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Transportation planning plays a critical role in shaping urban development, economic mobility, and

infrastructure sustainability. However, traditional planning methods often struggle to accurately

predict long-term urban growth and transportation demands. This may sometimes result in

infrastructure demolition to make room for current transportation planning demands. This study

integrates a Temporal Fusion Transformer to predict travel patterns from demographic data with a

Generative Adversarial Network to predict future urban settings through satellite imagery. The

framework achieved a 0.76 R² score in travel behavior prediction and generated high-�delity satellite

images with a Structural Similarity Index of 0.81. The results demonstrate that integrating predictive

analytics and spatial visualization can signi�cantly improve the decision-making process, fostering

more sustainable and ef�cient urban development. This research highlights the importance of data-

driven methodologies in modern transportation planning and presents a step toward optimizing

infrastructure placement, capacity, and long-term viability.

Corresponding author: Armstrong Aboah, armstrong.aboah@ndsu.edu

I. Introduction

Transportation infrastructure is fundamental to social development, economic growth, social

connectivity, and urban expansion[1]. As cities grow, strategic road developments and public transit

systems shape urban landscapes and in�uence settlement patterns[2]. These developments often catalyze
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the development of new commercial and residential districts. Effective transportation planning has

historically facilitated the movement of people and goods, reduced congestion, and improved the quality

of life in urban areas[3]. The increasing availability of demographic data and the analysis of travel

behavior patterns have transformed the way planners approach infrastructure development[4][5].

Transportation planners are currently trying to make informed decisions about infrastructure placement

and capacity requirements using these demographic data and travel behavior patterns. This move has

allowed fairly precise predictions of population movement and transportation needs[6].

Despite advances in transportation engineering[7][8] and planning[9][10], cities continue to face signi�cant

challenges in infrastructure development and management. A critical issue is the existing infrastructure

wastage, where functional structures must be demolished to accommodate expanding transportation

networks[11][12]. This demolition and reconstruction represent substantial �nancial costs and create

environmental impacts and community disruption. A historical example is the construction of Interstate

95 in Miami in the 1960s, which �attened large portions of Overtown, a predominantly Black

neighborhood, forcing approximately 10,000 residents to leave their homes[13]. Such displacement issues

are common in rapidly growing urban areas, where the pace of expansion can outweigh even careful

planning efforts based on demographic projections[14]. Traditional planning approaches, while

incorporating available data, often struggle to accurately predict long-term urban growth patterns and

transportation needs across multiple decades. This limitation frequently results in infrastructure

placement decisions that, though meeting immediate needs, become obstacles to future development

and require costly modi�cations or complete replacement[15]. The challenge is further complicated by

changing travel behaviors and settlement patterns, which can rapidly transform transportation demands

in ways that historical data failed to anticipate.

Machine learning has emerged as an innovative approach to address infrastructure wastage challenges in

transportation planning[16][17][18][19][20]. Incorporating machine learning has improved our ability to

predict traf�c patterns[21], population growth, and infrastructure requirements with greater precision

than traditional forecasting methods[22]. Although machine learning algorithms can process vast

amounts of historical demographic data, and travel patterns to identify trends that human analysts

might miss[23][17][24], this data is low-dimensional and cannot capture the full complexity needed for

effective infrastructure and transportation planning. Furthermore, current algorithms cannot transform

this low-dimensional demographic and behavioral data into high-dimensional spatial representations
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that planners need. As a result, transportation planners cannot yet predict how these changes will

manifest in the physical urban landscape. This limitation often leads to suboptimal decision making in

infrastructure planning and design, as transportation planners struggle to fully understand how their

decisions will impact the physical urban environment and existing communities over time. Predicting

future urban settings would be valuable in preventing situations similar to the Overtown displacement,

where the full spatial and social implications of infrastructure decisions were not adequately considered.

Our research addresses this gap by developing an integrated algorithm that not only predicts

demographics and travel behavior but also predicts (generates) satellite imagery of future urban settings.

Our novel approach combines demographic forecasting with Generative Adversarial Networks (GANs) to

provide planners with visual representations of potential urban developments. Our method addresses the

potential challenges that come with urban transportation planning, including the likelihood of

premature demolition and future infrastructure wastage. This integration of predictive analytics with

spatial visualization will transform infrastructure planning into a more proactive process, leading to

more sustainable urban development and minimizing the need for costly infrastructure modi�cations in

the future[25].

To address these limitations, this paper makes the following key contributions:

�. We propose a novel approach for injecting low-dimensional tabular data into a generative

adversarial network (GAN) to produce high-quality satellite imagery, bridging the gap between

demographic trends and spatial visualization.

�. We develop an integrated system that allows transportation planners to forecast urban

transformations by leveraging demographic and travel behavior data, reducing the likelihood of

infrastructure wastage and unplanned urban sprawl.

�. Our approach enables a proactive planning strategy by combining temporal forecasting models with

generative image synthesis, offering a comprehensive tool for predicting the long-term spatial

impact of transportation decisions.

The remainder of the paper is structured as follows. Section II discusses related studies on transportation

forecasting and urban planning using machine learning. Section III talks about the data used and how it

was obtained. Section  IV presents our proposed framework, detailing the integration of demographic

forecasting with satellite image generation. Section  VIdescribes the experimental setup, evaluation
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metrics, and baseline comparisons. Section VII presents the results and analysis of our approach. Finally,

Section VIII provides concluding remarks and directions for future research.

II. Related Work

A. Historical Challenges in Transportation Infrastructure Planning and Their Socio-Spatial

Consequences

Planning for transport infrastructure has historically faced numerous challenges that have led to

signi�cant socio-spatial consequences in urban environments[26]. Though some of these transportation

infrastructures have aimed at improving mobility, these decisions have often led to unintended

consequences such as community displacement, social segregation, and the creation of physical barriers

within cities[27]. In the post-World War II era, many cities in Europe embraced auto-centric development

patterns that resulted in extensive highway systems cutting through established neighborhoods. This

transformation was obvious in cities like Rotterdam, which used post-war reconstruction as an

opportunity to implement modernist planning principles favoring automobile circulation. This

phenomenon resulted in a critical issue during this period, where infrastructure decisions were made

based on contemporary needs without adequate consideration of future urban growth patterns and

evolving transportation technologies[28]. This short-sighted approach has resulted in numerous cases of

premature infrastructure obsolescence across cities worldwide. Boston’s Central Artery, an elevated

highway completed in 1959, became a classic example of infrastructure wastage due to urban expansion

and the need for modernized transportation systems[29]. By the late 20th century, the highway was

functionally obsolete, carrying over 200,000 vehicles daily—far exceeding its original capacity of 75,000

—and causing severe congestion, high accident rates, and economic inef�ciencies. It also physically

divided neighborhoods such as the North End and the Waterfront from downtown Boston, limiting their

economic potential[30]. The Boston Central Artery example and others have highlighted the limitations of

historical planning approaches by recent advances in urban planning methodologies. The emergence of

data-driven planning techniques, big data and sophisticated modeling tools[25][17]  has revealed

infrastructure inef�ciency and under-use patterns that could have been avoided with better predictive

capabilities[31][32][33][34]. Cities are now increasingly turning to predictive modeling and scenario

planning to avoid the costly mistakes of the past. These modern approaches incorporate multiple data

qeios.com doi.org/10.32388/OGMT6N 4

https://www.qeios.com/
https://doi.org/10.32388/OGMT6N


sources, including demographic trends, travel behavior patterns, and satellite imagery analysis, to better

anticipate future urban development patterns and infrastructure needs[35][25][36][37].

B. Challenges in Predicting High-Dimensional Spatial Outcomes from Low-Dimensional

Data

Urban planners often face limitations during urban transportation planning when projecting future

urban infrastructural needs based on current socio-demographic data and travel patterns alone. Notable

among these limitations in transportation planning is predicting high-dimensional spatial

representations using low-dimensional input data. This limitation is compounded by the when sparse

high-dimensional data reduces model accuracy[38][39][40][41], and by redundancy in features that skew

variance toward a few dimensions, masking critical urban complexity[38][42]. Traditional forecasting

methods often struggle to capture spatial relationships and interdependencies that characterize urban

settings.[43][44]. Manson[43] highlights how methodological challenges in scaling and con�ating patterns

with processes create a disconnect between model outputs and real-world geographic dynamics. Urban

systems also exhibit nonlinear interactions between demographics, transportation, and physical form,

which low-dimensional data cannot adequately represent over time[45][46]. Lack of consistent, well-

organized, and long-term data on how people move and travel over time in certain areas and contexts,

further limits planners’ ability to predict evolving infrastructure needs[46]. Emerging techniques like

topological data analysis and big data methods offer promising solutions by modeling complex data

structures with improved interpretability[45][42], though challenges such as computational demands and

data scalability must be addressed[25][47].

III. Data

Our study integrates demographic data and travel data from the U.S. Census Bureau, speci�cally from the

American Community Survey (ACS), spanning 2012 to 2023 across approximately 58,000 California

census tracts. This dataset includes 14 features covering demographics, modal split characteristics, and

emerging travel trends. Additionally, high-resolution satellite imagery from the Mapbox API provides

spatial context, enabling a comprehensive analysis of the interplay between socio-demographics,

transportation infrastructure, and mobility patterns over time. A brief summary of our dataset is

described in Table I.
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Data Category Feature

Demographic Data

Total population

Percentage of people aged 25-34

Percentage of people aged 35-50

Percentage of people over 65

Percentage of white population

Percentage of non-white population

Percentage of black population

Percentage with college degree

Average Income per capita

Travel Behavior Data

Average travel time to work

Number of automobile users

Number of active transportation users (walking, cycling)

Number of public transit users

Number of other transportation mode users

Table I. A summary of features in dataset

IV. Methodology

Our research is focused on developing a model that uses low-dimensional demographic and travel

behavior data to generate satellite imagery of future urban settings. To achieve this, we propose a two-

stage framework which uses a temporal fusion transformer to forecast travel behavior based on

demographic data, capturing the underlying patterns and dynamics over several years. The outputs from

this stage is then used as input for a modi�ed StyleGAN 2 model, which then generates synthetic satellite

images to predict how the area might evolve. This innovative approach combines state-of-the-art time-

series analysis with advanced image generation, offering a comprehensive perspective on urban

development and spatial change.
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A. Data Preprocessing

The dataset was �rst examined to remove data entries with zeros, outliers were then identi�ed using the

interquartile range (IQR), calculated as

where    and    denote the �rst and third quartiles of the feature set  , respectively. Any

observation   lying outside   was discarded if deemed erroneous.

Finally, numeric variables were standardized via z-score scaling,

where    is the mean value of the feature  , and    is its standard deviation, to ensure uniform feature

ranges for subsequent modeling.

Following preprocessing, the dataset was partitioned chronologically into training and testing sets. The

training set comprised approximately 67% of observations (approximately 39,000 entries) from the

period 2012-2017, while the testing set contained the remaining 33% ( which is about 19,000 entries) from

2018-2023.

This temporal division ensures the model trains on historical data and evaluates on future observations,

simulating real-world forecasting conditions.

B. Temporal Fusion Transformer for Travel Behavior Prediction

The Temporal Fusion Transformer (TFT) serves as the �rst stage of our predictive framework, where it

learns historical relationships between demographic features and travel behavior patterns. The goal of

this stage is to forecast transportation mode distributions based on past and present population

dynamics, socioeconomic attributes, and racial composition. The output of the TFT is then used as a

conditioning input for the Generative Adversarial Network (GAN) to generate high-resolution satellite

imagery that visualizes predicted spatial transformations.

1. Problem Formulation

Let   denote the time series of demographic features, where   represents the number of past

time steps, and    is the number of demographic input features. Our objective is to predict future travel

IQR = Q3(X) − Q1(X), (1)

(X)Q1 (X)Q3 X

x [ (X) − 1.5 ⋅ IQR, (X) + 1.5 ⋅ IQR]Q1 Q3

Z(x) = ,
x − μ

σ
(2)

μ x σ

Dtrain

Dtest

= {( , ) ∈ D ∣ 2012 ≤ ≤ 2017}xi yi ti

= {( , ) ∈ D ∣ 2018 ≤ ≤ 2023}xi yi ti

(3)

(4)

X ∈ R
T×d T

d
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behavior trends  , where   is the forecasting horizon and   represents the number of target

transportation variables.

The input features (demographic data) are de�ned as:

The output features (travel behavior data) are de�ned as:

2. Encoder-Decoder Architecture

The TFT employs an encoder-decoder framework to model sequential dependencies between

demographic features and future travel behavior. The encoder processes historical demographic data into

a latent representation, which the decoder then uses to make multi-step forecasts.

The encoder uses a Long Short-Term Memory (LSTM) network to capture long-term dependencies:

where,    is the hidden state at time step  ,    is the cell state of the LSTM and    represents the

demographic input at time  .

The decoder then takes the encoded representation and generates travel behavior predictions for the

future time steps:

where,   represents the predicted travel behavior variables at future time step  ,   is

the �nal hidden state output from the LSTM encoder, summarizing all past demographic data up to time

step  ,   is a learned function that maps the encoded demographic representation   to travel

behavior predictions, using attention mechanisms and fully connected layers,    is the number of travel

behavior features (e.g., number of automobile users, transit users, etc.),   is the dimension of the encoded

hidden state, which captures temporal dependencies in the demographic input.

3. Multi-Head Attention Mechanism

To model the temporal dependencies between demographic data and future travel behavior, we employ a

multi-head attention mechanism that selectively focuses on the most relevant historical patterns. This

allows the model to assign varying importance to past demographic attributes when forecasting

transportation trends.

Y ∈ R
×kT ′

T ′ k

X = { , ∈xt}Tt=1 xt R
d (5)

Y = { , ∈yt}
T+T ′

t=T+1 yt R
k (6)

= LSTM( , , )ht xt ht−1 ct−1 (7)

ht t ct xt

t

= Decoder( )ŷt+1 hT (8)

∈ŷt+1 R
k t + 1 ∈hT R

m

T Decoder(⋅) hT

k

m
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At each time step, the query, key, and value matrices are de�ned as:

where,    represents the current demographic state in�uencing travel behavior,    encodes past

demographic trends and   contains the corresponding travel behavior information.

The scaled dot-product attention is computed as:

where the softmax function ensures that weights are normalized, enhancing the most relevant historical

in�uences.

To capture multiple perspectives in the data, we apply multi-head attention, where multiple attention

mechanisms operate in parallel:

where each attention head independently learns different temporal relationships between demographics

and travel behavior and   is a trainable projection matrix ensuring dimensional consistency.

Through this mechanism, our model is able to dynamically attend to the most in�uential time steps,

enabling the TFT to accurately model how past demographic changes impact future travel behavior.

4. Feed-Forward Network

After processing historical demographic trends through attention and sequential modeling, the feed-

forward network (FFN) generates the �nal travel behavior predictions by re�ning the extracted temporal

representations.

At each time step, the hidden state   undergoes a nonlinear transformation:

where    represents the ReLU activation function, introducing non-linearity to capture complex

relationships between demographics and mobility patterns and    are learnable

parameters that optimize feature extraction.

The �nal predictions, representing future travel behavior metrics, are computed as:

Q, K, V ∈ R
T×d (9)

Q K

V

Attention(Q, K, V) = softmax ( ) V
QKT

d
−−

√
(10)

MultiHead(Q, K, V) = Concat( , , … , )head1 head2 headh WO (11)

WO

ht

= σ( + )zt W1ht b1 (12)

= +h
′
t W2zt b2 (13)

σ(⋅)

, , ,W1 W2 b1 b2

= +ŷ t Wouth
′
t bout (14)
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where   and   project the re�ned hidden states ( ) into the target travel behavior space.

5. Loss Function and Optimization

To ensure robust and stable training, we employ the smooth L1 loss, which balances sensitivity to small

deviations while controlling the in�uence of outliers in travel behavior predictions:

where    and    represent the predicted and actual travel behavior metrics, respectively. The quadratic

term penalizes small errors, ensuring precise predictions for stable trends and the linear term prevents

instability from large deviations, making the model robust to outliers.

To optimize model performance, we utilize the Adam optimizer, which dynamically adjusts learning

rates for each parameter, improving convergence speed and stability:

where   is the learning rate, adapting to gradient variations over time.   and   also represent the �rst

and second moment estimates, stabilizing updates and preventing vanishing or exploding gradients.

Combining temporal modeling, attention mechanisms, and robust optimization, the TFT effectively

forecasts future travel behavior trends based on evolving demographic characteristics, ensuring reliable

inputs for the subsequent GAN-based spatial prediction.

C. Generative Adversarial Network for Spatial Prediction

The second stage of our model employs a Generative Adversarial Network (GAN) to synthesize realistic

satellite images that re�ect predicted spatial changes based on travel behavior. Unlike conventional GANs

that rely on latent noise vectors or text prompts, our approach integrates structured tabular data

representing mobility trends. This enables the model to generate data-driven urban landscapes, ensuring

interpretability grounded in real-world transportation patterns.

1. Tabular Data Injection

The GAN receives structured tabular data as input, encoding travel behavior patterns across different

regions and time periods. Given an input dataset  , where    is the number of regions and 

  represents features such as average travel time to work, population of automobile users, active

Wout bout h′
t

L( ,y) = {ŷ ∑
t

0.5( − ,ŷ t yt)2

| − | − 0.5,ŷ t yt

if | − | < 1ŷ t yt
otherwise

(15)

ŷ t yt

= − η ⋅θt+1 θt
mt

+ ϵvt
−−√

(16)

η mt vt

X ∈ R
N×d N

d
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transport users (walking and cycling), public transit users and other transport mode users, we transform

these into a latent representation while preserving spatial correlations. To achieve this, the travel

behavior data is concatenated with a randomly sampled latent vector  :

where    is a trainable function mapping the concatenated input to a high-dimensional space,

allowing travel behavioral patterns to interact with the generative process.

Figure 1. Overview of the proposed framework for the Temporal Fusion Transformer

2. Generator Architecture

The generator   learns to produce satellite images conditioned on travel behavior data:

where    is the generated satellite image. To prevent loss of travel behavior information, we

incorporate Adaptive Instance Normalization (AdaIN):

where    represents intermediate feature maps, while    and    adaptively scale and shift them

based on the tabular input.

z ∼ N (0, I)

w = ([X, z])fenc (17)

(⋅)fenc

G

= G(w)Ifake (18)

Ifake

AdaIN(h, w) = γ(w) ⋅ + β(w)
h − μ(h)

σ(h)
(19)

h γ(w) β(w)
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Additionally, Noise Injection is applied at each resolution to introduce controlled stochasticity, ensuring

diversity in generated satellite images:

where   is a learnable weight controlling noise intensity.

3. Discriminator Architecture

The discriminator, denoted as  , is a crucial component of our GAN framework, responsible for

evaluating the realism of generated satellite images while ensuring their consistency with the expected

travel behavior trends. It serves as a binary classi�er, distinguishing between real satellite images 

 and synthetic images   produced by the generator, conditioned on tabular travel behavior data  .

This process can be mathematically expressed as:

where,    represents the satellite image (real or generated), where    and    are spatial

dimensions and    is the number of channels,    is the corresponding travel behavior data and 

 is a scalar output, representing the probability that   is a real image.

= h + α ⋅ N, N ∼ N (0, I)h
′ (20)

α

D

Ireal Ifake X

D(I, X) → y (21)

I ∈ R
H×W×C H W

C X ∈ R
d

y ∈ [0, 1] I
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Figure 2. Overview of the proposed framework for the Generative Adversarial Network

Unlike traditional discriminators that solely process image inputs, our discriminator jointly evaluates

satellite imagery and travel behavior data. This ensures that generated images do not just appear realistic

but also adhere to real-world transportation trends. The conditioning process is implemented via feature

fusion:

where,    extracts spatial features from the image using convolutional layers,    processes

tabular features through a multi-layer perceptron (MLP) and the feature representations are fused

through element-wise addition before classi�cation.

A common issue in GAN training is mode collapse, where the generator produces limited variations of

images, reducing diversity. To address this, we integrate a Minibatch Standard Deviation (Minibatch-

= (I) + (X)hD fimg ftab (22)

(⋅)fimg (⋅)ftab
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STD) layer, which enhances generalization by encouraging the generator to produce diverse and realistic

outputs.

This is achieved by computing the statistical variation within each batch of generated images:

where,   represents the intermediate feature map of the discriminator,   computes the per-channel

standard deviation across the minibatch, the computed standard deviation is concatenated with  ,

allowing the discriminator to detect whether an image lacks diversity. The �nal output is produced by

passing the combined features through fully connected layers, leading to a single probability score:

where,    and    are trainable weights and biases of the �nal classi�cation layer and    is the

sigmoid activation function, ensuring the output probability is within  .

This structured approach allows the discriminator to enforce both visual realism and transportation

consistency, ensuring that generated satellite images align with predicted travel behavior trends.

4. Loss Functions

The training of our GAN follows a non-saturating adversarial loss formulation, ensuring effective

gradient �ow during optimization. Additionally, a gradient penalty is introduced to stabilize training and

enforce Lipschitz continuity, reducing mode collapse and improving overall sample quality.

a. Discriminator Loss: The discriminator is trained to distinguish between real satellite images    and

generated images   while ensuring that the generated outputs align with real-world travel behavior

trends. The loss function for the discriminator,  , consists of two terms:

where   represents the probability that a real satellite image   aligns with the corresponding

travel behavior data  ,   represents the probability that the generated image   is

real. The discriminator maximizes this loss by increasing its con�dence in classifying real images as real

and fake images as fake.

b. Generator Loss: The generator is trained to fool the discriminator into classifying its outputs as real,

meaning it aims to maximize the discriminator’s probability of labeling generated images as real. This is

achieved by minimizing the following objective:

= [h, std(h)]h
′ (23)

h std(h)

h

y = σ( + )WDh′ bD (24)

WD bD σ(⋅)

[0, 1]

Ireal

Ifake

LD

= E[logD( , X)] + E[log(1 − D(G(w), X))]LD Ireal (25)

D( , X)Ireal Ireal

X D(G(w), X) = G(w)Ifake

= −E[logD(G(w), X)]LG (26)
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The generator seeks to maximize  . This formulation encourages the generator to produce

satellite images that not only appear realistic but also correspond accurately to mobility patterns.

c. Gradient Penalty for Stability: To improve training stability and enforce Lipschitz continuity, we

incorporate a gradient penalty inspired by Wasserstein GAN with Gradient Penalty (WGAN-GP). This

regularization term ensures that the discriminator maintains smooth gradients, reducing the risk of

vanishing or exploding gradients. The gradient penalty is de�ned as:

where   is an interpolated sample between a real and a generated image, ensuring smooth transitions in

feature space,    is a hyperparameter controlling the strength of the gradient penalty. The penalty

encourages gradients to have a unit norm, preventing sharp discriminator updates that could destabilize

training.

The �nal optimization problem for the discriminator and generator is formulated as:

This adversarial training process ensures that:

The discriminator becomes better at distinguishing real satellite images from generated ones.

The generator continuously improves, producing high-�delity spatial predictions that align with

forecasted travel behavior.

The gradient penalty stabilizes training, preventing sudden divergence or mode collapse.

Through the combination of adversarial learning with gradient regularization, our model ensures that

generated satellite images accurately re�ect predicted transportation trends, making the outputs both

visually realistic and empirically interpretable.

V. Evaluation Metrics

To assess the performance of our proposed model, we evaluate both the Temporal Fusion Transformer

(TFT) for travel behavior forecasting and the Generative Adversarial Network (GAN) for urban setting

prediction. The evaluation framework consists of statistical accuracy metrics for the TFT and perceptual

similarity metrics for the GAN.

D(G(w), X)

= λE[(∥ D( , X) − 1 ]LGP ∇
Î

Î ∥2 )2 (27)

Î

λ

min
G

max
D

E[logD( , X)]+Ireal

E[log(1 − D(G(w), X))] + λLGP

(28)
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A. Temporal Forecasting Evaluation

The TFT is evaluated using three key time-series regression metrics: Root Mean Square Error (RMSE), R-

Squared ( ), and Dynamic Time Warping (DTW).

1. Root Mean Square Error (RMSE)

RMSE measures the standard deviation of prediction errors, penalizing large deviations more heavily

than other error metrics:

where   and   denote the predicted and actual travel behavior metrics at time  , respectively.

2. R-Squared (  Score)

The   score evaluates how well the model explains the variance in the actual data:

where   represents the mean of the actual values. A score close to   indicates that the model effectively

captures underlying trends in travel behavior.

3. Dynamic Time Warping (DTW)

Since travel behavior data often exhibits temporal shifts, DTW is used to measure similarity between the

predicted and actual sequences:

where   represents an optimal alignment path, and    is the cost of aligning   with  . Lower DTW

scores indicate better alignment between the predicted and actual time series.

B. Spatial Prediction Evaluation

The GAN-generated satellite images are evaluated using Fréchet Inception Distance (FID) and Structural

Similarity Index Measure (SSIM) to assess realism and consistency with real-world satellite imagery.

R2
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T
∑
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1. Fréchet Inception Distance (FID)

FID quanti�es the perceptual similarity between real and generated satellite images by comparing their

feature distributions:

where   and   are the mean and covariance matrices of real and generated images in a deep

feature space. Lower FID scores indicate more realistic image generation.

2. Structural Similarity Index Measure (SSIM)

SSIM evaluates the perceptual quality of generated images by measuring luminance, contrast, and

structural similarities:

where  ,   are the mean pixel values,  ,   are variances, and   is the covariance. SSIM values range

from   to  , with higher values indicating stronger perceptual similarity.

VI. Experiments

To evaluate the effectiveness of our proposed framework, we designed two sets of experiments: (1) Travel

Behavior Prediction, where we compare the Temporal Fusion Transformer (TFT) against baseline time-

series models, and (2) Spatial Prediction, where we assess the impact of varying the latent space in a

Generative Adversarial Network (GAN). All experiments were conducted on an NVIDIA A40 GPU with 32

GB of memory.

A. Travel Behavior Prediction

For forecasting future travel behavior, we trained four models: RNN, LSTM, LSTM with Attention, and

TFT.

Each model was trained to predict the travel behavior based on historical demographic trends. The input

sequence length was set to 3 years, forecasting the next 3 years.

1. Model Con�gurations and Training

The hyperparameters used for all models are summarized in Table II.

FID = ∥ − + Tr( + − 2( )μr μg∥2 Σr Σg ΣrΣg)1/2 (32)

( , )μr Σr ( , )μg Σg

SSIM( , ) =Ireal Ifake
(2 + )(2 + )μrμg C1 σrg C2

( + + )( + + )μ2
r μ2

g C1 σ2
r σ2

g C2

(33)
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r σ2

g σrg

0 1
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Model Hidden Size Layers Dropout Attention Epochs Batch

RNN 128 2 0.1 None 200 16

LSTM 256 2 0.1 None 200 16

LSTM + Attention 256 2 0.1 Bahdanau 200 16

TFT 128 4 0.1 Multi-Head 200 16

Table II. Hyperparameters for Travel Behavior Forecasting Models

All models were trained using the Adam optimizer with a learning rate of   and a Smooth L1 Loss

function.

The TFT was additionally optimized with multi-head self-attention, which assigns weights to important

temporal patterns

B. Spatial Prediction with GAN

The second stage of our experiment evaluates GAN-based spatial prediction, where we generate synthetic

satellite images of urban evolution based on predicted travel behavior. To achieve this we investigated

how different latent space sizes affect image generation. The GAN generator was trained using three

con�gurations:

Model Latent Dim Learning Rate Batch Size

GAN-128 128 16

GAN-256 256 16

GAN-512 512 16

Table III. Hyperparameters for GAN-based Spatial Prediction

5 × 10−4

8 × 10−5

8 × 10−5

8 × 10−5
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The GAN models were trained for 50,000 iterations using the Adam optimizer with separate learning

rates:

Generator Learning Rate: 

Discriminator Learning Rate: 

Regularization techniques included:

R1 Gradient Penalty: 

Path Length Regularization: Weight = 2

VII. Results and Discussion

In evaluating the effectiveness of the Temporal Fusion Transformer (TFT) against traditional time-series

models, including LSTM, LSTM with Attention, and RNN, we analyzed forecasting accuracy using Root

Mean Square Error (RMSE), R-Squared ( ), and Dynamic Time Warping (DTW).

Table  IV summarizes the performance metrics, demonstrating that TFT outperformed all baseline

models by achieving the lowest RMSE and highest   - indicating an improved predictive accuracy. The

lower DTW distance further suggests that TFT captured temporal dependencies more effectively,

aligning closely with actual travel behavior trends.

Model RMSE   Score  DTW Distance 

RNN 8.72 0.61 15.3

LSTM 7.94 0.68 12.7

LSTM + Attention 7.45 0.72 10.9

TFT (Ours) 7.28 0.76 10.2

Table IV. Performance Comparison of Time-Series Models

TFT’s better performance can be attributed to its multi-head attention mechanism, which effectively

8 × 10−5

3 × 10−5

γ = 10

R2

R2

↓ R2 ↑ ↓
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captures long-term dependencies and assigns dynamic feature importance. Unlike LSTM-based models,

which rely solely on recurrent structures, TFT uses attention to weigh critical temporal relationships,

leading to more stable and accurate forecasts.

Furthermore, while LSTM + Attention improves over standard LSTM by selectively focusing on

important past data points, it lacks the fully integrated gating and feature selection mechanisms present

in TFT, making it less robust for long-horizon forecasting.

Figure 3. Actual Target (Travel Behavior) Feature Trends Over Years

A. Discussion on Forecasting Performance

The LSTM model, designed to capture sequential dependencies, struggled to account for abrupt changes

in travel behavior, particularly the sharp decline observed during the COVID-19 pandemic. The

LSTM+Attention model aimed to improve upon this by dynamically weighting historical time steps.

While the attention map (illustrated in Fig 4) indicates that the model assigned signi�cant weight to the

third timestep, which suggests an effort to capture critical historical patterns, it still failed to anticipate

the drastic shift in mobility trends. Similarly, the RNN did not perform well, as it lacked the capability to

effectively adapt to sudden disruptions in the data. In contrast, the TFT model demonstrated a better

ability to follow overall trends, making it a more adaptable alternative. However, all models faced
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challenges in fully capturing sudden disruptions, highlighting the need for more robust architectures to

handle extreme variations in temporal data.

Figure 4. Attention Weights Visualization. The attention mechanism assigns varying importance to

different time steps, but fails to emphasize the critical period leading up to 2020.

One possible reason for this failure is that, although the model emphasized certain past trends, it still

relied on patterns that followed normal �uctuations and did not adjust adequately to unforeseen external

disruptions. This suggests that the attention mechanism was not suf�ciently adaptive to shifts outside of

its learned distributions. Future improvements could involve incorporating external variables, such as

mobility restrictions or pandemic-related indicators, to allow the model to adjust more effectively to

unexpected events.
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Figure 5. Predicted Target Feature Trends (2018 - 2023) using the TFT Model. The model successfully

captures the overall trend in travel behavior, demonstrating its effectiveness.

The Temporal Fusion Transformer demonstrated strong predictive capability, effectively capturing the

overall trends in travel behavior, as seen in Figure 5. Unlike the LSTM-based models, which struggled to

adjust to abrupt changes, the RNN showed greater �exibility in modeling �uctuations in transportation

trends. While some deviations from the actual values exist, the model was able to approximate key trend

reversals, indicating its effectiveness in forecasting dynamic mobility patterns. The results suggest that

despite its simplicity, the RNN remains a competitive option for travel behavior prediction, especially

when trained on suf�cient historical data.

These results validate the effectiveness of TFT in forecasting travel behavior, making it a strong

candidate for mobility trend prediction. Next, we analyze feature importance and model interpretability.

To evaluate the impact of latent dimension size on image generation quality, we trained three variants of

the GAN generator with latent dimensions of 128, 256, and 512. The Fréchet Inception Distance (FID) and

Structural Similarity Index (SSIM) were used to measure image realism and alignment with real satellite

images.

Table  V summarizes the results, showing that the generator with a latent dimension of 512 performed

best, achieving the lowest FID (indicating higher similarity to real images) and the highest SSIM

(demonstrating better structural consistency).
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Latent Dimension FID Score  SSIM Score 

128 24.3 0.67

256 19.8 0.73

512 15.2 0.81

Table V. Generator Performance Comparison with Different Latent Dimensions

The improved performance of larger latent dimensions suggests that a richer feature space enhances

image quality, allowing the generator to capture �ner spatial details and produce more realistic satellite

images. While the 128-dimension generator struggled with image sharpness and structural accuracy, the

512-dimension generator consistently produced clearer, more accurate spatial representations.

Figure 6. Comparison of Actual and Generated Satellite Images. (On the left is the actual image and on the

right is the generated image)

The proposed GAN effectively generates satellite images that exhibit structural similarity to real-world

spatial layouts. As shown in Figure  6, the generated image preserves key urban features, such as road

↓ ↑
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networks and building distributions, making it a valuable tool for predicting urban evolution. However,

slight distortions and artifacts suggest that further re�nement is necessary for improved realism.

Our model demonstrated strong predictive capabilities. Trained on travel data from 2012 to 2017, it

successfully forecasted 2021 travel behavior trends and generated high-quality satellite images, making it

a valuable tool for transportation policy planning. However, some predictions deviated from actual travel

patterns, highlighting potential areas for further re�nement in long-term forecasting accuracy.

B. Data Privacy

All demographic and travel data were used at the census-tract level, ensuring no personally identi�able

information was involved. This aggregated approach preserves individual privacy while still capturing

broad trends. Similarly, the satellite imagery, sourced from publicly available platforms, contains no

personal identi�ers. All datasets were stored on secure servers with restricted access, adhering to

institutional privacy protocols and data usage agreements, thereby minimizing the risk of unauthorized

disclosure.

C. Practical Applicability of Study

1. Integration with Government Systems

Since our framework utilizes aggregated publicly available demographic and travel behavior data along

with high resolution satellite imagery, the study can be seamlessly integrated with existing government

systems. These data streams, which are routinely collected and maintained by governmental agencies,

can be directly incorporated into current Geographic Information Systems (GIS) and transportation

management platforms. Such integration enables real-time scenario analyses and predictive forecasting

of infrastructure needs, thereby facilitating proactive policy planning and urban development. The

system’s adherence to stringent data privacy and security standards further supports its incorporation

into established governmental work�ows.

2. Potential Applications

Beyond governmental integration, this study offers a wide range of potential applications in urban

planning and transportation management. The combined predictive analytics and spatial visualization

capabilities not only enhance long-term infrastructure planning but also provide critical insights for

immediate decision-making. Adaptable to real-time operations, the framework can support dynamic
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urban management by continuously updating predictions as new data become available. This real-time

adaptability is particularly bene�cial for responding to abrupt changes in travel behavior or unexpected

urban events. Additionally, the approach can be extended to support scenario planning and predictive

maintenance, thereby contributing to more sustainable and resilient urban systems.

VIII. Conclusion

Our study presents a two-stage deep learning framework combining the Temporal Fusion Transformer

(TFT) for travel behavior forecasting and a GAN-based model for spatial prediction. The results

demonstrate that TFT outperforms traditional time-series models, while the GAN with a 512-dimension

latent space yields the most realistic satellite images. The model successfully forecasts long-term

mobility trends and generates high-quality spatial representations, making it a valuable tool for

transportation planning. Additionally, the model architecture can be adapted for real-time data streams,

enabling dynamic decision-making in rapidly changing urban environments, and it will be released for

public use. Nonetheless, some limitations remain, including forecasting uncertainties and spatial

inconsistencies, which future research can address through enhanced feature engineering and model

interpretability improvements.
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