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Abstract

Background: Gleason grading remains the gold standard for prostate cancer histological classification and prognosis,

yet its subjectivity leads to grade variability between pathologists, potentially impacting clinical decision-making. Herein,

we trained and validated a generalised AI-driven system for diagnosing prostate cancer using diverse datasets from

tissue microarray (TMA) core and whole slide images (WSIs) with Hematoxylin and Eosin staining.

Methods: We analysed eight prostate cancer datasets, which included 12,711 histological images from 3,648 patients,

incorporating TMA core images and WSIs. The Macenko method was used to normalise colours for consistency across

diverse images. Subsequently, we trained a multi-resolution (5x, 10x, 20x, and 40x) binary classifier to identify benign

and malignant tissue. We then implemented a multi-class classifier for Gleason patterns (GP) sub-categorisation from

malignant tissue. Finally, the models were externally validated on 11,132 histology images from 2,176 patients to

determine the International Society of Urological Pathology (ISUP) grade. Models were assessed using various

classification metrics, and the agreement between the model’s predictions and the ground truth was quantified using

the quadratic weighted Cohen’s Kappa (κ) score.

Results: Our multi-resolution binary classifier demonstrated robust performance in distinguishing malignant from

benign tissue with κ scores of 0.967 on internal validation. The model achieved κ scores ranging from 0.876 to 0.995

across four unseen testing datasets. The multi-class classifier also distinguished GP3, GP4, and GPs with an overall κ

score of 0.841. This model was further tested across four datasets, obtaining κ scores ranging from 0.774 to 0.888. The

models’ performance was compared against an independent pathologist’s annotation on an external dataset, achieving

a κ score of 0.752 for four classes.

Conclusion: The self-supervised ViT-based model effectively diagnoses and grades prostate cancer using histological

images, distinguishing benign and malignant tissues and classifying malignancies by aggressiveness. External
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validation highlights its robustness and clinical applicability in digital pathology.

Corresponding author: Abadh K Chaurasia, awadhaiims@gmail.com

Introduction

Prostate cancer is the second most frequent carcinoma among men and a leading cause of morbidity and

mortality[1][2]. The highest incidence rates are found in Northern Europe, followed by Australia and New Zealand[1]. The

gold standard for diagnosing and grading prostate cancer depends on a histopathological examination of prostate tissue

biopsies, where the architectural pattern of the tissue and cellular morphology are assessed to assign a Gleason pattern

(GP) score. The two predominate GP scores within a slide image are used to determine the International Society of

Urological Pathology (ISUP) grade at the biopsy level. This ISUP grade results in a score ranging from 1 to 5, reflecting

cancer’s aggressiveness[3]. Unfortunately, manual grading is labour-intensive, subjective, and susceptible to both inter-

and intra-observer variability, leading to diagnostic inconsistencies and compromised outcomes[4]. These challenges

highlight the need for developing more precise, objective, and reproducible edge-cutting tools in digital pathology.

Advances in digital scanning and a shift toward digital pathology processing, has been mirrored by an increasing interest

in artificial intelligence (AI) and computer vision for analysing histopathological images. Recently, the vision transformer

(ViT) demonstrated more efficient architecture than traditional convolutional neural networks (CNNs) for histopathology

image analysis, using the power of self-attention mechanisms to process and interpret complex tissue patterns with high

precision[5][6][7][8]. The ViT model processes an image by dividing it into a sequence of patches, addressing them like

words in a text—transformer models were originally designed for natural language processing[9]. This technique effectively

captures global context and long-range dependencies, unlike CNNs, which rely on localised feature extraction[5]. However,

artifacts in feature maps have been shown in supervised and self-supervised ViT-based networks, specifically high-norm

tokens in low-informative background areas[10]. Several studies have demonstrated promising accuracy in classifying GP

at the patch level using deep learning-based algorithms, underscoring their potential to enhance diagnostic precision and

maintain consistency[11][12][13]. Most studies have utilised limited datasets to develop a CNN and ViT-based model for

classifying Gleason scores[14][15][16][17][18][19][20][21] which may not adequately represent the broader population and the

quality of the scanners’ images.

Given this, we implemented a self-supervised ViT-based architecture with additional "register" tokens in the input

sequence to reduce artifacts[10]. Our model was initially trained using self-supervised learning with the distillation with no

labels (DINOv2) method on an extensive dataset (142 million images)[22]. This comprehensive pre-training ensures robust

generalisation and adaptability, enhancing the model’s performance on various computer vision benchmarks at both

image and pixel levels[22]. Our models were tuned using self-supervised learning with DINOv2 on multiple datasets of

Hematoxylin and Eosin (H&E)-stained digital slides from diverse sources, including tissue microarray (TMA) core and

whole slide images (WSIs) from radical prostatectomy and needle biopsy specimens. Our models can distinguish between

benign and malignant prostate tissue while categorising malignant tissue into GP3, GP4, and GP5. We also sought to
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determine the accuracy of ISUP grade classification from our models[23].

Methods

Dataset Description and Extraction

We compiled images from eight prostate cancer datasets, which included 12,711 histological images from 3,648 patients,

incorporating TMA core images and WSIs. Full details regarding the cohorts are described in the supplementary section,

and an overview of WSIs and their patches for each class is displayed in Table 1.
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Table 1. Distribution of histopathology images used in this study .

* The Gleason pattern was extracted from the region-level mask annotations

** The benign-malignant classifier was trained using all combined patches from 5X, 10X, 20X, and 40X magnification HSI= Histology Slides Image

from Wholemount prostatectomy

Image Preprocessing

An image preprocessing pipeline was implemented using custom Python scripts, ensuring high-quality and consistent

preparation of histological images. The patches were extracted without any overlaps from the WSIs, matching the

magnification (10x) and size (512 x 512) of the SICAPv2 dataset. This was achieved by downsampling images from their

original resolutions (e.g., 20x or 40x). The extracted patches from the WSIs and corresponding masks were classified

based on the most prevalent colour in each patch. Patches were filtered based on tissue content, calculated as the

proportion of tissue pixels within each patch, with a 5% or 20% threshold applied to exclude patches with insufficient

tissue. Finally, the processed patches were saved in their respective class folders (Benign, GP3, GP4, and GP5).

The lack of standardisation in the H&E staining process leads to colour variations between slide images from different

medical centres, digitised with different scanners, and even from the same source due to potential variations in the image

preparation process[24]. Thus, we used the Macenko method to normalise the stains to align the overall colour distribution

with the target patch image using the ‘staintools’ library[25][26]. This step ensured consistent staining across all patches

from diverse datasets and scanners, focusing on the relevant features of the images during the model training. Finally,

color-normalized patches were input to our models with 518 x 518 pixels. Using the Fastai framework, we applied a range

of transformations to our stain-normalized patches, including resizing, horizontal and vertical flipping, rotation, and lighting

adjustments[27]. These augmentations aimed to preserve the essential features of the tissue samples while introducing

variability to prevent overfitting.

Optimal Architecture Selection

The optimal model selection and training process were conducted using the Fastai framework[27]. Initially, we evaluated a

variety of EfficientNet and ViT-based architectures for GP classification on SICAP (Figure S1). Our preliminary results

indicated that ViT models outperformed EfficientNet architectures based on accuracy and κ score. We further screened to

identify the most promising self-supervised ViT models using combined training sets. Among the evaluated models

(Figure S2), the ViT model with a patch size of 14 and four additional registers exhibited the most potential architecture.

These registers reduce the high-norm artifacts that commonly occur in less informative regions of images. This model was

initially pre-trained on an extensive dataset using the DINOv2 self-supervised learning method (teacher-student model),

promoting robust feature learning without needing labelled data[28]. This method involves training the model to predict its

outputs for augmented versions of the same image, supporting feature consistency and robustness. The model has 86.6

million parameters, 115 million activations, and input image sizes of 518 x 518 pixels. The model’s detailed architecture is

visualised in Figure S3. The model’s generalisation and adaptability were achieved through self-supervised pre-training

and exposure to large-scale datasets. Finally, this mode was chosen to train binary and multi-class classifiers for
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diagnosing prostate cancer from WSIs.

Multi-Resolution Binary Classifier

Our multi-resolution binary classifier was trained and validated using 80% of the total data from each dataset: SICAPv2,

TMAZ, AGGC, GC2019, and complete data from the Singapore dataset. The Singapore dataset only had multi-resolution

(5x, 10x, 20x, and 40x) patch-level labels for benign and malignant classes. This classifier was designed to distinguish

between benign and malignant tissues from diverse magnifications, enhancing its ability to identify cancerous features

across various scales. The model was initially fine-tuned maximum for ten epochs with a base learning rate of 2e-3 and

weight decay of 2e-3 using an early stopping function to monitor validation loss, minimising overfitting and maximising the

classifier’s performance. Initially, class weights were implemented to address class imbalance using a weighted cross-

entropy loss function. However, this approach did not improve our model’s performance, so we dropped the class weights.

Further refinement was achieved by unfreezing the model to train all layers using the one-cycle policy for an additional ten

epochs, with learning rates ranging from 1e-7 to 1e-4 with a weight decay of 2e-3. Early stopping was again employed to

monitor validation loss with patience 2.

Our model was evaluated on a separate unseen testing set comprising 20% of each dataset, using diverse classification

matrices and assessing the agreement between the actual label and the model’s predictions for benign and malignant

tissues.

Multi-Class Classifier

We trained and validated a multi-class classifier for GP classification (GP3, GP4, and GP5) on combined data sets from

SICAPv2, TMAZ, AGGC, and GC2019 with a single resolution, approximately 10x magnification. We selected the same

architecture with pre-trained weights, and the training steps were implemented like the binary classifier. The model was

also evaluated separately on 20% of unseen data from each dataset (Table 1).

Attention Maps

The analysis of attention maps provides critical insights into the model’s decision-making process. The attention

mechanism allows the model to dynamically assess the significance of various image patches, emphasising the most

relevant areas to make accurate predictions. This capability is achieved through multi-head self-attention layers, which

calculate attention scores between all pairs of image patches. Visualising these attention maps helps interpret the model’s

decision-making process, making it easier to identify which patch regions are considered the most important. We

generated the attention maps and visually evaluated them by a pathologist. In Gleason grading, these attention maps

ensure that the model accurately identifies and focuses on critical histopathological features, such as glandular structures

and cellular patterns, which are valuable for accurate Gleason grading.

Determining ISUP Grade Group
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We used our trained models to determine the ISUP grade group from the WSIs or histology images. Initially, we

generated a patch of 518 x 518 pixels with 10x magnification. The binary model first classified patches as benign or

malignant, with the malignant patches being further processed by a multi-class classifier to distinguish them into GP3,

GP4, or GP5. The results from the binary and multi-class classifiers were aggregated to determine the overall ISUP

grade. This involved calculating the percentage of each GP within the malignant regions and identifying the primary and

secondary GPs based on their prevalence (greater than 5% patches were considered substantial malignant subclass from

the WSIs). The final grade was assigned according to established criteria by evaluating the distribution of these

patterns[29][30].

Pathologist Grading Tiles

We used the PANDA dataset to evaluate our models’ performance at the patch level. 400 patches were randomly

selected and divided into two separate groups, each containing 200 tiles. A board certified pathologist graded all patches

on two separate occasions, with a one-month interval between the grading sessions to reduce the possibility of recall bias.

Further, we evaluated the consistency and reliability of the pathologist’s grading, and we included 20 duplicate patches in

each folder for blind grading. This blind inclusion aimed to assess intra-observer variability. We validated our models using

the consensus labels derived from the two grading sessions. The final evaluation was based on these consensus labels

for each set, ensuring a reliable assessment of our models’ performance against the ground truth established by the

pathologist’s grading.

External Validation

The external validation was extensively performed on three distinct datasets: PANDA, NADT-Prostate, and PROSTATE-

MRI. The PANDA dataset, comprising approximately 10K digitised H&E-stained prostate biopsies, provided robust data

for assessing our models’ performance. The NADT-Prostate dataset includes data from patients with intermediate or high-

risk prostate cancer, ensuring the models’ versatility in identifying various prostate conditions. The PROSTATE-MRI

dataset includes annotated histopathology images, allowing for rigorous validation with MRI data. These comprehensive

validation data reveal our models’ performance in diagnosing and grading prostate cancer across diverse clinical settings.

Model Evaluation and Statistical Analysis

The experiment was conducted on a virtual Ubuntu desktop (version 22.04) at the Nectar Research Cloud using an

NVIDIA A100 GPU and 40GB of RAM[31]. All statistical analyses and training were performed using Python 3, Fastai, and

PyTorch libraries[27][32][33].

The performance of our classification models was rigorously evaluated on a validation set and separate unseen testing

sets comprising 20% of each dataset. We employed several metrics for the binary and multi-class classifier models to

evaluate their effectiveness: Area Under the Receiver Operating Characteristic (AUROC), accuracy, precision, sensitivity
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(recall), specificity, and F1-score. The κ was utilised to measure the agreement between the predicted and actual labels,

considering the chance agreement and providing a weighted measure that reflects the severity of disagreements. We

used bootstrapping with 4000 iterations to calculate confidence intervals (CIs) for each metric. The mean values of these

metrics were calculated, along with their 95% CIs, to evaluate the performance of the models comprehensively. In the

multi-class setting, each class’s metrics were calculated as a binary problem (one-vs-rest classes), allowing us to assess

the model’s ability to distinguish between classes effectively.

Results

Performance of Multi-Resolution Binary Classifier

Our multi-resolution binary classifier, designed to distinguish between benign and malignant patches, demonstrated robust

performance across several classification metrics. The model showed high performance in distinguishing between two

classes with overall AUROC, accuracy, and κ score of 0.999 (0.999, 0.999), 0.985 (0.983, 0.987), and 0.967 (0.963,

0.972) with 95% CI, respectively. These results were obtained from the internal validation set, which consisted of 4,640

benign and 8,113 malignant patches, representing 20% of the training dataset. The highest prediction errors from a multi-

resolution binary classifier are visualised in Figure S4. Furthermore, the model was validated on an unseen testing set

from each database to determine the model’s efficacy, as detailed in Table 2.

Table 2. Performance of multi-resolution binary classifier on independent testing sets.

n = Number of patches, AUROC= Area Under Receiver Operating Characteristic, CI= Confidence Internal, �= quadratic weighted Cohen’s Kappa

Score
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Performance of Multi-Class Classifier

The multi-class classifier effectively differentiated GP3, GP4, and GP5 patches. The model demonstrated optimal

performance on the internal validation set (20% of total training data), showing accuracy in identifying the aggressiveness

of prostate cancer tissue. For GP3 (n=1,770), the AUROC achieved 0.970 (0.965, 0.974), with an accuracy of 0.911

(0.903, 0.919) and a κ score of 0.841 (0.826, 0.856). For GP4 (n=2,680), the AUROC attained 0.962 (0.957, 0.970), with

an accuracy of 0.897 (0.888, 0.906) and a κ score of 0.841 (0.827, 0.856). For GP5 (n=314), the AUROC obtained 0.994

(0.989, 0.997), with an accuracy of 0.983 (0.980, 0.987) and a κ score of 0.841 (0.826, 0.855) with a 95% of CI for all the

metrics. The prediction errors from the multi-class classifier are illustrated in Figure S5. The model also ensured high

performance across all the unseen testing sets from different datasets provided in Table 3.

Table 3. Performance of multi-class classifier on unseen testing sets.

n = Number of patches, AUROC= Area Under Receiver Operating Characteristic, CI= Confidence Interval, � = quadratic weighted Cohen’s Kappa

Score

Interpreting Attention Maps

In binary classification tasks, attention maps consistently focused on regions with relevant histological structures using all

the attention heads (Figure S6), such as glandular formations and cellular abnormalities, which are crucial for
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distinguishing between benign and malignant samples. The attention maps generated from all the attention heads of the

multi-class classifier further demonstrated the model’s precision in identifying specific histological features characteristic of

GPs, reflected in Figure S7. The attention maps correctly highlight regions containing these small, well-defined glands

(GP3), poorly formed glands or cribriform patterns in GP4, and regions lacking glandular structure indicative of high-grade

cancer (GP5). These visualisations validate the model’s capability to differentiate between various GPs accurately,

ensuring its predictions are reliable and consistent with trained pathologists’ observations. Figures 1 and 2 illustrate these

attention maps from combined attention heads, highlighting their coherence with pathological features. This high degree

of alignment with expert annotations confirms the robustness and clinical relevance of the model’s attention mechanisms,

thereby enhancing its potential utility in prostate cancer diagnosis and grading in digital pathology.

Figure 1. Patches and corresponding attention maps for both benign and malignant cases. Three randomly predicted patches from each class are

shown, with actual and predicted labels and the model’s prediction confidence for each testing dataset.
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Figure 2. Visualisation of attention maps for Gleason patterns 3, 4, and 5. Two randomly selected patches from each class display actual and

predicted labels with the model’s confidence for each testing dataset.

Models Versus Pathologist

Duplicate patches were assessed for consistency, resulting in a κ of 0.802, indicating excellent agreement and

consistency in the pathologist’s grading, illustrated in Figure S8. The models’ performance revealed substantial

agreement (Tabel S1), particularly in identifying benign and higher-grade patterns, underscoring the models’ potential as a

reliable diagnostic tool for assisting pathologists in digital histopathology. Figure S9 displays the AUC curve obtained for

benign and malignant classes.

External Validation

Our models were utilised to determine combined GPs and ISUP grades from WSIs on the PANDA, NADT-Prostate, and

PROSTATE-MRI datasets. The models achieved a κ score of 0.593 (0.577, 0.608) for combined GPs and 0.587 (0.573,

0.601) for ISUP grade groups on the PANDA set. On the NADT-Prostate dataset, the models obtained κ scores of 0.618
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(0.547, 0.683) for combined GPs and 0.620(0.551, 0.686) for ISUP grade groups, demonstrating their generalizability.

Additionally, we validated our models on the PROSTAE-MRI dataset, an image with multiple annotated tissue spots,

highlighting the models’ multi-modal diagnostic capabilities. The models can directly focus on the WSIs to identify the

benign and cancerous regions within a slide or histopathologic images, as illustrated in Figure 3. This feature enhances

the interpretability and usability of the models’ outputs, assisting pathologists in identifying and verifying cancerous

regions within the slides. These combined results emphasise the clinical applicability of the models for diagnosing and

grading prostate cancer, making it a reliable tool in digital histopathology.

Figure 3. Examples where the developed model detected and highlighted Gleason patterns (3, 4, and 5) and established ISUP grade groups from

diverse histology images across three external datasets (PANDA, NADT-Prostate, and PROSTATE-MRI).
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Discussion

Automated Gleason grading remains a challenge in digital pathology due to the variability in tissue morphology, staining

techniques, imbalanced representation of different GPs, and variation in slide scanners across centres. In this study, we

sought to overcome these issues, by integrating multiple publicly available datasets, and an advanced ViT architecture

using DINOv2 self-supervised learning with registers[10], addressing many limitations in traditional deep learning-based

models.[13][34][35] Our models show optimal accuracy in distinguishing benign and malignant tissue at the patch level,

indicating their potential effectiveness in clinical settings to aid pathologists in diagnosing prostate cancer and grading

GPs. These models can be an effective diagnostic tool, assisting pathologists with their clinical opinions, identifying

regions of interest, reducing diagnostic errors, and improving clinical decisions.

The availability of publicly accessible annotated datasets for prostate cancer at the patch level is limited. However, we

have extracted four classes of patches from segmentation and mask annotations data, as detailed in Table 1. Our

approach involved a two-stage classification process; first, we developed a model to distinguish between benign and

malignant tissues, and then a second model to assess the aggressiveness of cancer. Our multi-resolution binary classifier

for distinguishing patients with and without cancer was evaluated on four different datasets, achieving accuracy from 0.976

to 0.998 and κ scores ranging from 0.876 to 0.995 on testing sets. This performance surpasses several existing studies:

Arvaniti et al. achieved κ values of 0.67 and 0.55 on validation and testing sets using supervised learning with small TMA

datasets[15] Silva-Rodriguez et al. utilised supervised learning on 160 WSIs and achieved a κ of 0.77[36] in their 2021

study, they employed multiple instance learning, reaching 0.83 with pixel-level annotations[37]; Müller et al. demonstrated

high accuracy in differentiating between benign and malignant tumours, achieving an accuracy of 0.96.[38] These

comparisons underscore our model’s superior accuracy and consistency, highlighting the potential of advanced AI

techniques, such as ViT-based self-supervised learning using DINOv2, to support pathologists with robust and reliable

cancer screening tools in digital histopathology workflows.

Our multi-class GP classifier was evaluated on unseen 20% of total data from each dataset, achieving an overall κ score

of 0.841. This performance surpasses the best result of 0.826 ± 0.014 reported in a recent study using DenseNet121,

which utilised 80 whole-slide images annotated by five pathologists[12]. Additionally, our model demonstrated higher

consistency compared to the significant inter-observer variability among the pathologists (κ = 0.695).[12] While the ISUP

Prostate Test B e-learning module improved inter-rater reliability from 0.70 to 0.74 (p = 0.01) among 42 pathologists[39],

our model’s higher κ score indicates better consistency and accuracy. Our results underscore the potential of ViT-based

self-supervised learning using DINOv2 to enhance the accuracy and reliability of prostate cancer diagnosis and grading,

supporting pathologists with consistent and robust cancer screening tools in the digital histopathology workflow.

Attention maps generated by both models effectively highlighted clinical features associated with benign and various GP

morphologies. However, some variability was observed, despite employing advanced ViT models and utilising the DINOv2

registration. This noise was primarily attributed to the focus on background artifacts, reflexes, and dispersed tissue, which
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could obscure the critical clinical features and reduce the accuracy of our models. Further refining these attention maps

and minimising such noise are essential to improving the robustness and reliability of our AI-driven diagnostic tools.

We utilised three external datasets from radical prostatectomy and needle biopsy specimens to evaluate the performance

of our models in determining combined GPs and ISUP grades. The models demonstrated reasonable accuracy and

consistency across these diverse data types. Specifically, for WSIs, the models effectively identified and highlighted the

four classes, accurately assigning combined GPs and corresponding ISUP grades. Additionally, the visualisations of

pathology slides allowed for a qualitative assessment of the model’s performance, showing a strong correlation between

the predicted grades and the pathologist’s labels. This comprehensive evaluation underscores our approach’s robustness

and clinical applicability, providing a reliable automated solution for prostate cancer grading that aligns with established

clinical guidelines.[29][30] Deploying these models can significantly reduce the time required to analyse WSIs, thereby

boosting the efficiency of pathology labs and streamlining the workflow. In high-workload scenarios, these models can be

invaluable tools to prioritise cases, ensuring timely diagnosis and prognosis, especially for combined patterns 3+4 or

4+3.[40]

In conclusion, self-supervised ViT-based models with registers can potentially improve prostate cancer diagnosis using

histopathology images. Our models show strong performance in distinguishing between benign and malignant tissues,

also identifying tissues with GP3, GP4, and GP5, which indicate the aggressiveness of the cancer. The high alignment of

attention maps with expert-confirmed pathological features in a clinical context, along with external validation, has

demonstrated the robustness and generalizability of the models across various datasets.
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