4 x SR Deblurring Colorization CS 25% Inpainting

Method PSNR /SSIM /FID PSNR /SSIM /FID Cons /FID PSNR /SSIM /FID PSNR /SSIM /FID

24.26 / 0.684 / 134.4
18.46 / 0.6616 /

55.42
0.0 / 43.37 15.65 / 0.510 / 277.4 14.52/ 0.799 / 72.71

ILVR
27.40 / 0.870 /

43.66
N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 31.87 / 0.968 / 13.43

DDRM 27.38 / 0.869 / 43.15 43.01 / 0.992 / 1.48 260.4 / 36.56
19.95 / 0.704 /

97.99
31.73 / 0.966 / 10.82

DDNM 27.45 / 0.870/ 39.56 44.93 / 0.993 / 1.17 42.32 / 36.32 21.62 / 0.748 / 64.68 31.60 / 0.946 / 9.79

DDNM-NLC 27.50 / 0.872 / 37.82 46.20 / 0.995 / 0.79 41.60 / 35.89 21.27 / 0.769 / 58.96 32.51 / 0.957 / 7.20

IterProj-

NLC
27.56 / 0.873 / 37.48 48.24 / 0.997 / 0.48 38.30/ 35.66 22.27 / 0.771 / 55.69 33.58 / 0.966 / 4.90

Table 3. Comparative results of �ve image restoration tasks on ImageNet.

Celeba-HQ 4 x SR Deblurring Colorization CS 25% Inpainting

Method PSNR /SSIM /FID PSNR /SSIM /FID Cons /FID PSNR /SSIM /FID PSNR /SSIM /FID

27.27 / 0.782 / 103.3 18.85 / 0.741 / 54.31 0.0 / 68.81 15.09 / 0.583 / 377.7 15.57 / 0.809 / 181.56

ILVR 31.59 / 0.945 / 29.82 N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 35.20 / 0.981 /18.21

DDRM 31.63 / 0.945 / 31.04 43.07 / 0.993 / 6.24 455.9 / 31.26 24.86 / 0.876 / 46.77 34.79 / 0.978 /16.35

DDNM 31.63 / 0.945 / 22.50 46.72 / 0.996 / 1.42 26.25 / 26.78 27.52 / 0.909 / 28.80 35.64 / 0.979 / 12.21

DDNM-NLC 31.78 / 0.947 / 22.10 46.78 / 0.997 / 1.36 24.92 / 25.81 27.63 / 0.914 / 24.72 36.48 / 0.980 / 11.60

IterProj-NLC 31.93 / 0.949 / 21.96 46.97 / 0.997 / 1.29 24.65 / 25.30 27.78 / 0.916 / 23.45 36.57 / 0.981 / 11.07

Table 4. Comparative results of �ve image restoration tasks on Celeba-HQ.

↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↓

yA
†

↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↓

yA
†
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4.4. Lookup Table for Noise Level Correction

In this section, we explore the statistical properties of the noise level correction network and demonstrate

how these properties can be leveraged to create a lookup table for correcting noise levels without neural

network inference. The lookup table for noise level correction is de�ned as    where    is a

non-parametric function that approximates the actual distance to the data manifold. As illustrated in the

toy experiment shown in Figure 4b, distance estimation error using noise levels is lower in the initial

sampling steps and increases in later stages when the true distance to the manifold decreases. This trend is

expected: in the early stages, noisy samples are farther from the manifold, making approximate

projections easier and reducing relative distance estimation error. More speci�cally, at the initial steps,

the true distance   is slightly larger than the estimation from the noise level   as supported by

eq. (24). In later steps, however,   decreases more rapidly than  .

Figure 5. Plot of   versus   in the unconstrained DDIM-NLC denoising process and constrained DDNM-

NLC denoising process. The curve represents the average over samples, with shaded regions indicating the

standard deviation. The larger variance (right) illustrates that the corrections applied by   are too complex

for a simple look-up table in the context of constrained generation.

We conducted an experiment to analyze the statistical behavior of the neural network-based noise level

corrector    for unconstrained sample generation on the CIFAR-10 and ImageNet datasets. Figure 5a

presents the relationship between    and  , averaged over the samples    during the DDIM-NLC

denoising process. As seen,   values are negative for smaller   corresponding to the �nal denoising

steps (higher time steps  ), and increase as   increases. This trend aligns with the observation in the toy

experiment Figure 4b, indicating that distance decreases in the �nal steps and thus requires reducing 

  for accurate distance representation. Moreover, a similar trend is observed across di�erent datasets,

= [1 + ]σ̂t σt r̂ t r̂ t

( )distK xt n−−√ σt

( )distK xt n−−√ σt

( )rθ σt σt

( )rθ σt

(⋅)rθ

( )rθ σt σt xt

( )rθ σt σt

t σt

σ̂t
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such as CIFAR-10 and ImageNet. We further analyzed the statistical behavior of    in constrained

sample generation tasks on the ImageNet dataset. These tasks introduce additional variability due to

constraint projections [22], resulting in higher variance in   across samples. Notably, even within the

same dataset, constraints such as colorization and inpainting exhibit distinct trends during the �nal

denoising steps (i.e., at small noise levels). Moreover, the variance at small noise levels is substantially

higher in constrained tasks compared to unconstrained scenarios.

Using the values of   recorded in the average value curve of Figure 5, we created a lookup table-based

noise level correction (LT-NLC) search   to estimate  . We evaluated the e�ectiveness of LT-NLC in

unconstrained sample generation tasks. The experimental results for LT-NLC applied to the DDIM

framework on the CIFAR-10 dataset are shown in Table 5. As expected, the trained noise level correction

(NLC) achieves the best performance. However, LT-NLC also signi�cantly improves the original DDIM,

enhancing performance by 14%, 20%, and 15% for 10, 20, and 50 sampling steps, respectively. The results

for LT-NLC applied to the EDM framework on the CIFAR-10 dataset are presented in Table 6. Similar to the

DDIM results, LT-NLC improves the performance of EDM-based sampling methods, demonstrating its

e�ectiveness as a network inference-free enhancement. The results for constrained generation can be

found in Appendix D.3. As illustrated in Figure 5, the variance of    in constrained generation tasks,

such as image restoration, is signi�cantly higher. Consequently, the performance improvements achieved

by LT-NLC are smaller compared to those of the neural network-based NLC, as LT-NLC applies the same

correction across all samples. Therefore, in constrained image generation tasks, the neural network-based

NLC remains essential for achieving optimal performance.

Method\Step 1000 300 100 50 20 10

DDIM 4.29 4.32 4.66 5.17 8.25 14.21

DDIM-LT-NLC 4.01 3.97 3.83 4.37 6.54 11.21

DDIM-NLC 3.11 3.11 3.12 4.04 5.66 9.61

Table 5. FID on DDIM sampling on CIFAR-10 with lookup table noise level correction.

(⋅)rθ

(⋅)rθ

( )rθ σt

r̂ t ( )rθ σt

( )rθ σt
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Method\Step 35 21 13

Heun 1.98 2.33 7.22

Heun-LT-NLC 1.97 2.27 6.84

Heun-NLC 1.95 2.22 6.56

Table 6. FID on EDM sampling on CIFAR-10 with and with LT-NLC.

The noise level correction (NLC) network is signi�cantly smaller than the denoiser, resulting in minimal

additional computational overhead. Detailed comparisons of the training and inference times for the

proposed NLC method are provided in Appendix D.2.

5. Conclusions

In this work, we explore the relationship between noise levels in di�usion models and the distance of noisy

samples from the underlying data manifold. Building on this insight, we propose a novel noise level

correction method, utilizing a neural network to align the corrected noise level with the true distance of

noisy samples to the data manifold. This alignment signi�cantly improves sample generation quality. We

further extend this approach to constrained sample generation tasks, such as image restoration, within an

alternating projection framework. Extensive experiments on both unconstrained and constrained image

generation tasks validate the e�ectiveness of the proposed noise level correction network. Additionally, we

introduce a lookup table-based approximation for noise level correction. This parameter-free method

e�ectively enhances performance in various unconstrained sample generation tasks, o�ering a

computationally e�cient alternative to the neural network-based approach.

Appendix A. Discrepancy between   and the Distance 

Previous works[7][24]  have primarily focused on improving the estimation of the noise vector 

  eq. (4), aligning with the �rst assumption of a zero-error denoiser. However, these

approaches typically rely on a prede�ned noise level scheduler    for distance estimation, often without

explicit validation. This reliance can lead to inaccuracies, even at the initial step, where 

.

n−−√ σt ( )distK xt

( , ) ≈ϵθ xt σt ϵt

σt

( ) ≠distK xT n−−√ σT
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Consider the DDIM as an example. The initial noisy point   is sampled as follows:

Let    denotes the projection of    onto the manifold  . In the context of an image

manifold, we have  . If  , the expectation of squared distance is given by:

where the �nal equality uses the fact that   for for  . Equation (24) implies that,

with high probability,  . Consequently, at any step  , these deviations may

result in  , potentially causing the �nal sample to deviate from the manifold  . It is worth

noting that the EDM sampling method initializes with a random step as  . However, it leads to

the same conclusion: for  , we have  .

Appendix B. Sampling with Noise Level Correction

Algorithm 3 presents the algorithm for incorporating noise level correction within EDM. Unlike the

approach used in DDIM with noise level correction Algorithm 1, the EDM version does not normalize the

noise vector  .

Algorithm 4 presents the algorithm for incorporating noise level correction within DDNM for linear image

restoration tasks  .

xT

= = ⋅ , ∼ N (0, I)xT
zT

αt
−−√

+ 1σ2
T

− −−−−−
√ zT zT (23)

= ( ) ∈ Kx∗
0 ProjK xt xt K

∥ ∥ > 0x∗
0 ⟨ , ⟩ ≤ 0zT x∗

0

E [∥ − ]xT x∗
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T

− −−−−−
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Appendix C. Toy Experiments

Figure 6. (a) Sphere datasets in toy experiments; (b) shows the results of sample generation with linear

constraint  .

C.1. Experimental design for sphere manifold.

The dataset consists of samples from a  -dimensional sphere manifold, denoted as    embedded

within an  -dimensional data space. To create training samples   we apply   di�erent linear projections

(rotations) to the original sphere   and add a small amount of Gaussian noise   to the  -sphere signal 

. Let    represent the  -sphere manifold, such that  . Each training sample    is

generated according to the following equations:

Ax = b

d s ∼ S
d

n x m

s xnoise d

xsignal K d ∈ Kxsignal x ∈ R
n
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Where   denotes the normal distribution,   denotes the uniform distribution.   refers to a   -

dimensional sphere. The matrices   are �xed random orthogonal matrices that are utilized

to "hide" zeros in certain coordinates. For our experiments, we focus primarily on a dataset with

parameters  ,  , and  , resulting in a  -dimensional dataset composed of 4 circles. For

illustration, we also generate a 3-dimensional dataset with parameters ( ,  ,  ), as shown in

Figure 6a. A total of 10,000 samples were used to train the model. The denoiser   is implemented with a

fully connected network containing 5 layers, each with a hidden dimension of 128. For noise level

correction,   is implemented with a 2-layer fully connected network, also using a hidden dimension of

128.

C.2. Experimental result of constrained sample generation

In Section 4.1, we demonstrate the e�ectiveness of noise level correction in unconstrained sample

generation. Here, we extend the evaluation to constrained generation, using a linear constraint 

 with   as a random variable and  . We applied the proposed 10-step DDNM with Noise

Level Correction (DDNM-NLC), as detailed in Algorithm 4 to generate samples and compared this method

to the 10-step DDNM baseline. We report the distance (to measure sample quality) and Consistency error 

 (to measure constraint satisfaction) as shown in Figure 6b. The proposed method shows superior

performance in both metrics, generating high-quality samples that satisfy the constraint more e�ectively

than the baseline.

Appendix D. Image Generation Experiments

D.1. Experimental design

Implementation. In this experiment, we used a pretrained denoiser  , and trained the noise level

correction network    to enhance the denoising process. For unconstrained image generation

experiments, we employed the pretrained    denoising network from  [23]  in DDIM-based

experiments on the CIFAR-10 dataset, and the pretrained    denoising network from  [24]  in EDM-

based experiments on CIFAR-10. For image restoration experiments, we utilized the pretrained 

x

xsignal

s

= + , ∼ N (0, I) (25)xsignal xnoise xnoise 10−6

= s ∈ , where k ∼ U({1, 2, ⋯ ,m}),   = (26)Rk R
n

RkR
T
k I (n×n)

∼ , where  = 1,   = = ⋯ = = 0 (27)S
d ∑
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 denoising network from [47] for ImageNet experiments and the pretrained   denoising

network from [46] for CelebA-HQ experiments.

Network architecture. The noise correction network   is designed to be signi�cantly smaller than the

denoiser   , while still incorporating residual and attention blocks similar to those used in the original

DDPM denoiser  [7]. Table 7 outlines the architecture of the noise correction network for CIFAR-10,

ImageNet, and CelebA-HQ datasets. For all datasets, we employ 2 residual blocks, 1 attention block, and 4

attention heads. The primary architectural di�erence lies in the varying feature sizes (input channels and

input dimensions) generated by the denoiser’s encoder. For comparison, the ImageNet denoiser contains 9

attention blocks in the encoder and 13 in the decoder. Consequently, the noise correction network is

approximately ten times smaller than the denoiser network. The last two rows of Table 7 provide a

parameter count comparison between the noise correction network   and the denoiser  .

Network Heperparameter CIFAR-10 ImageNet Celeba-HQ

Network Architecture for 

Input Channel (feature channel) 256 1024 512

Input Size (feature size) 4 8 8

Residual Blocks 2 2 2

Attention Blocks 1 1 1

Attention Heads 4 4 4

# Parameters

14 M 234 M 59 M

(Frozen, not trained) 218 M 2109 M 434 M

Table 7. Architecture of the noise level correction network 

Training. The noise correction network is trained following the original DDPM training procedure. Key

hyperparameters for training are listed in Table 8. Notably, the noise correction network is trained until

19.2 million samples have been drawn from the training set. In comparison, training the denoiser requires

200 million samples for CIFAR-10 and over 2000 million samples for ImageNet.

256 × 255 256 × 255

(⋅)rθ

(⋅)ϵθ

rθ σθ

(⋅)rθ

(⋅)rθ

(⋅)ϵθ

(⋅)rθ
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Settings CIFAR-10 ImageNet Celeba-HQ

Hyperparameters

Batch size 128 64 64

Learning rate 0.0003 0.0003 0.0003

# Iterations 150 K 300 K 300 K

# Samples

Training  19.2 M 19.2 M 19.2 M

Training  200 M 2500 M 1000 M

Table 8. Hyperparameters used for the training

D.2. Time and Memory Cost

Training time. The training time is shown in the last two rows of Table 8. This results in signi�cantly

faster training for the noise level correction network. For example, training the ImageNet denoiser on 8

Tesla V100 GPUs takes approximately two weeks, while training the noise correction network requires only

about one day. This e�ciency is due to the smaller size of the noise level correction network and its use of

the pretrained denoiser.

Inference time. The inference times for 10-step sample generation with a batch size of 1 are presented in

Table 9. As shown, incorporating noise level correction adds only a modest increase in inference time,

approximately  .

Inference time CIFAR-10 ImageNet

DDIM 0.32 0.93

DDIM-NLC 0.38 1.19

Table 9. Inference time of DDIM and DDIM-NLC.

D.3. Lookup table method for image restoration

We evaluate the performance of the lookup table noise level correction (LT-NLC) in image restoration

tasks. The results on the ImageNet dataset are summarized in Table 10. As shown, the DDNM image

(⋅)rθ

(⋅)ϵθ ≈ ≈ ≈

≈ 10%
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restoration method achieves additional performance gains with LT-NLC. However, these improvements

are notably smaller compared to those achieved with the neural network-based NLC method.

ImageNet 4 x SR Deblurring Colorization CS 25% Inpainting

Method PSNR /SSIM /FID
PSNR /SSIM /FID

Cons /FID PSNR /SSIM /FID
PSNR /SSIM /FID

DDNM 27.45 / 0.870/ 39.56 44.93 / 0.993 / 1.17 42.32 / 36.32
21.62 / 0.748 /

64.68
31.60 / 0.946 / 9.79

DDNM-LT-

NLC
27.47 / 0.870/ 39.03 45.14 / 0.993 / 1.02 42.12 / 36.07 21.48 / 0.751 / 62.64 31.84 / 0.951 / 9.19

DDNM-NLC
27.50 / 0.872 /

37.82
46.20 / 0.995 / 0.79 41.60 / 35.89 21.27 / 0.769 / 58.96 32.51 / 0.957 / 7.20

Table 10. Comparative results of image restoration tasks on ImageNet for lookup-table noise level correction.

Appendix E. Qualitative study

E.1. Image Restoration

We present qualitative comparisons between the proposed method, IterProj-NLC, and the baseline,

DDNM, across various image restoration tasks. These tasks include compressive sensing, shown in �g. 7,

colorization, shown in �g. 8, inpainting, shown in �g. 9, and super-resolution, shown in �g. 10. The

comparisons demonstrate the e�ectiveness of IterProj-NLC in producing visually superior results over the

baseline.

↑ ↑ ↓
↑ ↑

↓
↓ ↓ ↑ ↑ ↓

↑ ↑

↓
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Figure 7. Qualitative results of compressive sensing.

Figure 8. Qualitative results of colorization.
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Figure 9. Qualitative results of inpainting.

Figure 10. Qualitative results of super resolution.

E.2. Unconstrained Image Generation

The example results of CIFAR-10 generated using 100-step sampling of DDIM-NLC are presented in �g. 11.
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Figure 11. Example results of CIFAR-10 generated using DDIM-NLC.
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