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(Quasi-)periodic solutions are constructed analytically for Galerkin-regularized or truncated nonlinear

Schrödinger (GrNLS) systems preserving �nite Fourier freedoms. GrNLS admits travelling-wave or

multi-phase solutions, including monochromatic solutions independent of the truncation and quasi-

periodic ones with or without additional on-torus invariants. Numerical tests show that instability

leads such solutions to nontrivial longulent states with remarkable solitonic structures (called

“longons”) admist disordered weaker components, corresponding to presumably whiskered tori. In

the strong-coupling limit (e.g., the self-phase modulation equation in optics), neutral stability holds

for the condensates, without the modulational instability, but not generally for other multi-phase

(quasi-)periodic solutions from some of which the longulent state developed is also adressed. The

possibility of nontrivial Galerkin-regularized complex Ginzburg-Landau longulent states is also

discussed for motivation.

Corresponding author: Jian-Zhou Zhu, jz@scc�s.org

1. Introduction

A wide spectrum of multidisciplinary processes in Nature, ranging from hydrodynamics, plasma physics,

optics to Bose-Einstein condensates (BEC), can be well modeled by the nonlinear Schrödinger (NLS) or

Gross-Pitaevskii (GP) equation. In the transition from classical soliton theory to its quantum counterpart,

particularly in the Hamiltonian framework, the NLS equation is often regarded as simpler and more

fundamental than the Korteweg-de Vries (KdV) equation[1]. The two models also present different
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nonlinear physics, with no KdV but possible NLS �nite-time or asymptotic blow-up (c.f., Ref.[2]  and

references therein for the focusing cubic case focused here.)

We brie�y introduce the most basic, in terms of nonlinear mathematical physics, and closely relevant (to

solitonic structures) backgrounds in the following. Concerning our periodic problem, associated to NLS,

probably the most remarkable phenomena are the fractalization and quantum revival, associated to the

Talbot effect[3][4][5], and solitons (see, e.g., Refs.[6][7]  and references therein for traditional Hamiltonian

theory and most recent developments on soliton gas.) For the spectral theory of similar systems

integrable by inverse scattering transform, see, e.g, Ref.[8] and references therein for ini�nte-gap theory,

and, Ref.[9] and references therein for recent advancements of uni�ed transform/Fokas method over the

classical inverse scattering transform for periodic problems. The classical studies of periodic and quasi-

periodic NLS solutions can be found in, e.g., Refs.[10][11][12]. Finally, related to the instability in our

numerical tests, note that, even for the in�nite-line problem, the modulational-instability-stage problem

is nontivial (see, e.g., the recent different results of Zakharov-Gelash[13] and Biondini-Mantzavinos[14].)

Other ingenious methods have been used to study soltion systems, but in general the so-called

nonintegrable equations are in lack of an effective systematic theory of solutions; for instance, the

understanding of nonintegrable soliton gases (e.g., NLS with nonlinearity of orders higher than  [15])

heavily relies on the help of numerical investigations. Of course, “integrability”, beyond that of the

Liouville sense and that associated to the inverse scattering method, by itself is neither completely

de�ned in mathematics nor physically well understood. We need a working framework for general

conservative systems towards which this work belongs to the efforts (see also the simultaneous

communications[16][17]). The most closely relevant models, at least formally, are of course the

corresponding Galerkin-regularized (Gr) systems preserving �nite Fourier freedoms (with wavenumber

modules,  ) and important parts of the mode interaction structure, including some conservation

laws[16][18]. [For the real variable    dealt with elsewhere[16], conjugate Fourier coef�cients    work

together to form a “mode”; now, the (Gr)NLS variable is complex, with independent “modes” of

wavenumbers  . So, to avoid confusion, we will try to resist using such a notion.] Although the Lax pair

structure is absent, we may recover and extend certain elements, say, by combining Fourier expansion

with truncation and exploring other analytical approaches.

Paralleling the studies of pseudo-periodic (see below) patterns in hydrodynamic-type Gr-systems, such

as the Burgers-Hopf (BH), compacton-and-peakon (CP), and KdV equations (“GrBH”, “GrCP”, and
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“GrKdV[16]), and, the untruncated even-odd alternating Korteweg-de Vries (aKdV) equation[17], we will

explore what is new in the mathematical physics of the Gr-system with higher-order nonlinearity for the

complex order parameter (here cubically nonlinear GrNLS or GrGP).

The common features of various Gr-systems, such as the GrNLS to be elaborated, include

the loss of the some of the invariants, sometimes in�nitely many (and the integrability) for particular

systems,

leaving a few “rugged” ones, the regularization of the structures (singular for BH and CP),

and the admittance of new travelling waves, (quasi-)periodic orbits and, as will be explained, “pseudo-

periodic” (statistically) stable “longulent state” or “longulence”.

Longulence is characterized by solitonic structures, that we call “longons”, accompanied by the less-

ordered components, corresponding to a presumably whiskered torus whose stable manifold is

responsible for the solitonic structures with apparent periodic character (probably quasi- or, in the case

of    and in�nite frequencies, almost-periodic) and whose unstable manifold for the chaotic

components: the orbit can somehow escape with perturbations from the unstable “whiskers” and come

back to the stable manifold. We have to introduce a new term, “pseudo-periodicity”, for the combination

of periodicity (of the solitonic longons) and the chaoticity (of the disordered components).

More explanation of the choice of the term “longon” follows. First of all, solitonic structures might all be

loosely called “solitons” which however got some mathematically rigorous meaning (in the spectral

theory asociated to the inverse scattering method) for which even the original Zabusky-Kruskal

“solitons”[19] are not strictly precise. More importantly, the objective solitonic structures studied here are

quite universal in a variety of Gr-systems (including a series of hydrodynamic-type ones in Ref.[16]) that

we have investigated, deserving a particular name, for distinguishment and for convenience; and, they

appear also unique, in the sense of, for instance, being always accompanied by disordered weaker

components, which is somehow echoeing with the spirit of “Long” [i.e., the oriental dragon or “龙” in

Chinese Pinyin, embodying power and upholding order amidst (potential) chaos; “Long” is also the

Chinese zodiac for the year 2024 when the main parts of the work were completed.]

Since the GrNLS system admit typical monochromatic solutions/condensates independent of the

truncation (and stable in the strong-coupling limit or the self-phase modulation case without the linear-

dispersion term) and since in suitable situations GrNLS can well approximate the full/untruncated NLS in

the sense of convergence to the latter (as is the case in Ref.[20] but not for general Gr-systems such as the

K → ∞
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above-mentioned GrBH discussed in Ref.[16] and references therein), the following clari�cation should be

made to avoid possible confusion in later discussions: here we require the 

be also with clear truncation effects; so, neither the state without a disordered component nor that with

solitonic structure(s) but also already with convergence to the full-/untruncated-system one, with, say,

soliton turbulence (see, e.g., recently Ref.[7]  and references therein), satis�es this criterion. We can of

course say NLS soliton turbulence is a special kind of longulence, or the limit of longulence with  ,

which case however is not of our interest here for the truncation effects.

Unlike those hydrodynamic-type systems in Ref.[16] where torus-speci�c or on-torus invariants (varying

outside the torus, thus not rugged) have to be introduced to construct quasi-periodic solutions to support

the a-posteriori Kolmogorov-Arnold-Moser (KAM) argument for the longulent states, we will see that

GrNLS rugged invariants are already suf�cient to augment quasi-periodic orbits. There are other

important differences. For instance, no-linear-dispersion NLS, or more precisely (for actually no direct

connection to Schrödinger) the strong-coupling limit, i.e., the “self-phase modulation” equation in optics,

also admits monochromatic-wave solutions (without modulational instability!)

The complex Ginzburg-Landau (CGL) equation is coef�cient-complexi�ed, or, with small imaginary

part(s) in the coef�cient(s), a perturbation resulting in damping and (autonomous) driving to NLS (thus,

among others, the interesting persistence problem[21]). Actually, in our context, CGL also supports

solitonic structures of great physical importance (e.g., recently the application of Kerr and Nozaki-Bekki

solitons in optics[22][23]) and presumably high-dimensional whiskered tori[24][25], with also chaotic

dynamics somewhat trackable[26] and mimicing aspects of �uid turbulence[27]. It is then more helpful to

consider GrNLS in the broader context of GrCGL[28][29][30][31]. The problem of GrCGL appears much more

challenging due to the fact that the forcing is nonlinearly dependent on the order parameter itself, but

preliminary analyses and numerical tests will be offered for comparison and motivation. So far, not as

expected, we have not found evidence of the persistence of the GrNLS longulence with respect to the

GrCGL perturbation, which however does not necessarily exclude the possibility. So, due to the dif�culty,

this work is not formally as complete as that for hydrodynamic-type Gr-systems[16], although we can

introduce other independent driving and damping into NLS, like those with respect to which the GrBH

longulence is explicitly shown to be persistence: with the very different properties of the objective

models and distinct results, these two independent articles, somehow complementing each other, are

nontrivial longulent state or longulence

K → ∞
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respectively written in a self-contained way, both involving notions such as longons and longulence

though.

Using GrNLS or GrGP with suf�cient number of the eigen modes of the harmonic oscillator potential to

probe the quasi-integrability of the full dynamics[20]  and the higher-dimensional GrGP thermalization

aspect (e.g., Ref.[32]  and references therein) belong to different lines of research. Our distinct work is

organized as follows. Sec. 2 �nds analytically the exact GrNLS travelling-wave and (quasi-)periodic multi-

frequency solutions, emphasing the critical sets speci�ed by rugged and torus-speci�c invariants; Sec. 3

discovers the universal longulent states numerically, with remarks including preliminary considerations

on the (non)persistence of GrNLS longons against the GrCGL perturbation; and, �nally, Sec. 4 naturally

extends the discusion of GrCGL itself, including the expectation of quasi-periodic tori and longulence,

and, the challenge to construct them.

2. The problem and solutions

We start with the Hamiltonian formulation[1] of the   periodic NLS problem directly in the Fourier ( )

space, as Gardner did for KdV[33], deferring the Poisson structure in physical ( ) space to the point when

needed.

Let   (where  ) with  -period solve the NLS equation (2.3) below with 

, we have 

with    for the Fourier coef�cient    and its conjugate    of each

wavenumber  , and, 

The upper sign (“ ” here) is for the focusing case, and the lower (“ ” here) defocusing: we will

eventually focus on the focusing case.

For Galerkin-regularized or Fourier-truncated    ( , through a simple “hard

cutoff” as a pseudo-differential operation in the language of analysis) and “well-prepared” initial data 

 with   for  1, the GrNLS system involves a Galerkin function/force   with the effect

of projecting the dynamics on to the space of  , 

2π k

x

Ψ(x, t) = (t)∑n Ψ̂n e nxî = −1î
2

2π x

g = 0

= ,   = − ,q̇ k

∂H

∂pk
ṗk

∂H

∂qk
(2.1)

= ,  =qk Ψ̂k pk îΨ̂
∗

k Ψk = (Ψ̂
∗

k Ψ∗̂)−k

k

H = ( | ∓ ) .∑
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n2 Ψ̂n|2 ∑
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Ψ̂kΨ̂lΨ̂
∗

j Ψ̂
∗

n (2.2)

− +

ψ = (t)∑|n|≤K ψ̂n e nxî
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|k| ≤ K
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The explicit expression of    in the GrBH case was already used by Tadmor[34]  for mathematical

estimation.

It is seen that the Hamiltonian formulation through Eq. (2.2), with 

still applies, similar to the KdV case[33], and the invariants, 

are still conserved, de�ning two other Hamiltonian �ows with  , respectively for 

 and  : Gardner[33] actually used the �nite-mode case for the intermediate stage in proving some

results — see Ref.[18]  for physical-space analysis, or, Ref.[35]  for a direct calculation of Fourier mode

interactions to show the preservation of GrBH  . No other NLS invariants are known to be preserved by

GrNLS. Such (non)conservation laws can be argued similarly to the analysis for GrBH in Ref.[18], but it is

actually more straightfrowardly seen in  -space, following Gardner[33], which is one of the reason for us

to emphasize the  -space formulation in the above.

Note that, unlike the quadratic interaction with    for  [16], we now have    for 

.

2.1. One- and two-frequency/phase solutions

With the cubic nonlinearity, a remarkable apparent difference between the current quartic interaction to

the triadic one for the quadratically nonlinear systems is that a    can interact with itself without

involving   of  . So, the simplest nontrivial/nonzero GrNLS solution to Eq. (2.4) is that occupying

only a single wavenumber   and satisfying 

ψ + ψ ± 2|ψ ψ = g;î∂t ∂xx |
2

− ± 2 = :î ψ̂
˙
n n2

ψ̂n ∑
k+l−j=n

ψ̂kψ̂ lψ̂
∗

j ĝn

=ĝm

⎧

⎩
⎨
⎪

⎪

± 2 for K < |m|,∑
k+l−j=m

ψ̂kψ̂ lψ̂
∗

j

0 otherwise.

(2.3)

(2.4)

(2.5)

g

H ⇆

H = ( | ∓ ) ,∑
|k|≤K

k2 ψ̂k|2 ∑
i+l−j=k

|i|,|l|,|j|≤K

ψ̂iψ̂ lψ̂
∗

j ψ̂
∗

k

= |  and  = k| ,M−1 ∑
|k|≤K

ψ̂k|2
M0 ∑

|k|≤K

ψ̂k|2
(2.6)

ψ = δ /δî∂t Mτ ψ∗

τ = −1 0

H

k

k

≡ 0ĝm |m| > 2K ≡ 0ĝm

|m| > 3K

ψ̂k

ψ̂
′

k ≠ kk′

k = S

= ∓ 2| ,î ψ̂
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(2.7)
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also solving the untruncated NLS, the well-known monochromatic wave or condensate. Assuming 

 with constant  , we get 

where   is taken for simplicity: such focusing GrNLS waves become stationary for  .

In the case of no linear-dispersion regularization (NLDNLS), i.e., the strong-coupling limit or the self-

phase modulation equation (in optics) 

and the corresponding Gr-version, the solution (2.8) changes accordingly to 

. [Without the linear dispersion, there is no direct connection with

Schrödinger, but in our context it is convenient to still denote the model and the Gr-version with,

respectively, NLDNLS and GrNLDNLS.] The situation looks similar to the (Gr)BH case, but, unlike the

latter, monochromatic wave solution solves both NLDNLS and GrNLDNLS. Also, straightforward linear

analysis shows that such (Gr)NLDNLS condensates are neutrally stable, without the modulational

instability in the corresponding (Gr)NLS case. Such stability however is not generic for other more

general GrNLDNLS multi-phase (quasi-)periodic solutions whose instability leads to longulent states.

Extremizing GrNLS Hamiltonian    constrained by    and  , with the respective (real) lagrangian

multiplier   and  , leads to 

resulting in the solutions  . Initial    is determined by the equality of the middle

and right-hand sides, while the time dependence by the left- and right-hand sides. Such a special-

solution approach resembles the integrable cases for �nite-band solutions [12][36][37].

Travelling waves may be realized by Eq. (2.10) with  . When occupying multiple wavenumbers, the

solutions with    to Eq. (2.10), or even with more general  , with    being, say, higher-

order polynomials of  , on the right hand side, are generally not travelling waves. The case with   in

Eq. (2.10) corresponds to an eigenvalue problem, and that with    varying with  , i.e., a diagonal

matrix with different eigenvalues, can be called a generalized eigenvalue problem. We now consider

solutions occupying only wavenumbers of  . [Our analyses for focusing and defocusing cases are

= Aψ̂S e (t)îθS A = αS

= A  or ψ = Aψ̂S e− (1∓2 ) tî α2 S2
e S[x−(1∓2 )St]î α2 (2.8)

(0) = 0θS α = 1/ 2–√

Ψ ± 2|Ψ Ψ = 0î∂t |2

= A  or ψ = Aψ̂S e±2 tîα2S2
e S[x±2 St]î α2

H M−1 M0

−λ−1 −λ0

− − = 0 :
δH

δψ∗
λ−1

δM−1

δψ∗
λ0

δM0

δψ∗

= ∓ 2 = ( + k) ,î ψ̂
˙
k k2ψ̂k ∑

j+l=m+k

|k|,|m|,|l|,|j|≤K

ψ̂jψ̂ lψ̂
∗

m λ−1 λ0 ψ̂k

(2.9)

(2.10)

=ψ̂k ψ̂k0e
− ( + k)tî λ−1 λ0 ψ̂k0

= 0λ−1

≠ 0λ−1 (k)ωK ψ̂k ωK

k = 0λ0

(k)ωK k

k = ±S
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formally the same. So, from now on we restrict ourselves to the focusing case, leaving the possible other

interesting aspect of defocusing GrNLS aside for the time being.]

Then, because the data occupying    excite other wavenumbers only of  , we obtain, for

instance, the solutions occupying    for  , with  .

The latter is not always guaranteed to be nonnegative by arbitrary combinations of  ,   and  , thus

indicating nontriviality of the existence of such solutions speci�cally, and of those occupying more

wavenumbers in general. The solutions read: 

Such  , composed of two travelling-wave components with initial phases  , by itself is not for travelling

waves in general, being quasi-priodic when   and   are rationally independent/incommensurate. The

reduction with   and   for standing or rotating waves reads 

which are still periodic in time.

2.2. Additional torus-speci�c invariants

In generel, we can have GrNLS exact solutions with modes occupying any amount of wavenumbers with

the above mentioned   containing accordingly the parameters to quantify the corresponding frequency

components. We however do not know any other generic global rugged invariants for de�ning the

critical set of some combined functional as we did in Sec. 2.1 to realized such solutions.

We can introduce torus-speci�c invariants,  , to construct such high-tori. A choice is the extension of

Eq. (2.6), 

now with   and the associated 

k = ±S k = ±3S

k = ±S S ≤ K ≤ 3S − 1 | = ( ± 3 S − )/6ψ̂±S |2
S 2 λ0 λ−1

±S λ−1 λ0

ψ =
+ 3 S −S 2 λ0 λ−1

− −−−−−−−−−−−−
√

6–√
e [Sx−( + S)t+ ]î λ−1 λ0 θ+

+ .
− 3 S −S 2 λ0 λ−1

− −−−−−−−−−−−−
√

6–√
e− [Sx+( − S)t+ ]î λ−1 λ0 θ− (2.11)

ψ θ±

λ−1 λ0

= 0λ0 = − =θ+ θ− θ0

ψ =
2 cos(Sx)−S 2 λ−1

− −−−−−−
√

6–√
e− tîλ−1 e îθ0 (2.12)

ωK

Mτ

= | ,Mτ ∑
|k|≤K

kτ+1 ψ̂k|2
(2.13)

τ = 1

− − − = 0,
δH

δψ∗
λ−1

δM−1

δψ∗
λ0

δM0

δψ∗
λ1

δM1

δψ∗
(2.14)
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and, the right-hand side of Eq. (2.10) replaced with    for a  -phase solution set.

Probably the simplest solutions are those occupying only wavenumbers    and  , in which case,

with further simpli�cation by restricting to real initial  , we can solve the algebraic equation and obtain,

for instance,   with   except for 

The phase parameter    can be arbitrary. The two travelling-wave components of wavenumbers 

  interact to excite modes of  , thus the above solution is valid for    truncated up to 

.

Since both   and  Poisson commute with  , resulting in vanishing Poisson bracket (see below), the

above   also Poisson commutes, through Eq. (2.14), with   and   (thus invariant) on the

torus. We seem to �nd the above solutions closer to the �nal longulent states, from the observation of the

numerical test below. In the current context, the above torus-speci�c invariant bears some similarity to

the “test functional”   of Ref.[21]  for the Melnikov method, so we restate the result and remark on the

differences below.

For comparison, we follow closely Ref.[21]  for the symbolic convention and terminologies; see, e.g., Ref.

[1]  for more background on the complete theory of the in�nitely many NLS invariants (or “local

functionals/integrals of motion”).

The evolution of a functional   under the NLS ( ) �ow obeys 

the righ-hand side of which indicates the Poisson structure which is preserved by the GrNLS �ow with

the corresponding    and    de�ned by the truncated  , as mentioned earlier.    and    are

preserved by GrNLS for the reason similar to the KdV or Burgers-Hopf case[16][18][33][35], as mentioned

before. Presumably any (higher-order) NLS invariant    other than    and    (with the

corresponding   rede�ned by  ) are not supposed to be still preserved by GrNLS, also similar to KdV or

Burgers-Hopf.

( + k + )λ−1 λ0 λ1k
2 ψ̂k 3

k = 0 ±S

ψ

=ψ̂k φ̂ke
− ( + k+ )tî λ−1 λ0 λ1k

2
= 0φ̂k

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

= ,φ̂S

2 − S − −λ−1 λ0 λ1S 2 S 2− −−−−−−−−−−−−−−−−−−
√

30−−√
e îθ0

= ,φ̂0

+ 2 S + 2 + 2λ−1 λ0 S 2 λ1S 2− −−−−−−−−−−−−−−−−−−−−
√

10−−√

= .φ̂−S

2 − S − −λ−1 λ0 λ1S 2 S 2− −−−−−−−−−−−−−−−−−−
√

30−−√
e− îθ0

(2.15)

θ0

±S k = ±2S |k|

K = 2S − 1

M−1 M0 H

M1 +λ−1M−1 λ0M0 H

F

F Ψ

dF/dt = {F ,H} = − − dxî ∫
2π

0

δF

δΨ

δH

δΨ∗

δF

δΨ∗

δH

δΨ
(2.16)

F H ψ M−1 M0

M M−1 M0

M ψ
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Now, for the tori de�ned by Eq. (2.14), we can use the latter to replace   in computing   which

then is seen to vanish, thus the invariance of   on this torus, because the other three integrals mutually

Poisson commute. Similarly,   Poisson commutes with   and   within the torus (but not outside.)

It can be checked that, in general, without the constraint of Eq. (2.14),   is not invariant.

From the above explanation, we see that the “test” functional    used in Ref.[21]  to establish the

persistence criteria has some similarity with our torus-speci�c invariant but is obviously of different

nature, for not used for de�ning the tori and for the requirement to Poisson commute with the other

three functionals.

2.3. Towards bridging integrability and nonintegrability

Replacing   in Eq. (2.14) by another   with  , not necessarily that de�ned by Eq. (2.13), we specify

a different torus. The procedure can be continued. The tori may have intersection(s) on which the

relevant  s mutually Poisson commute, as can be veri�ed.

On the other hand, we can also replace    in Eq. (2.14) by  , with 

 not running over  ,   and  , for different special solutions.  s, such as those de�ned by Eq. (2.13) for 

, however do not necessarily mutually Poisson commute with each other, neither with  . But, when

we have  s altogether, each Poisson commuting with   (thus conserved) on some speci�c torus,

we may term a kind of pseudo-integrability of the system: in the generalized notion of Vittot[38], the

Hamiltonian is not nonresonant with such  s not mutually Poisson commuting on the corresponding

torus.

The above discussion is quite general but does not appear to be connected with our focus on the

longulent states of GrNLS closely enough. So, alternatively, we may de�ne pseudo-integrablity more

practically and more meaningfully here, with association to the longulent state and the corresponding

whiskered torus, in the sense of specifying the latter with the “right”  s of a total number  .

Such a notion seems to be potential to lead to deeper mathematical developments, although no suf�cient

progresses have been made so far to offer a complete theory of longulence. We will come back to this

after the analysis of the longulence developed from the multi-phase exact solutions constructed with

additional on-torus invariant, followed by Conjecture 1 with the associated remark on a-posteriori KAM

theorem.

M1 { ,H}M1

M1

M1 M0 M−1

M1

F

M1 Mτ τ > 1

Mτ

+ +λ−1M−1 λ0M0 λ1M1 M = ∑τ λτMτ

τ −1 0 1 Mτ

τ ≥ 1 H

2K + 1 Mτ H

Mτ

Mτ ≤ 2K + 1
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3. Longulence

As mentioned, Eq. (2.7) of the monochromatic wave or condensate solves also NLS, which means that the

truncation is not relevant for the solution itself. However, with (modulational) instability, the �nal states

should depend on the truncation threshold  . If the solution for the NLS is well-behaved (with no

singular behaviors such as clapse or blow-up, say), then the GrNLS solution should converge, for  ,

to that of NLS. Also, with an additional well-designed potential, as commonly in the so-called GP

equation of BEC, convergence of GrNLS to NLS can also happen, which is the case in the work of Bland et

al.[20] for the defocusing/repulsive case where the Galerkin approximation with the harmonic-oscillator

eigenmodes rather than our Fourier modes was used: not surprisingly, they found dynamics close to full

GP, which is similar to one of our cases below. In general, the focusing (Gr)NLS, like (Gr)BH and (Gr)CP in

Ref.[16], do not have such convergence. Actually, as already indicated, our analyses and results apply also

to the no-linear-dispersion regularization case, i.e., GrNLDNLS, thus nonconvergence of the

corresponding Gr-system to the full-system in general (but not for the condensates). Working

nevertheless with �nite  , we will not consider the issue of convergence any more except for one

apparent case.

3.1. Numerical method: (pseudo-)spectral method aligning precisely with the Galerkin

regularization

The numerical analysis uses the standard (pseudo-)spectral method. To clarify its particular relation with

our theoretical model in terms of Fourier Galerkin truncation, we still explain it brie�y in the following,

for the case of GrNLS.

Let the periodic lattice coordinate satisfy  , whence    for 

, de�ning a discrete torus  . The theoretical foundation of the standard

(pseudo-)spectral method and the lattice representation of the Gr-continuum lies in replacing   de�ned

by the discrete Fourier transform (DFT) for    (with    here), 

. The aliasing error, represented by the second term, can be

mitigated using dealiasing techniques like zero-padding or, alternatively speaking, truncation at 

  (“ -rule” for cubic nonlinearity, rather than the “ -rule” for quadratic nonlinearity).

Unifying the dealiasing and the Galerkin truncation results in, correspondingly,    for 

 in the GrNLS Eqs. (2.3, 2.4 and 2.5).

K
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K
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The  -rule ensures suf�cient sampling with    sites for the Gr-continuum of    degrees of

freedom, but in our numerical computations we typically have   much larger than   to have smoother

output of the results; for example, we have   for  . The pseudo-spectral method marches in

Fourier space, evaluating the nonlinear term in physical space via DFT of  . So, the computation

method aligns precisely with the Gr-systems, with only errors from the computer roundoff and time

discretization (the standard fourth-order Runge-Kutta scheme).

Other appropriate computational methods in principle can also reproduce the main features of our

numerical results, with less accuracy and requiring more carefullness though.

3.2. GrNLS longulence

3.2.1. GrNLS longulence from the travelling-wave initial data

Figure 1. The carpets/contours of the GrNLS �elds starting from Eq. (2.7) at  , for a travelling wave with 

,  : lighter colors indicate larger values in all �gures, coded per panel (always for all �gures).

We start the numerical analysis of the development of GrNLS longulence using the travelling-wave initial

data: Fig. 1 shows the evolution into a stable (statistically, with respect to the small scale weaker

disordered component) pseudo-periodic state (after around  ) with longons, which is the case even

for   (not shown). Different   and   lead to quantitatively different patterns in the sub-�gures, but

with the same qualitative scenario characterized by solitonic longons admist disordered components,

appearing to converge to NLS dynamics. The results indicate smaller speeds of the solitonic longons for

larger  s.

2/4 N 2K + 1

N 4K

N ≥ 128 K = 9

2| ψPK ψj|
2

t = 0

α = 1 S = 3

t = 2

K = 1 S K

K
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3.2.2. GrNLS longulence from the two-phase-solution initial data

Figure 2. The carpets/contours of the GrNLS �elds starting from the two-frequency quasi-periodic solution

data given by Eq. (2.11) at  , with  ,  ,   and  .

We then turn to the development of longulence from the two-phase-solution initial data, as given by Fig.

2, including the real part of   for visualization of the character of the early exact solution. The scenario is

similar, with no essential differences between periodic and quasi-periodic cases, satisfying the

Diophantine condition or not (thus other parameterizations with, say,   and   are not

shown).

t = 0 S = 5 K = 9 = 11.3 + πλ0 =λ−1
6√

3.7

ψ

= 13 +λ0 2–√ λ = 2/3
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Figure 3. GrNLDNLS two-frequency case, corresponding to that of Fig. 2, with  ,  , 

 and  .

Removing   under the  s in Eq. (2.11), we have the corresponding GrNLDNLS solution at   of which

is used as the initial data for the development of the longulence shown in Fig. 3: the contours and pro�les

show that, although the “solitization” is not strong enough to have as marked longons with clear

periodicity as in other cases, non-thermalization is obvious for no homogenization of the pulses into

“noise” (with the peaks and dips of   respectively developed “further” rather than “closer”).

S = 5 K = 9

= 10 /1.414λ0 2–√ = −10πλ−1

S 2  √ t = 0

|ψ|
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3.2.3. GrNLS longulence from the three-phase-solution initial data

Figure 4. The carpets/contours of the GrNLS �elds starting from the three-frequency-solution

initial data given by Eq. (2.15) at  , with  ,  ,  ,   and 

.

Finally, we examine the case with the initial data corresponding to the three-phase solutions speci�ed by

an additional on-torus invariant. With slightly more careful observation, we still see similar solitonic

longons in the well-developed stage in the right panel of Fig. 4; the latter appears to indicate that the

well-developed longulence is closer to the exact solution, compared to Figs. 1 and 2, as may be observed

from the patterns.

Removing   and   under the  s in Eq. (2.15), we have the corresponding GrNLDNLS solution at 

 of which is used as the initial data for the development of the longulence, with features similar to

the case given by Fig. 3, thus not shown.

t = 0 = π/2θ0 S = 5 K = 9 = = −1λ−1 λ1

= −2.1 Sλ0 λ−1

−S 2 2S 2  √

t = 0
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3.2.4. Pseudo-integrability conjecture

All the numerical results indicate a kind of universal attractor characterized by solitonic longons among

less-ordered components, which should be underlined by some high-dimensional whiskered tori, but

some details and points should be emphasized and further clari�ed, thus the following extended

remarks.

Even the quasi-periodic solutions with rugged invariants are not suf�cient to have enough stability,

resulting in far different longulent states, which may be a further indication of the relevance of additional

on-torus invariants. So, as tried in Fig. 4, it is possible to similarly construct invariant tori with much

closer longulence developed. In all our numerical tests of multi-frequency tori, except for minor

“improvements” concerning stability, rational independence or the Diophantine condition of the

frequencies does not appear to have essential effects on the developments of longulence (thus other

similar results corresponding to Fig. 4 not shown). The indication may be that the (universal) longulent

state is the only stable attractor or that the initial datum prepared as such is close enough, but not

precisely the right corresponding whiskered torus.

For given parameters such as   and  , there is of course the problem of what the better choice of the on-

torus invariants is to have the (unstable) solution closer to �nal longulent state. Systematic

improvements might be made by the choice of more appropriate torus-speci�c invariants, but we so far

do not really have a good theory, for lack of a mathematical structure, say, as that for the NLS[1]. We have

the following

Conjecture 1. There are “right” torus-speci�c invariants supporting “pseudo-integrability”, in the sense of

specifying precisely a whiskered torus responsible for the longulent state.

Together with the cases in Ref.[16], it also appears possible to have a uni�ed, rather than case-by-case,

proof of the corresponding whiskered torus with the a-posteriori KAM scheme, and the exact solutions (as

constructed here) from which the longulent state develops might be used as the starting approximation.

3.3. No GrCGL nontrivial longulence?

A natural further question is the (non)persistence of the (solitonic) GrNLS longons to GrCGL perturbation,

which however appears even more dif�cult than those associated to the NLS[21][39]. A relatively simpler

way to have the clear persistence result is to replace    by some appropriate (pseudo-)differential

operator on  , resulting in some kind of hyper-dispersion and hyper-dissipation with a sharp transition

S K

Ψ∂xx

Ψ

qeios.com doi.org/10.32388/OF4IQP.2 16

https://www.qeios.com/
https://doi.org/10.32388/OF4IQP.2


across    for the dissipation and dispersion functions, and to add an independent driving such as 

  showcased for GrBH in Ref.[16]. But, here, rather than getting around the dif�culties, we tentatively

analyze some numerical experiments performed in the standard (Gr)CGL framework, aming to offer

clues and for motivation.

For the CGL equation, 

where   and  , with possibly an addtional term to be picked up later. Like NLS, the

addition of the corresponding truncation force   turns CGL into GrCGL for  .

The GrCGL dynamics occupying a single wavenumber   reads 

and the solution similar to Eq. (2.8) for GrNLS is 

When  , or  , we have the travelling-wave solution with wave speed 

  or    as for the GrNLS. Again, this solution also solves the

untruncated CGL. No nontrivial (statistically) stable GrCGL longulent states have been found in our

numerical experiments starting from this solution, with everything else the same as in the GrNLS case in

Fig. 1.

We have so far neither been able to generate GrCGL longulent states from the (quasi-)periodic (2.11) and

(2.15).

As mentioned, it is possible that with more appropriate GrNLS torus-speci�c invariants, we could have

the �nal longulence very close to the initial one; then, it could be that persistence to the GrCGL

perturbation takes place under suitable conditions. The dif�culties associated to issues such as the

nontrivial pseudo-differential operator of the truncation and the numerical subtleties for extremely

small   and   however have hindered good progress.

From weakly-nonlinear dynamics point of view, it appears important to have the linear damping or

forcing be appropriately balanced. With constant    for such an additonal perturbation term  , thus

balance formally taking place only at a single scale (wavelength), it is possible but nontrivial for the

existence of (quasi-)periodic solutions, since multi-scales are excited by nonlinearity. The necessity of the

K

ϵψ

Φ + C Φ + 2G|Φ Φ = 0î∂t ∂xx |
2 (3.1)

C = 1 + ηî G = 1 + ϵî

g ϕ
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˙
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qeios.com doi.org/10.32388/OF4IQP.2 17

https://www.qeios.com/
https://doi.org/10.32388/OF4IQP.2


linear term is the usual case in physics[22][23], and, in mathematical treatments only special choice of the

parameters have been found possible to have the CGL quasi-periodic solutions[21][24][25][40].

Figure 5. GrCGL patterns starting from Eq. (2.15) for exact three-phase NLS solutions, with  , 

,  .

For GrCGL, the corresponding    then may not be necessary, since the Galerkin regularization term 

 can make the nonlinearity strong, thus even more nontrivial balance could happen. When the inertial

manifold property is in control and the truncation wavenumber is large, things become kind of trivial

because of the convergence to the full CGL, in which case the truncation effect is a small perturbation.

We found in various numerical tests the �nal “clean” periodic solutions, in abscence of any signature of

disorder, with and without the   term from the corresponding cases with everything else the same as

used for GrNLS. For example, Fig. 5, for cases corresponding to Fig. 4, shows the evolution to constant-

amplitude travelling-wave solutions. The travelling waves are of shortest respective wavelengths, i.e., 

  and of the form (3.3) found earlier (veri�ed by checking the relations between the respective

wave amplitudes and speeds) but not of the linearized dynamics. [Plotting only for the smaller region in

the case of   and   is to avoid the arti�cial Moré patterns.] Note that, unlike the KAM results in

Refs.[24][25], we did not start from the solutions of the linearized system, thus not of that perturbative

nature.

= π/2θ0

= = −1λ−1 λ1 = −2.1 Sλ0 λ−1

rϕî

g

rϕî

|k| = K

S = 5 K = 9
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Figure 6. The GrCGL transition of condensate from  , for initial data (left) prepared with  , 

,  ,  ,   in Eq. (3.3), to a �nal condensate wave pro�le of   (right).

Results similar to Fig. 5 for GrCGL with (much) larger  ,  , with or without (large)  , are also found, with

faster convergence. For example, Fig. 6 presents the transition of condensate from   to   purely

by instability, subjecting only to roundoff error perturbation as in all previous cases, in the pseudo-

spectral computation, with the �nal state return to the monochromatic wave (3.3) of the same   but

of different wave number. [Periodic solutions of such large  s were never reported, to the best of our

knowledge (for instance, Ref.[31] studied bifurcation and chaos of low-dimensional dynamics).]

More results, such as the convergence to the condensate at   with  , with other initial data, have

also been collected. No satisfying theory for these observations are available so far (see below). Having

not found quasi-periodic or longulent GrCGL states though, we have no reason to exclude the existence.

Combining with the chaotic aspect ([31]  and references therein), we still tend to believe that nontrivial

GrCGL longulent states are still possible, deserving further remarks.

4. Expectation

Good understanding of relevant GrCGL dynamics beyond the small perturbation to GrNLS can be

bene�cial for the latter, by learning from the differences, say, as is the purpose here. So, we proceed by

noting that the CGL damping and forcing may balance on particular orbits/tori in such a way that some

on-torus invariants present and longulence emerges.

Although explicit multi-frequency CGL solutions have not been found analytically, there are suggestions

of the existence of quasi-periodic (whiskered) tori[21][24][25][40]. Note that the formulas from the KAM

method [Eqs. (6) and (3.22) of, respectively, Refs.[24][25]] are with whiskered components, qualitative or

k = S α = 1

C = 1 + 2 î G = 1 + î r = 0 S = 3 k = K = 5

η ϵ r

k = S k = K

α = 1

K

K α ≠ 1
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asymptotic, and, are only for particular choices of parameters. What’s more, the term proportional to 

 (also physically important[22][23]) is crucial in their KAM method, although it balances only one scale.

In the GrCGL case with truncation  , this term however appears not as needed. Nevertheless, we have not

yet been able to construct GrCGL nontrivial longulent states from the corresponding GrNLS data.

New techniques are needed. The Lyapunov-function approach seems promising, with however caveats:

for instance, obviously,    for any integer    is a Lyapunov function for 

 controlling real  , and the pattern selection was not found to minimize the one written

down in Ref.[41] for the slightly more complex dynamics.

As already mentioned, the on-torus-invariant effort shares some similarity with part of the Melnikov

method used in Ref.[21], and we may hopefully expect further combination for more powerful techniques.

For general (Gr)CGL with coef�cients neither appropriate for a perturbative treatment[21] nor so special to

have the nearly (quasi-)periodic solution for the corresponding linearized system[24], it is not impossible

still to simultaneously set up the right multiple on-torus invariants, probably correspondingly an

appropriate Lyapunov function, to construct speci�c invariant (whiskered) tori for nontrivial longulence.

If the GrCGL quasi-periodic or longulent states can be found as for GrNLS and other hydrodynamic-type

Gr-systems[16], then we are closer to the a-posteriori KAM scheme that would assure the existence of

(whiskered) tori close by (e.g., de la Llave and collaborators’ recent works, including Ref.[42]  on partial

differential equation and Ref.[43] on maps, and references therein). The hydrodynamic-type Gr-systems

studied in Ref.[16]  present persistence of those longulent states against appropriate (small) forcing and

damping, which of course carries over to Gr(NLD)NLS, mutatis mutandis, and which may be regarded as

the support of the existence of nontrivial GrCGL longulence, more subtle though.

Footnotes

1 “Ill-prepared” initial data  ,  ,    are not of our interest here. Also, we resist

introducing further regularizations, such as the truncations on the quadratic interactions    or 

 before forming  .
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