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Abstract

This study introduces “hallmarks engineering,” a computational approach to generate quantifiable hallmarks of aging

and cancer. We evaluated these hallmarks using genome-wide DNA methylation data from ten age-related diseases.

Causal emergence analysis revealed that hallmark-level features show stronger disease associations than individual

genes, with improvements up to 9.7 orders of magnitude. Hallmark-based models achieved comparable predictive

performance with fewer predictors compared to regular pathway-based models. Dependency network analysis

uncovered regulatory networks with power-law distributions and identified top-level “super-regulators” such as genomic

stability. Notably, the inclusion of neurodegenerative and cancer hallmarks enhanced representation for their respective

disease categories. Our findings suggest that top-down modeling using computationally generated hallmarks may

reveal common mechanisms across multiple diseases, offering a promising approach for modeling multimorbidity.

Corresponding author: Jianghui Xiong, jianghui@deepome.com; xiongjh77@163.com

Introduction

A major challenge in biomedicine is synthesizing information from diverse, large-scale datasets to represent the causal

mechanisms underlying multiple diseases. This challenge is especially relevant when addressing multimorbidity—the

simultaneous presence of two or more medical conditions. Multimorbidity poses significant obstacles for healthcare

systems and pharmaceutical research[1]. The current approach of treating diseases in isolation often falls short for elderly

patients and can lead to adverse effects due to polypharmacy. There’s an urgent need to develop innovative strategies

targeting the fundamental processes underlying age-related multimorbidity, rather than focusing on individual diseases

separately. It’s crucial that we shift from the traditional “one drug/one disease” paradigm towards a more holistic,

integrated approach[2].
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A series of “Hallmarks” papers has profoundly influenced the scientific community. These include the Hallmarks of

Cancer[3], Hallmarks of Aging[4], and Hallmarks of Health[5], among others. These publications have gained prominence

for their ability to provide a concise, high-level understanding of complex disease-related biological processes. By distilling

intricate biological phenomena into fundamental principles, they present a conceptual framework that enhances the

accessibility and comprehensibility of the subject matter.

In this paper, we aim to use machine learning tools to generate a quantitative form of hallmarks and use these hallmarks

to create a concise representation of multiple age-related diseases. Our computational framework focuses on three

questions:

1. How can we preserve information and predictive power for diseases when condensing micro-features into macro-

features?

2. Is it feasible to generate a highly simplified representation and predictive model for diseases?

3. From the perspective of disease intervention and drug development, how can we identify critical regulators underlying

disease symptoms and pathway alterations, and pinpoint common regulatory variables across multiple diseases?

To address these questions, our computational framework incorporates three key components: causal emergence

analysis, parsimony predictive modeling, and dependency network analysis. This study evaluates the potential of AI-

generated hallmarks to enhance existing pathways and ontologies in biomedical research infrastructure. We examine their

efficacy in identifying superior disease biomarkers and network nodes capable of remodeling diverse pathways, potentially

altering disease phenotypes. Moreover, these AI-generated hallmarks may offer a high-level modeling approach to

uncover common underlying causal mechanisms across multiple age-related diseases, presenting a novel strategy to

tackle the complexities of multimorbidity.

Results

AI-Generated Hallmarks and Their Evaluation Framework

Hallmarks represent a higher-level synthesis and refinement of regulatory pathways. In contrast to conventional pathways

such as gene ontology terms and signaling pathways, hallmarks function as macro-level features. We developed

representative gene sets for hallmarks by consolidating thematically related pathways (Fig. 1A). Our hypothesis posits

that alterations in these hallmarks constitute the fundamental mechanisms underlying diseases. As macro-level

constructs, hallmarks more effectively capture the shared mechanisms across multiple diseases compared to standard

pathways. This approach enables the use of a select few hallmarks to elucidate the core mechanisms driving multiple

diseases and their associated symptoms, thereby playing a pivotal role in multimorbidity analysis (Fig. 1A).
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Figure 1. Computational Framework for AI-Generated Hallmarks: Design, Evaluation, and Practical Application

Our machine learning-based framework for hallmark generation is illustrated in Figure 1B. The conceptual foundation for

our hallmark terms draws primarily from three influential publications: Hallmarks of Aging[4], Hallmarks of Cancer[3], and

Hallmarks of Neurodegenerative Diseases[6]. Our framework incorporates five distinct feature spaces for hallmark

analysis:

1. H1 (Aging): Comprises 16 terms, including nine primary categories (e.g., Genome Stability, Proteostasis) and seven

secondary categories (e.g., NAD+, immune-related terms).

2. H2 (AgingCancer): Expands on H1 with nine additional terms related to cancer processes, totaling 25 terms.

3. H3 (AgingNeuro): Augments H1 with six neuro-specific terms, resulting in 22 terms.

4. H4 (AgingNeuroCancer): A comprehensive space combining all aforementioned hallmarks, totaling 31 terms.

5. H5 (TCM): Incorporates 39 terms derived from Traditional Chinese Medicine terms (see Methods).

Our research employs previously developed pathway aging algorithms[7] to calculate aging indices for both pathways and

hallmarks, represented as unique gene sets. We utilize genome-wide DNA methylation profiling data from 10 age-related

diseases for our analyses.
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The computational framework consists of three primary components:

1. Causal Emergence Analysis: This component focuses on preserving and enhancing essential causal relationships

and phenotype associations when condensing information from micro-level to macro-level features. It aims to maintain

the critical links between biological features and disease outcomes during the compression process.

2. Parsimony Predictive Modeling: This approach strives to develop the most efficient and concise model for predicting

disease outcomes using a minimal set of predictors or hallmarks. Adhering to the principle of parsimony, we aim to

identify a combination of hallmarks that offers optimal predictive accuracy with minimal complexity.

3. Dependency Network Analysis: This component investigates the underlying dependencies or supporting factors

crucial to disease-defining symptoms. Its objective is to pinpoint key nodes or hallmarks within the biological system

that, when targeted, could potentially lead to significant improvements in overall health outcomes. This analysis may

uncover promising therapeutic targets or intervention points for addressing aging or disease.

Causal Emergence: Comparing Hallmarks and Regular Pathway Terms

We developed representative gene sets for each hallmark term by consolidating related pathways. Our aim was to

examine whether these hallmark gene sets demonstrate stronger disease associations compared to standard pathway

terms. To quantify this enhanced association, we introduced the causal emergence index (CE index). Figure 2 and figure

3 presents the results for 8 age-related diseases, with each disease represented by 5 distinct subplots.
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Figure 2. Comprehensive Analysis of Causal Emergence in Hallmarks and Pathways.

A–F: Results for six age-related diseases.
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Figure 3. Extended Causal Emergence Analysis and Multimorbidity Insights.

A–B: Results for two additional age-related diseases. C: A network visualization of aging and cancer hallmarks associated with

multiple diseases. D: A network representation of aging and neurodegenerative disease hallmarks linked to various conditions,

highlighting potential multimorbidity mechanisms.

The initial subplot illustrates the relationship between the CE index and odds ratio for each pathway and hallmark. The

odds ratio quantifies the association between the aging index of pathways or hallmarks and the disease (methodology

detailed in Methods). Across all 8 diseases, we observed a significant positive correlation between the CE index and odds

ratio. For example, in Alzheimer’s disease, these variables exhibit a Pearson correlation of ρ = 0.8 (p-value: 1.7E-89).

This correlation suggests that pathways more predictive of the disease tend to have higher CE indices.

To address the question of whether a pathway’s strong disease prediction (high odds ratio) is simply due to containing

many individually strong predictor genes, we present a second subplot. This green scatter plot explores the relationship

between pathway odds ratios and individual gene-disease associations. The gene-disease association is represented by

the two-sample t-test p-value of gene variables in the disease group versus healthy control groups. Notably, for most

diseases, we found that the pathway odds ratio shows little to no correlation with single gene-disease associations. This

observation implies that pathways or hallmarks with high odds ratios likely derive their predictive power from emergent
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properties rather than individual gene effects.

The third subplot presents pie charts illustrating the distribution of pathways or hallmarks among the top 200 features with

the highest CE index. Despite the initial pool of regular pathway terms (GO and Reactome pathways) exceeding 3,000,

the hallmarks for aging, cancer, and neurodegenerative diseases comprise only 31 terms. The significant representation

of hallmarks within the top 200 CE pathways suggests that these hallmarks contain a higher concentration of high CE

features compared to regular pathways.

The fourth subplot depicts a CE principle diagram, while the fifth subplot ranks hallmarks by their CE index. Notably, the

hallmark “Axon” (defined by the hallmarks of neurodegenerative disease, H3) consistently ranks in the top three for all

neurosystem-related diseases. For example, in Mild Cognitive Impairment, H3:Axon is the top hallmark with the highest

CE index of 9.7. In the CE principle diagram, the green bar represents the frequency distribution of gene-disease

associations, with the x-axis showing -log10(p), where p is the two-sample t-test p-value of gene DNA methylation values

in disease versus control groups. The red line illustrates the association of hallmarks with disease, also as -log10(p),

where p is the two-sample t-test p-value of the hallmark aging index in disease versus control groups. The CE index,

calculated as per the formula detailed in Methods, represents the difference between the hallmark-disease association

score and the 95th quantile of all individual gene-disease association scores. In the case of Mild Cognitive Impairment,

H3:Axon enhances the disease association by 9.7 orders of magnitude.

Our analysis indicates that hallmarks with high causal emergence indices exhibit relevance across multiple age-related

diseases, highlighting their potential for multimorbidity analysis. By networking the top 10 hallmarks with the highest CE

index for each disease, we identified key hallmarks connecting multiple conditions: Genomic Stability (H1) links to

Alzheimer’s disease, mild cognitive impairment, Parkinson’s disease, and breast cancer; Tissue Remodeling (H2)

connects to Alzheimer’s disease, mild cognitive impairment, depression, and colon cancer (Fig 3C); and Axon (H3)

relates to Alzheimer’s disease, mild cognitive impairment, Parkinson’s disease, and breast cancer (Fig 3D). This cross-

disease relevance of hallmarks emphasizes their potential as valuable tools for comprehending and analyzing

multimorbidity in age-related diseases.

Hallmarks Generate Parsimonious Disease Prediction Models

We compared prediction models using hallmarks (macro-level features) with those using regular pathway aging indices.

Nine distinct feature spaces were created: three sets of hallmarks (aging, cancer, and neurodegenerative diseases), a

combined hallmark set, hallmarks of Traditional Chinese Medicine (TCM), and four regular pathway categories (GOBP,

GOCC, GOMF, and Reactome). Each feature space corresponded to a model using only variables from that specific set.

For each disease and feature space, we employed LASSO algorithms to generate 10 prediction models by resampling

samples 10 times.

Figure 4 illustrates eight disease panels, each containing three subplots. The first subplot in each panel is a scatter plot,

with the x-axis representing the mean number of predictors in the 10 resampling-generated models, and the y-axis
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showing the average predictive performance AUC (area under the ROC curve). Each point denotes a feature space,

ranging from standard pathways like GOBP to hallmark series. Generally, a positive correlation exists between the

number of predictors and AUC, although increasing variables does not always result in a continuous AUC increase.

Figure 4. Comparative Analysis of Hallmark and Standard Pathway Feature Spaces for Developing Concise Disease Prediction

Models

The second subplot, a green bar chart, displays the average AUC for the nine feature spaces. Hallmark series feature

spaces typically demonstrate AUC levels comparable to standard pathways. To identify which feature space utilizes fewer

predictive variables while maintaining similar prediction accuracy, we established a uniform AUC cutoff of 0.75. We then

selected models from each feature space exceeding this cutoff and examined the minimum number of predictive variables

employed in these models.

The third subplot reveals intriguing patterns across diseases. For Alzheimer’s disease, both AgingNeuro and TCM

hallmarks achieve the minimum of six predictive variables. The AgingNeuro feature space, encompassing all aging

hallmarks plus several neuron-related ones like H3:Axon, outperforms the aging hallmarks alone. This indicates that

neurodegenerative disease hallmarks provide unique predictive variables for neuropsychiatric diseases, enhancing

prediction accuracy. Similarly, for breast cancer, AgingCancer reaches the lowest value of four, surpassing the aging

hallmarks alone, suggesting that cancer hallmarks offer distinct predictive capabilities. For colon cancer, AgingCancer
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hallmarks also share the top position, further emphasizing the synergy between aging and disease-specific hallmarks in

predictive modeling.

Notably, TCM hallmarks achieve the minimum value in six out of eight diseases studied: Alzheimer’s disease, Depression,

Parkinson’s disease, colon cancer, osteoporosis, and Rheumatoid arthritis. This suggests that TCM hallmarks possess

distinct advantages in generating simplified predictive models across various diseases.

We utilized two-thirds of the disease dataset for training the prediction models, with the AUC values in Figure 4

representing training set performance. Test set AUC analysis yielded results consistent with those presented in Figure 4.

Additionally, when applying a different AUC cutoff (e.g., 0.70) to generate the minimum number of predictors for each

disease, the results remained similar to those presented in Figure 4 (Supplementary Figure 1).

Key Hallmarks Emerge as Predictive Indicators Across Multiple Age-Related Conditions

To enhance model interpretability, we employed the Lasso algorithm, a linear model renowned for its transparency in

machine learning. We utilized multiple resampling techniques to generate diverse model iterations, then identified key

predictive features using a novel metric: the predictor importance score (detailed in Methods).

Our analysis compared two feature spaces: one utilizing classic aging hallmarks, and another incorporating cancer and

neurodegenerative disease hallmarks. Figure 5A illustrates this comparison, presenting variable importance rankings for

both feature spaces across various disease panels.
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Figure 5. Predictor Importance Analysis.

A. Comparison of important predictors when adding hallmarks of cancer and neurodegeneration to the basic aging hallmarks.

B. Multimorbidity analysis on H1 and H2, showing how the combination of important aging and cancer hallmarks connects to multiple

age-related diseases.

C. Multimorbidity analysis on H1 and H3.

In the case of Alzheimer’s disease, mitochondrial factors ranked highest, followed by cytokine and NAD+. The expanded
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model, which included cancer and neurodegenerative hallmarks, introduced three new predictors from H2 hallmarks: DNA

replication, tissue modeling, and growth regulation. These additions underscore the integral role of these processes in

normal physiology, extending beyond cancer development. Notably, a Neuron.H3 hallmark emerged as a key predictor in

Alzheimer’s disease, while mild cognitive impairment models incorporated additional neural hallmarks such as Synapse,

Actin Filaments, and Axon.

For cancer-related conditions, the models highlighted two H2 hallmarks: tissue remodeling and cell proliferation, as

significant predictors in breast cancer. Tissue remodeling also demonstrated prominence in colon cancer predictions.

In summary, while neurodegenerative and cancer-specific hallmarks enhance predictive value for their respective disease

categories, aging hallmarks consistently maintain their significance as key predictors across various conditions. Notably,

mitochondrial function emerges as the top predictive variable for Alzheimer’s disease, depression, and colon cancer,

indicating its widespread relevance as a common indicator of multiple age-related diseases. Other hallmarks retaining

their prominence include genomic stability for breast cancer, inflammation for osteoporosis, NAD+ metabolism for COVID-

19 severity, and autophagy for atherosclerosis.

To visualize these relationships, we constructed networks linking diseases with their most important hallmark predictors.

Figure 5B depicts the network incorporating aging and cancer hallmarks, with node sizes reflecting cumulative predictor

importance across diseases. H1: Mitochondrial stands out as the most prominent node, connecting to multiple conditions.

The cancer-specific hallmark H2: Tissue Remodeling demonstrates a unique role by linking breast cancer, colon cancer,

Alzheimer’s disease, and Parkinson’s disease. Figure 5C illustrates a similar network focused on aging and

neurodegenerative hallmarks, where H3: Axon emerges as a significant predictor for Parkinson’s disease, mild cognitive

impairment, and breast cancer. These network analyses, derived from machine learning prediction models, offer valuable

insights into common indicators across multiple diseases, potentially advancing our understanding of multimorbidity in

age-related conditions.

Dependency Networks Exhibit Power Law Distributions

Intricate interdependencies within biological systems play a crucial role in identifying effective drug targets. These systems

comprise complex networks of pathways and processes that influence one another. By understanding these

dependencies, researchers can pinpoint key regulatory nodes that, when targeted, may exert broad effects on disease

processes. The brain-heart relationship serves as an illustrative example: the brain’s high metabolic demands necessitate

a constant supply of oxygen and nutrients, provided by blood circulation driven by cardiac function. Consequently, any

impairment in heart function can rapidly compromise the brain’s essential resources, underscoring the critical

interdependence of these systems. This interconnectedness highlights the importance of considering systemic effects

when developing therapeutic strategies.

In our research, we examine the correlation between the aging index of pathway A and disease manifestation. We posit

that if the aging index of pathway B influences the strength of this correlation, pathway A’s disease association is

Qeios, CC-BY 4.0   ·   Article, October 16, 2024

Qeios ID: O3R7FR   ·   https://doi.org/10.32388/O3R7FR 11/24



dependent on pathway B. For the purpose of identifying therapeutic targets, we prioritize pathway B. Should a pathway B

affect multiple pathway A-disease correlations, it emerges as a promising candidate for therapeutic intervention.

Consequently, our network topological analysis emphasizes out-degree analysis, as it effectively captures the impact of

pathway B—these potential “super regulators.”

For each disease under study, we develop three distinct versions of dependency networks utilizing the following feature

spaces: (1) Pathway network: Employing pathway aging indices of standard pathways. (2) Hallmarks aging network:

Utilizing a combination of aging indices from standard pathways and hallmarks of aging, cancer, and neurodegeneration.

(3) Hallmarks TCM network: Incorporating aging indices from standard pathways and Traditional Chinese Medicine (TCM)

hallmarks.

Our dependency network analysis examines all possible two-variable combinations and calculates their dependency

index. Network topological analysis results are presented in Figure 6. Each disease panel comprises four subplots, with

the first displaying log-log plots for the out-degree of dependency networks derived from regular pathway feature spaces.

These power-law distribution analyses use log10(k) for the x-axis (k being the out-degree) and log10(Pk) for the y-axis

(probability of out-degree). All eight diseases exhibit good linear fit in log-log plots, indicating power-law distribution of out-

degree. Colon cancer shows the best linear fit (R-squared: 0.86), followed by Alzheimer’s disease (R-squared: 0.82).

Hallmarks aging and TCM feature spaces also demonstrate good power-law distribution fits.
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Figure 6. Dependency Network Analysis and Feature Importance.

A.Degree distribution analysis.

B. Key regulator nodes in the network across multiple diseases.

To identify potential therapeutic targets, we apply a Generalized Pareto Distribution to the out-degree distribution, a
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method commonly employed for modeling extreme values in networks and identifying super nodes. The shape parameter,

a key output, indicates the impact of highly connected nodes when positive. We compare this parameter across three

feature spaces: regular pathways, aging hallmarks, and Traditional Chinese Medicine (TCM) hallmarks.

Six of the eight studied age-related diseases show positive shape parameters. The aging hallmarks feature space

consistently demonstrates larger shape parameters compared to regular pathways, indicating enhanced impact of super

nodes when hallmark terms are incorporated. For instance, in Alzheimer’s disease, the shape parameter increases from

0.03 (pathway feature space) to 0.13 (aging hallmarks feature space), while in depression, it rises from 0.15 to 0.20.

Notably, the TCM hallmarks feature space often exhibits even larger shape parameters. In Parkinson’s disease, for

example, the parameter increases from 0.28 (aging hallmarks) to 0.46 (TCM hallmarks). Similar increases are observed in

Alzheimer’s disease (0.13 to 0.19) and depression (0.20 to 0.26).

The above results present the out-degree distribution (Figure 6). A similar analysis conducted on the in-degree

distribution also conforms to a power-law distribution for some diseases, as shown in Supplementary Figure 2.

Dependency Networks Reveal Critical Regulatory Nodes with Therapeutic Potential

To offer a comprehensive overview of the highly connected nodes in the dependency network, we generated a heatmap

illustrating the outdegree of each hallmark term across various diseases. Figure 6B presents these findings, categorized

into four distinct panels: classical aging hallmarks, cancer hallmarks, neurodegenerative disease hallmarks, and immune

function. This segmentation facilitates a more refined analysis of hallmark interactions across different disease categories.

Within the classical aging hallmarks, genomic stability consistently appears as a primary regulatory node. Additional

significant terms include stem cells and mitochondrial-associated hallmarks, underscoring their importance in age-related

processes.

In the cancer hallmarks category, growth regulation and cell death mechanisms demonstrate prevalence across multiple

diseases, with particular prominence in breast cancer. Notably, within the neurodegenerative disease hallmarks,

osteoporosis displays high outdegree node terms, specifically in microtubules and synapses. Interestingly, breast cancer

also exhibits a highlighted neuronal term, suggesting potential cross-category interactions.

The immune function panel reveals that osteoporosis is characterized by high outdegree in B cells and cytokine-related

terms. Concurrently, T cells show significant impact in depression, indicating the diverse roles of immune components

across different age-related conditions.

Our analysis revealed the presence of highly influential nodes within the dependency network for each disease. To

visualize these relationships, we created partial network diagrams, as shown in Figures 7 and 8. Given the complexity of

the networks, we prioritized nodes based on their total degree (the sum of outdegree and indegree), focusing on the most

significant components. The size of each node in the diagrams corresponds to its total degree, providing a visual

representation of its importance. We employed a layered layout to effectively illustrate the hierarchical and regulatory
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relationships within the networks.
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Figure 7. Hallmark Dependency Networks for Neurodegenerative Diseases. A. Alzheimer’s disease. B. Mild cognitive impairment. C.

Major depressive disorder.

Figure 8. Hallmark Dependency Networks for Cancer-Related Diseases.

A. Breast cancer.

B. Colon cancer.

Figure 7 presents the dependency networks for three neurological disorders. We utilized a color-coding system to

differentiate between various types of hallmarks: red for classical aging hallmarks, orange for neurodegenerative disease
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hallmarks, and green for regular pathway terms.

In the case of Alzheimer’s disease (Figure 7A), the network exhibits a clear three-tiered structure. At the apex, we find a

single node representing genomic stability, which exerts significant influence over nodes in the second and third tiers. The

second tier features stem cells and inflammation as key players. Within the third tier, the ‘GO cell cortex’ node stands out

due to its larger size, indicating a high number of incoming connections and suggesting that it is subject to regulation by

numerous other factors in the network.

The dependency network for mild cognitive impairment reveals a more sophisticated regulatory structure. While genomic

stability maintains its crucial role, other nodes, notably microtubules, emerge as comparably significant regulators. This

increased variety of key regulators potentially reflects the complex nature of early cognitive decline, suggesting multiple

pathways or origins for the condition. Although this study does not primarily aim to identify specific disease mechanisms,

it demonstrates the efficacy of dependency network analysis in unraveling the intricacies of disease progression.

In major depressive disorder, genomic stability remains a critical factor. Additional top-tier regulators within classical aging

hallmarks encompass mitochondrial function, autophagy, telomeres, and nutrient sensing.

Figure 8 present the findings for two cancer types, with cancer hallmark terms highlighted in light blue. For breast cancer

(Figure 8A), mitochondrial function emerges as the most prominent classical aging hallmark. Within cancer hallmarks,

DNA replication and energy glycolysis stand out as key nodes. In colon cancer (Figure 8B), genomic stability takes the

lead as the primary regulator.

Consistent with the original rationale for introducing hallmarks of cancer and aging, our analysis indicates that a select

group of key players may elucidate mechanisms in aging-related diseases. The hierarchical structure observed in

dependency networks suggests that future research should prioritize interventions targeting top-tier regulators, potentially

offering a strategic approach for identifying therapeutic targets.

Discussion

Recent advancements in identifying hallmarks of aging and cancer represent a significant breakthrough in biomedicine,

providing a unified framework for understanding disease mechanisms, identifying biomarkers, and discovering therapeutic

targets. This progress is poised to influence drug discovery, personalized preventive medicine, and age-related

interventions. Our findings demonstrate the feasibility of employing machine learning techniques to generate data-driven

hallmark definitions. This approach paves the way for a novel field of study, termed “hallmarks engineering,” which

focuses on developing, assessing, and refining the hallmarks knowledge framework.

The issue of multimorbidity is of particular importance in this context. Current AI approaches to drug discovery often

adhere to a “one disease, one drug” paradigm, which may not adequately address the complexities of multiple coexisting

conditions. There is a pressing need for more comprehensive, patient-centered models that can analyze multimorbidity,

identify relevant predictors, and elucidate underlying pathogenic mechanisms[8]. Our proposed hallmarks engineering
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method offers a promising solution by providing a macro-level, top-down perspective on biomarkers, regulatory networks,

and potential therapeutic targets, thereby facilitating a more holistic approach to addressing multimorbidity.

From a methodological perspective, our previously introduced pathway aging algorithm allows for the assessment of

intrinsic capabilities across a wide range, including protein complexes, organelles, organs, and inter-organ systems. We

introduce the concept of “capomics”—the study of intrinsic capabilities as defined by pathway or hallmark aging in an

omics-like manner. This approach, involving comprehensive analysis of pathway aging for individual patients, shows great

promise for personalized health interventions and disease prevention strategies. As demonstrated by the dependency

network analysis in Figures 7 and 8, a small number of highly influential regulators can significantly impact a wide range

of network nodes. Identifying and characterizing these key regulatory elements represents a crucial focus for future

research in hallmarks engineering and capomics analysis.

A notable aspect of this study is the comparative analysis between hallmarks of aging and Traditional Chinese Medicine

(TCM) hallmarks. The TCM hallmarks demonstrate high causal emergence and rank prominently in predictor importance

analyses (Supplementary Figure 3), indicating their robust predictive capabilities. In the dependency network analysis,

TCM hallmarks exhibit higher Pareto shape parameters compared to other hallmark categories, suggesting the presence

of more influential regulatory elements within the TCM framework. The analysis identifies several TCM hallmarks,

represented by nodes with high out-degree, that consistently appear across multiple disease networks. This finding, as

illustrated in Supplementary Figure 4, highlights the potential importance of these TCM concepts in comprehending and

addressing various age-related conditions. The construction of a hallmark-exclusive dependency network provides a

macro-level perspective on the regulatory interactions between aging and TCM hallmarks (Supplementary Figures 5 and

6). TCM hallmarks offer a succinct representation of disease mechanisms and herbal effects, warranting further

investigation into their specific merits and potential synergies with pathway-aggregated hallmarks derived from gene

ontology and signaling pathways. Elucidating the effectiveness of TCM hallmarks could yield valuable insights for

enhancing the overall hallmarks framework, thereby addressing key objectives in both hallmarks engineering and

capomics analysis.

This study has certain limitations that should be acknowledged. Firstly, the sample size for each disease is relatively

limited. Ideally, multiple cohort datasets per disease would be available to conduct independent validation of the

prediction models. Given the constraints in data availability, we opted for a resampling approach and employed the

LASSO machine learning algorithm to train a series of prediction models. This methodology enabled us to identify

statistical patterns in predictor usage, forming the basis for our predictor importance analysis.

Secondly, the scope of age-related diseases included in this study is not exhaustive. While multimorbidity often involves

multiple disease clusters, our research primarily focused on several neurological conditions and two types of cancers.

Future research efforts aim to expand the range of diseases studied, with a particular emphasis on including cardio-

metabolic disorders to provide a more comprehensive analysis of age-related multimorbidity.
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Methods

Pathway Aging Analysis

This study utilizes DNA methylation and pathway/ontology data consistent with our previous research[7]. We sourced

regular pathway terms from The Molecular Signatures Database (MSigDB)[9], accessible at http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp. These encompass gene set definitions from Gene Ontology (GO), including Biological

Process (GOBP), Molecular Function (GOMF), and Cellular Component (GOCC). REACTOME pathways were employed

to represent signaling pathway terms. For the purposes of this study, we use the term “pathway” to encompass both gene

ontology terms and signaling pathway terms.

We interrogated 10 age-related diseases using genome-wide DNA methylation profiling of clinical cohorts. The data was

downloaded from the GEO database. Unless specified otherwise, these data are derived from whole blood samples, using

the Illumina 450k/850k microarray platform. The total number of clinical samples is 3263. The data examined in this study

encompasses several conditions, including Alzheimer’s Disease[10] (GSE153712, N=632), Mild Cognitive

Impairment[10] (GSE153712, N=565), Parkinson’s Disease[11] (GSE111223, N=259, Saliva), Osteoporosis[12](GSE99624,

N=48), Breast Cancer (GSE51032, N=659), Colon Cancer (GSE51032, N=590), Atherosclerosis[13] (GSE46394, N=49),

Depression[14](GSE113725, N=194), COVID-19 Severity[15](GSE179325, N=473), and Rheumatoid Arthritis[16] (N=689).

Each gene ontology and signaling pathway consists of a specific set of genes. We assign a characteristic value to each

gene, such as its DNA methylation level, calculated as the average methylation value of all promoter region CpG sites.

Utilizing a comprehensive DNA methylation dataset that includes age information, we determine the correlation between

each gene and age. This analysis identifies genes positively (pos genes) and negatively (neg genes) correlated with age.

A pathway is considered to exhibit more pronounced aging when pos genes show higher characteristic values and neg

genes show lower values. To quantify this, we employ a T-test to compare the characteristic values of pos and neg

genes, using the resulting T-score as the pathway’s characteristic value.

The aging of each pathway is determined by the statistical difference between the DNA methylation values of Pos-genes

and Neg-genes. We conduct a T-test between these values for each DNA methylation profile. The resulting T-statistics

serve as the pathway aging index (PA index). Specifically, x represents DNA methylation values of Pos-genes, and y

represents those of Neg-genes. The two-class t-test of gene scores (DNA methylation scores) between sets x and y is

calculated using the following T-statistic:

PA index =

X̄ − Ȳ

S2
X

n +

S2
Y

m

Here, X̄ is the mean of gene scores of gene set X, Ȳ is the mean of gene scores of gene set Y. S2
X is the variance of gene

set X scores, S2
Y is the variance of gene set Y scores, n is the number of genes in set X, and m is the number of genes in

√
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set Y.

This t-score serves as the disease-specific pathway aging index. Through this process, we transform each disease’s

methylation profile into a new matrix—the PA-index by samples matrix—where each row represents a pathway aging

index.

Aggregating Pathways into Hallmark Gene Sets

We define gene sets for established hallmarks of aging and cancer by consolidating groups of standard pathways. These

pathway definitions are sourced from gene ontology or signaling pathways in the GSEA database. For each hallmark, we

meticulously select relevant keywords. For instance, to represent “mitochondrial dysfunction” in the aging hallmarks, we

employ “mitochondrial” as a search term in the GSEA database to identify all pathways containing this keyword. Pathways

annotating 50 or more genes contribute their entire gene set to a comprehensive list. Genes essential to mitochondrial

function frequently appear multiple times in this compilation. We subsequently calculate each gene’s frequency of

occurrence, rank them in descending order, and select the top 1000 genes as the representative set for that particular

hallmark. Given that many of the diseases under analysis are neurodegenerative in nature, we also incorporate the

Hallmarks of neurodegenerative diseases into our analysis.

In the realm of Traditional Chinese Medicine (TCM), practitioners utilize a concise set of terms to characterize the

functions or effects of herbs on the human body. These terms serve to group similar herbs, and herbs sharing the same

term annotation often influence overlapping biological processes at the cellular level. This observation suggests that a

specific TCM term could potentially represent a distinct gene set. We applied this concept to generate a hallmark gene set

for each TCM term.

To accomplish this, we developed a comprehensive TCM functional annotation database. This database was created by

extracting pertinent keywords from the “function” sections of TCM notes found in the Chinese Pharmacopoeia (502

species), the National Collection of Traditional Chinese Medicine (3741 species), and the Chinese Materia Medica (7832

species). From this extensive collection of TCM terms, we carefully selected 39 keywords based on their frequency of

occurrence in the annotation database, with a particular emphasis on syndrome descriptions.

For each TCM term, we compiled a list of associated herbs. We then obtained the chemical composition of these herbs

using the TCMID database[17]. For each chemical, we retrieved its target gene list from the STITCH database[18], applying

a STITCH score threshold of ≥200. This process yielded a target gene list for each TCM term. Genes crucial to a specific

TCM term often appeared multiple times in these lists. We calculated each gene’s frequency of occurrence, ranked them

from highest to lowest, and selected the top 1000 genes as the representative set for that hallmark.

Causal Emergence Analysis

Causal emergence, a concept in complexity science, suggests that macro-scale phenomena can enhance causal

relationships by reducing noise, resulting in stronger causal links at higher organizational levels[19]. In our study, we
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consider pathway-level features as macroscale phenomena and individual gene events as microscale features. We further

aggregate pathways into hallmarks, representing an even higher macro level. Our aim is to evaluate whether the

association of pathway (or hallmark) aging index with phenotype (disease) is enhanced compared to individual genes.

To assess gene-disease associations, we developed a gene-by-person matrix for each disease, with matrix values

representing gene DNA methylation levels. We utilized the average methylation value of all promoter region sites as the

gene’s representative value. For each gene, we computed the t-test p-value comparing methylation levels between the

disease and healthy control groups, using -log10(p) as the association index (Ag).

For pathway-disease associations, we employed a similar methodology, substituting gene methylation values with

pathway aging index scores. We began with a pathway aging index by persons matrix and used -log10(p) as the pathway-

disease association index (Ap). Hallmarks-disease associations were calculated analogously, using the hallmarks aging

index.

Consequently, each pathway/hallmark has a single pathway-disease association index value, while each pathway

encompasses multiple gene-disease association indices. We then defined the causal emergence index (CE index) for

each pathway/hallmark to quantify the difference between macro-level (pathway-disease) and micro-level (gene-disease)

associations. The CE index is computed as Ap - Agr, where Agr represents the 95th percentile of Ag.

In our causal emergence analysis, we also examined the relationship between the CE index and odds ratio. We utilized

the odds ratio to indicate the association between the pathway or hallmarks aging index and disease. To calculate this,

we determined the average pathway aging index for each pathway across all samples, then categorized samples into PA-

High and PA-Low groups based on this average. Using Fisher’s exact test, we quantified the difference in disease

probability between these groups, yielding an odds ratio.

Disease Prediction Modeling and Predictor Importance Analysis

Our methodology involves conducting 10 resampling iterations for each disease and feature space, such as hallmarks of

aging. For each iteration, we randomly assign 2/3 of the disease dataset samples to construct a predictive model using

the LASSO algorithm, while the remaining 1/3 serves as a validation set. This approach yields 900 predictive models

across 10 diseases, 9 feature spaces, and 10 models per combination, establishing a comprehensive framework for

analysis across various conditions and features.

To assess the relative importance of predictor variables, we calculate a Predictor Importance (PI) index for each variable

across the 10 resampling iterations within a specific disease and feature space. The PI index for the i-th predictor variable

is quantified as follows:

PI = mean

abs  Bki

Sk(
( )

)
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Here, k denotes the k-th model (1 to 10), Bki is the coefficient of the i-th predictor variable in that model, abs represents

the absolute value operation, and Sk is the sum of absolute values of all predictor variable coefficients in the k-th model.

The mean function computes the average value across all models.

Dependency Network Analysis

In our study, we examine the relationship between variables and disease phenotypes. We consider a variable Va to be

dependent on another variable Vb if Vb influences the correlation between Va and the phenotype. For pathways a and b,

we assess this dependency using their aging indices and disease association. Our dependency network analysis follows a

two-step process for each disease:

Step 1: Pathway ranking. We calculate the average pathway aging index for each pathway across all samples. Samples

are divided into PA-High and PA-Low groups based on this average. Using Fisher’s exact test, we determine the

difference in disease probability between groups, obtaining an odds ratio. Pathways are ranked by odds ratio, with the top

200 selected for further analysis.

Step 2: Dependency index calculation. For each pathway pair, we assume their aging indices are Va and Vb. To test

whether Va’s correlation with the disease depends on Vb, we first calculate Vb’s average value across all samples. We

classify samples above this average as the Vb-High group and those below as the Vb-Low group. Within these groups, we

assess the correlation between Va and the disease phenotype using two-sample t-tests. We then calculate the difference

between the T-scores of these tests, as shown in the following formula:

 Dp index =

¯
X1 −

¯
Y1

 S2
X1

n1 +

S2
Y1

 m1

−

¯
X2 −

¯
Y2

 S2
X2

n2 +

S2
Y2

 m2

In this formula, the strength of dependency is the difference between two T-scores. The larger this difference, the greater

the impact of Vb’s state on the correlation between Va and the disease. The first parenthesis represents the calculation

for the Vb-high group, while the second represents the Vb-low group. X1 is Va (the aging index of pathway a) in the

disease group of the Vb-high population, Y1 is Va in the healthy control group of the Vb-high population. 
¯

X1 and 
¯

Y1 are

the means of X1 and Y1, respectively. S2
X1 and S2

Y1 are the variances of X1 and Y1. n1 and m1 are the number of

samples in X1 and Y1. Similarly, in the second parenthesis, X2 is Va in the disease group of the Vb-low population, Y2 is

Va in the healthy control group of the Vb-low population. 
¯

X2 and 
¯

Y2 are the means of X2 and Y2. S2
X2 and S2

Y2 are the

variances of X2 and Y2. n2 and m2 are the number of samples in X2 and Y2.

In our dependency network analysis, we compute a dependency index for all possible variable pairs. A dependency

(√ ) (√ )
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relationship between two pathways is established when this index surpasses a predetermined threshold (e.g., 3). This

relationship is represented as an edge in a directed network.

To analyze the network’s structure, we examine the degree distribution using log-log plots for both out-degree and in-

degree. We employ the Generalized Pareto Distribution to model extreme values in the network, which aids in identifying

potential therapeutic targets. The shape parameter of this distribution provides insight into the influence of highly

connected nodes. By fitting the out-degree and in-degree distributions to this model, we obtain shape parameters that

quantify the importance of super nodes within the network architecture.
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