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Abstract. Kupczynski (2023) claims that Gill and Lambare (2022a,
2022b) misrepresent several of his published papers. This paper shows
that the latest version of his “contextuality by default” model of a
Bell experiment places no constraints whatsoever on the statistics of
observed results in such experiments. It thereby effectively allows arbi-
trary non-locality, ie direct causal effects of local measurement settings
on distant measurement outcomes.

1 Introduction

In Kupczynski (2023)[1], the author (referred to as MK in the sequel) summarizes
his work, and in particular, the results of Kupczynski (2020)[2], in two equations
labelled (1) and (3). These are two different models for Bell experiments, and it
seems that over recent years MK is slowly transitioning from model (1) to model
(3). Here we concentrate on model (3).

We will use x and y for outcomes of measurements, taken to be elements of the
set {−1,+1}, while a and b will stand for measurement settings, elements of the set
{1, 2}. In each trial of a Bell experiment, settings a and b are input into two distant
devices, and shortly thereafter outcomes x and y are output by the two devices.
This is repeated many times. We consider the whole experiment as producing
a long sequence of repetitions of observations of a random vector (A,B,X, Y ).
Writing (Xab, Yab) for a pair of random variables with the joint distribution of
(X, Y ) conditional on A = a, B = b, MK’s model (3) states

E(XabYab) =
∑
λ∈Λab

Xa(λ1, λa)Yb(λ2, λb)p(λ1, λ2)pab(λa, λb) (3)
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where Λab is a set of four-tuples (λ1, λ2, λa, λb). Notice that neither of the two
probability mass functions p(λ1, λ2) and pab(λa, λb) are assumed to factor. MK says
“it is clear that neither the Gill-Lambare probabilistic model nor Bell averaging
over instrument variables may be used to prove CHSH inequalities for random
experiments described by this probabilistic model”. As we will show, things are
even worse. Model (3) is effectively no model at all. It allows anything, including
serious non-locality.

As a side remark, MK’s model (1) is defined through a similar equation for
E(XY |A = a,B = b,XY 6= 0) in which pab does factor and the outcomes are
elements of the set {−1, 0,+1}. Mathematically, that is the old detection loophole
model, and we do not discuss it here.

In the paper we are discussing MK does not mention one of the key background
assumptions which he makes in many earlier papers. That assumption is that the
sets within which the hidden variables λ1, λ2, λa and λb vary are all disjoint. Now,
if λa takes values in a set Λa, and λb takes values in a set Λb, and those two sets are
disjoint, then an element λ ∈ Λa ∪ Λb lies in one and only one of the two sets Λa,
Λb. An actual value λa or λb determines the value of the setting a and moreover
whether it belongs to Alice’s or to Bob’s apparatus. The actually used setting, as
well as the user of the setting, is a function of the instrument setting-dependent
hidden variable.

This seems strange. Typical local hidden variables models, including contextual
local hidden variables models, are constructed with hidden variables taking values
in Rp for some small number p; one will typically use the same Euclidean space
independently of the setting and independently of which wing of the experiment
we are talking about. Similarly, the two source hidden variables are likely taken
to be elements of the same set. But one can always artificially make such spaces
disjoint: for the instrument hidden variables, replace Rp with its Cartesian product
with a one-point set containing the ordered pair “(party, setting)”. Here, “party”
is Alice or Bob, ie, which apparatus, and “setting” could be an angle, or just a
binary setting choice. One can carry out a similar operation on the two source
hidden variables.

MK’s hidden assumption of disjoint sample spaces for each local hidden vari-
able implies that the probability density or probability mass function which he
sometimes calls pab(λa, λb) and sometimes calls just p(λa, λb) is indeed a whole
family of probability mass functions, each one defined on a different set Λa × Λb.
The subscript “ab” is actually superfluous since implied by the arguments.

The notation is ambiguous: the a in λa could take the values 1 or 2, but λa|a=1

is not λ1. MK tries to increase clarity by using the short-hand notation, common
in both applied statistics and in theoretical physics, of writing “p” for a generic
mass function; which one is meant is indicated by the name of the variable at
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which it is evaluated.
Anyway, MK wants to allow the pairs λa, λb to be statistically dependent,

where moreover Alice’s a is a function of λa and Bob’s b is a function of λb. He
states that CHSH inequalities cannot be proved from (3). Here, we can agree with
him for the full 100%. Something much more shocking is true: the model (3)
allows for any arbitrary set of four correlations and marginal distributions. Any
experiment generating i.i.d copies of some (A,B,X, Y ) can be described in this
way; and actually, in a myriad different ways.

The proof of my assertion involves careful disambiguation of MK’s notation.
Perhaps there are more elegant ways to do this, but here is one which works.

Consider any four probability distributions of pairs (Xab, Yab). I will denote
their probability mass functions as qab(xab, yab), defined on the set {−1,+1}2. I
emphasize again, these 16 probabilities are completely arbitrary subject only to
the condition that they do define four probability distributions: the individual
probabilities are non-negative and add up to 1 in four groups of four.

Let Λa equal {−1,+1}×{(“Alice”, a)} and let Λb equal {−1,+1}×{(“Bob”, b)}
where a, b ∈ {1, 2}. Both sets can be considers as sets of 3-tuples consisting of
an outcome ±1, a name, and a label of a setting, 1 or 2. Now define pab on
the set of six-tuples Λa × Λb by pab(x, “Alice”, a, y, “Bob”, b) = qab(x, y), zero on
all other points of this set; thus, it equals zero on all those points of Λa × Λb

with the third coordinate a′ 6= a and/or sixth coordinate b′ 6= b. Now define
Xa(λ1, λa) = x, the first of the three coordinates of λa, and Yb(λ2, λb) = y, the
first of the three coordinates of λb. It is superfluous to specify sample space and
probability distributions for λ1, λ2, the hidden variables coming from the source.

This specification results in exactly the target distribution required in advance
for each of the four pairs (Xab, Yab). Since those distributions are completely
arbitrary, their correlations can be anything too; there is no need whatsoever for
Bell-CHSH inequalities to hold. No-signalling need not hold. MK also allows the
marginal probability distribution of the settings (A,B) to be arbitrary. Hence the
distribution of (A,B,X, Y ) is arbitrary.

I suspect that MK allows for statistically dependent settings because in the
models of many of his earlier papers, and in particular, in his model (1), he em-
ploys the detection loophole, euphemistically renamed as the photon identification
loophole, see Araújo, Grangier and Larsson (2018)[5]. Measurement outcomes lie
in {−1, 0,+1} where the outcome “0” means that no particle was detected. Af-
ter post-selecting on detections of both particles, originally statistically indepen-
dent settings may become correlated, a phenomenon already observed by Pearle
(1970)[6].

In most of his earlier models, MK took pab(λa, λb) = pa(λa)pb(λb). For that
specification, but without allowing the detection loophole, Gill and Lambare de-
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rived Bell-CHSH inequalities, in at least three different ways. In a private com-
munication MK has said to us “one may postulate the existence of a probabilistic
coupling, motivated by some physical/metaphysical assumptions (e.g. local real-
ism/counterfactual definiteness), and test its plausibility”. Indeed, one may and
one does. However, we (Gill and Lambare 2022a, 2022b[3, 4]) did not postulate
such an existence. We proved the existence of a probabilistic coupling of the
probability distributions constructed by MK himself. He started by postulating
existence of various building blocks. We put them together in a different way and
created a probabilistic coupling and hence could derive Bell-CHSH inequalities for
the correlations in MK’s original model. This worked because MK’s correlations,
and the correlations in our probabilistic coupling, are identical, by definition of
the concept of a “coupling”.

In Kupczynski (2023)[1], MK states that his new model (3) was first put for-
ward in his paper Kupczynski (2021)[7]. However, that is not quite true; in that
paper MK assumes that pab(λa, λb) = pa(λa)pb(λb). It seems to this author that
the complexity of MK’s notation and reasoning has led the author, over the years,
deeper and deeper into misunderstanding of his own results. Each successive pa-
per partially quotes his earlier results, but also modifies them, for instance by
omitting key conditions. The mistakes possibly come about because MK does not
make much use of modern probability language. He explains what he is doing by
writing out long formulas for expectation values. Such formulas can be replaced
by verbal descriptions using the language of random variables, probability distri-
butions, conditional independence. One can even go further and present graphical
descriptions using the language of modern statistical causality theory based on
DAGs (directed acyclic graphs), as we also do in Gill and Lambare (2022b)[4].

In conclusion, we have shown that Kupczynski’s latest model of a Bell exper-
iment places no constraints whatsoever on the statistics of the observed results.
It effectively assumes non-locality of the effects of measurement settings on mea-
surement outcomes.

2 Some further thoughts

MK frequently refers to spreadsheets of observations on four jointly distributed
variables. It seems he is thinking of a set of observations of a quadruple of coun-
terfactual variables (X1, X2, Y1, Y2) and he says that Bell-CHSH inequalities hold
for all samples from such a distribution. He is of course referring to an inequality
involving the four empirical correlations between each of the X variables and each
of the Y variables. That inequality is an elementary consequence of elementary
arithmetic, and does not deserve to be called a CHSH inequality. It does feature
as a lemma in a proof of the CHSH inequality. Bell experiments generate data
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consisting of many observations of a four-tuple (A,B,X, Y ). The CHSH inequali-
ties are inequalities concerning the correlations E(XY |A = a,B = b). Notice, the
correlations are theoretical expectation values. The CHSH inequality follows from
physical assumptions which justify the mathematical existence of a four-tuple of
counterfactual variables (X1, X2, Y1, Y2), statistically independent of (A,B)), such
that in a probabilistic coupling, X = XA and Y = YB. The counterfactuals
(X1, X2, Y1, Y2) are essentially the hidden variables which would exist under the
hypothesis of local realism (with measurement independence).

We suspect that these MK’s references to N×4 spreadsheets and finite data sets
were inspired by our own paper Gill (2014)[8], where they were used to visualise
some new probabilistic results on the data from Bell experiments, when assuming
local hidden variables and no time or memory loophole.

MK likes to consider local hidden variables models with measurement out-
come space {−1, 0,+1}, but where the correlations studied by the experimenter
are expectation values conditional on neither outcome being equal to zero. This
seems to be his rationale in moving from his model (1) to his model (3). What
he seems only partially to realise is that conditioning on XY 6= 0 when com-
puting E(XY |AB = ab,XY 6= 0) in such a context alters the joint probability
distribution of all of the variables which he postulated as somehow “lying behind”
the originally observed variables (A,B,X, Y ). The joint probability density of his
six hidden variables (λ1, λ2, λa|a=1,2, λb|b=1,2) and of the settings (A,B), changes on
conditioning on the event XY 6= 0. I have the impression that MK does not realise
this, but sees model (3) as a consequence of model (1), after conditioning. In some
sense, it certainly is: as we have explained, model (3) is always true, whatever the
distribution of (A,B,X, Y ). So it certainly also fits to the model obtained from
(1) after conditioning. However the individual densities in the model (3) are no
longer the same as what they were in model (1), and the original independence
assumptions are generally no longer true either.
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