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Abstract

This article introduces “counting processes with multiple random-
ness”, which appear naturally in applications and differ essentially from
known stochastic processes in the literature. Unlike times between consec-
utive “events” of a usual counting process, inter-event times of a count-
ing process with multiple randomness are defined on proper subsets of
the sample space, and not eligible to have marginal distributions. With
examples in queuing theory, the existence of this new type of counting
processes is demonstrated, and their properties are illustrated.

MSC2020: Primary 60G20; Secondary 90B15, 90B22, 60K25.

1 Introduction

A counting process N(t) is a stochastic process, representing the total num-
ber of “events” occurred in the time interval [0, t]. If the jth event occurs at
τj , where j ≥ 1, the time τj+1 − τj between the jth and the (j + 1)th events
is a random variable. If τj+1 − τj for every j is defined on the whole sample
space, N(t) is a usual counting process. Poisson processes, and more generally,
renewal processes, are popular examples of usual counting processes. Unlike the
usual counting processes, there are also counting processes such that τj+1 − τj
for any given j can only be defined on a proper subset of the sample space, and
has no marginal distribution. Such counting processes differ essentially from
any known stochastic process in the existing literature.

Denote by (Ω,A ,P) the probability space of a random experiment, where P
is the probability measure on the measurable space (Ω,A ), and A the σ-algebra
of subsets of Ω. The sample space Ω consists of sequences (Ej)j≥1 of “events”.
Let m > 1 be a fixed integer. For a given ω ∈ Ω, denote by {Mi(ω) : 1 ≤ i ≤ m}
a partition of the set of positive integers N, where

Mi(ω) = {j ∈ N : (τj+1 − τj)(ω) = Ti(ω)}
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and Ti is a random variable with distribution Fi. If i 6= k then Fi 6= Fk.
Similarly, for a given j ∈ N, denote by {Ωi(j) : 1 ≤ i ≤ m} a partition of Ω,
where

Ωi(j) = {ω ∈ Ω : (τj+1 − τj)(ω) = Ti(ω)}

and P[Ωi(j)] > 0 for all 1 ≤ i ≤ m.

Definition 1.1. An integer-valued stochastic process N(t) ≥ 1 on Ω, which has
the above properties, is a counting process with multiple (or m-fold) random-
ness.

For m = 1, N(t) degenerates into a usual counting process. Evidently, when
m > 1, τj+1 − τj for any j is not defined on the whole sample space and hence
not eligible to have a marginal distribution. The distribution of τj+1 − τj is
not determined by any joint distribution of random variables on Ω; it is deter-
mined uniquely by the random experiment in question. The random variables
in the sequence (τj+1−τj)j≥1 may or may not be statistically independent. Fur-
thermore, immediately from Definition 1.1, (τj+1 − τj)j≥1 is not a stationary
sequence.

Counting processes with multiple randomness appear naturally in applica-
tions. Unfortunately, they are all mistaken for usual counting processes, as
stochastic processes characterized by Definition 1.1 have never been identified.
We shall use examples in queuing theory to demonstrate the existence of these
new counting processes, and illustrate their properties. By identifying this new
type of stochastic processes in queuing models, some long-standing inconsisten-
cies, such as those concerning output processes of stable queues in steady state
and product-form equilibrium distributions of queuing networks, can be readily
resolved.

In section 2, we shall see that departures from a stable queue in statistic
equilibrium constitute a counting process with two-fold randomness (i.e., m =
2). In section 3 and section 4, the output process of an M/M/1 queue and
Jackson networks of queues are revisited, respectively. The article concludes in
Section 5.

2 Departures from GI/GI/1 Queue

Consider the departure process from a stable, general single-server queue
(i.e., a GI/GI/1 system) in statistical equilibrium. A GI/GI/1 queue has an
infinite waiting room and a work-conserving server with a finite service capacity
defined by the maximum rate at which the server can perform work. The
meaning of “work-conserving” is that the server will not stand idle when there
is unfinished work in the system. Customers arrive at this system according
to a renewal process, and are served one at a time. Times between successive
arrivals are independent and identically distributed (i.i.d.) random variables
with a finite mathematical expectation, and so are service times of customers.
Inter-arrival times and service times are also mutually independent. For such a
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queue, a customer leaves the system if and only if the customer has been served.
The mean inter-arrival time is greater than the mean service time. Hence the
queue is stable, and assumed to be in steady state. For the purpose of this
study, it is not necessary to assume a specific queuing discipline.

According to the literature, times between consecutive departures from a sta-
ble queue in statistical equilibrium follow a marginal distribution [1]. However,
the existence of such a marginal distribution is only an unjustified assumption
taken for granted without verification. As we shall see in this section, for sys-
tems modeled by a GI/GI/1 queue, inter-departure times between customers
from the queue do not have a marginal distribution, even if the queue is stable
and in steady state.

Let cj represent the jth customer served, and denote by Ej the event “de-
parture of the jth customer from the system.” Because the queue is already in
steady state, we shall focus on (Ej)j≥1. Let τj be the departure time of cj , and
Qj the queue size, i.e., the total number of customers in the queue (including
the customer in service) immediately after the jth departure. Denote by Xj

and Yj the times between the jth and the (j + 1)th departures when Qj = 0
and Qj > 0, respectively.

Xj = Ij + Sj+1 (2.1)

Yj = Sj+1 (2.2)

where Ij is the idle time spent by the server waiting for the arrival of cj+1, and
Sj+1 the service time of cj+1.

By definition, a random variable is a measurable real-valued function; its
domain can be the whole sample space or a subset of the sample space. To
define a random variable U on the whole sample space Ω, a value must be
assigned to U at each ω ∈ Ω. Similarly, to define a random variable on a subset
of Ω, a value must be assigned to this random variable at each sample point in
the subset. For a random variable on the whole sample space, such as U , its
(marginal) distribution is defined by

PU (B) = P(U ∈ B)

where B is an arbitrary Borel set of the real line. When it is necessary to
emphasize the connection between U and P on (Ω,A ), the right-hand side of
the above equation can be used to express the distribution of U directly.

Similarly, components of a random vector (or terms of a stochastic sequence)
are random variables on Ω, such that all the components (or terms) take their
values at the same ω ∈ Ω. If a random vector has been defined, then the joint
distribution of its components is fixed, and the marginal distribution of each
component is determined by the joint distribution. Based on a given random
vector, some new random variables may be constructed on subsets of Ω.

For example, let (U, V ) be a random vector. The joint distribution is PU,V ,
which determines PU and PV , the marginal distributions of U and V . Based
on this random vector, a random variable W may be constructed on a subset
Θ of a positive probability, such that W (ω) = V (ω) for ω ∈ Θ, where Θ ⊂ Ω
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is specified by some values taken by U . The random variable W follows a
conditional distribution PW determined by PU,V .

So far, two types of random variables have been mentioned; they are either
defined on the whole sample space such as U , or follow a conditional distribution
such as W , which is defined on some subset of the sample space. There also
exist random variables different from those mentioned above. Random variables
of this type are not components of a random vector, and their distributions are
not determined by a joint distribution. As we shall see, times between successive
departures from the GI/GI/1 queue are random variables of this type. They
are defined on some proper subsets of Ω. Their distributions and properties are
determined by a chronological order of events experienced by customers. This
chronological order is not determined by properties of the queuing model; it is
determined by physical systems modeled by the queue. For a work-conserving
system, events experienced by every customer occur naturally as follows:

• First, a customer arrives at the queue.

• Upon arrival,

– the customer receives service immediately if the server is idle;

– otherwise the customer has to wait in line.

• Finally, after being served, the customer departs.

Consequently, for an arbitrary j, if the server becomes idle immediately after
cj leaves, the time between the departures of cj and cj+1 is the sum of an idle
time and a service time, as shown by Eq.(2.1); otherwise the inter-departure
time is a service time, see Eq.(2.2). Because of the above chronological order,
the sample space Ω has an interesting structure. Write

Φj = {ω ∈ Ω : Qj(ω) = 0}

Ψj = {ω ∈ Ω : Qj(ω) > 0}

N(ω) = {i ∈ N : Qi(ω) = 0}

and
N ′(ω) = {i ∈ N : Qi(ω) > 0}.

For each j ≥ 1, P(Φj) = 1− ρ > 0, P(Ψj) = ρ > 0, and Φj and Ψj constitute a
partition of Ω. Similarly, for each ω ∈ Ω, N(ω) and N ′(ω) form a partition of
N. Clearly, Φj ∩Ψi 6= ∅ if i 6= j and N(ω) ∩N ′(ω′) 6= ∅ if ω differs from ω′.

In the literature, stability and some properties of the arrival process of the
GI/GI/1 queue are established by using the strong law of large numbers. Results
of this kind are true for every ω ∈ Ω, with the exception at most of a set N of
sample points such that N ∈ A and P(N ) = 0. In other words, such results
hold with probability one or almost surely. Write Ω+ = Ω \ N . Then we may
also say that a statement is true for every ω ∈ Ω+, if it is true almost surely.
Clearly, for each j ∈ N, Φj and Ψj are also a partition of Ω+, and for each
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ω ∈ Ω+, N(ω) and N ′(ω) are a partition of N. By exploring the structure
of Ω, we can capture some important properties of times between consecutive
departures from the GI/GI/1 queue.

Lemma 2.1. If a GI/GI/1 queue is stable and already in statistical equilibrium,
and if the server has a finite service capacity, then for any given j ∈ N,

(a) τj+1− τj cannot be expressed by any single, fixed random variable, i.e., no
random variable on Ω can describe τj+1 − τj, and hence τj+1 − τj has no
marginal (i.e., unconditional) distribution;

(b) (Qj , τj+1 − τj) is not a random vector, and hence τj+1 − τj has no distri-
butions conditional on values taken by Qj.

Corollary 2.2. The terms of (τj+1 − τj)j≥1 are not random variables on Ω.

To understand Lemma 2.1 and its corollary, it may be helpful for us to
consider the following question: If τj+1 − τj could be expressed by a random
variable on Ω, say Zj , what would be the value of Zj at ω corresponding to
Qj(ω)? At any given ω, the value of Qj equals either zero or a positive integer.
Whatever value Qj takes at ω, it is impossible to assign any value to Zj at
ω corresponding to Qj(ω). In contrast to τj+1 − τj , the service time Sj , the
number of customers Qj , and times between consecutive arrivals are all random
variables on Ω. There is some subtlety here, however. For example, when
playing the role of an inter-departure time Yj defined on Ψj , Sj+1 is no longer
a random variable on Ω.

Proof. For any j, Φj and Ψj constitute a partition of Ω. Hence for any ω ∈ Ω,
either ω ∈ Φj and

Qj(ω) = 0
τj+1(ω)− τj(ω) = Xj(ω)

}
(2.3)

or ω ∈ Ψj and
Qj(ω) > 0
τj+1(ω)− τj(ω) = Yj(ω).

}
(2.4)

As shown by Eq.(2.1) and Eq.(2.2), Xj and Yj are well-defined random variables;
their distributions, PXj

and PYj
, are determined by the chronological order of

events experienced by customers, as implied by Eq.(2.3) and Eq.(2.4).

PXj
(B) = P(Xj ∈ B|Φj), PYj

(B) = P(Yj ∈ B|Ψj)

where B is an arbitrary Borel set of the real line.
To prove (a), it is sufficient for us to show that, for an arbitrarily given

j, τj+1 − τj can only be described by Xj or Yj , i.e., any single, fixed random
variable on Ω cannot express τj+1− τj . We first prove that the above statement
is true for every ω ∈ Ω+. Because Φj and Ψj are a partition of Ω+, either
Eq.(2.3) or Eq.(2.4) must hold exclusively for any ω ∈ Ω+.
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Suppose to the contrary that there is a random variable Zj on Ω+, such that
Zj = τj+1 − τj . Consequently,

{Qj = 0, Xj ∈ B} = {Qj = 0, Zj ∈ B} (2.5)

{Qj > 0, Yj ∈ B} = {Qj > 0, Zj ∈ B}. (2.6)

Because {Qj = 0} is independent of events concerning future departures after
cj leaves, such as {Xj ∈ B} and {Zj ∈ B}, Eq.(2.5) implies

P(Qj = 0)PXj (B) = P(Qj = 0)PZj (B)

where PZj
is the distribution of Zj . Similarly, {Qj > 0} is independent of

{Yj ∈ B} and {Zj ∈ B}, so Eq.(2.6) implies

P(Qj > 0)PYj
(B) = P(Qj > 0)PZj

(B).

Because P(Qj = 0) = P(Φj) = 1 − ρ > 0 and P(Qj > 0) = P(Ψj) = ρ > 0 for
all j, treating τj+1 − τj as Zj on Ω+ leads to

PXj
(B) = PYj

(B) = PZj
(B).

This is absurd. The absurdity shows that Zj does not exist on Ω+, and cannot
be defined on the whole sample space Ω. Actually {Zj ∈ B} is not an event
in A . Therefore, τj+1 − τj cannot be described by any single, fixed random
variable on Ω, and is not eligible to have a marginal distribution. This proves
(a).

By definition, each component of a random vector (or each term of a stochas-
tic sequence) is a random variable on Ω, and all the components (or terms) take
values at the same ω ∈ Ω. By (a) proved above, τj+1− τj and Qj cannot form a
random vector, although Qj is a random variable on Ω. Consequently, τj+1− τj
is not eligible to have distributions conditional on values taken by Qj . Simi-
larly, τ2−τ1, τ3−τ2, · · · cannot form a sequence of random variables on Ω. This
completes the proof of the lemma and its corollary.

The conditions required by Lemma 2.1 exclude two conceivable scenarios for
τj+1 − τj to be a single, fixed random variable. One is the worst scenario, and
the other is an ideal scenario. The worst scenario is a queue with P(Φj) = 0 for
all j, i.e., the queue is unstable, because P(Φj) = 0 for all j implies N(ω) = ∅
for all ω ∈ Ω+, which means τj+1 − τj = Sj+1 on Ω+ for all j. That is, the
server is always busy almost surely, as the idle time Ij vanishes identically on
Ω+, and hence the queue will never be empty.

The ideal scenario is a queue with P(Ψj) = 0 for all j, i.e., the queue is
always empty almost surely, because P(Ψj) = 0 for all j implies N ′(ω) = ∅ for
all ω ∈ Ω+, which means τj+1 − τj = Ij on Ω+ for all j. That is, the server
has an infinite service capacity, as the service time Sj vanishes identically, and
hence Ij becomes an inter-arrival time with probability one.

The scenarios above illustrate two extreme situations. For a stable queue in
statistical equilibrium with P(Φj) > 0 and P(Ψj) > 0 for any j, the departures
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from the queue constitute a counting process with two-fold randomness, such
that

Ω1(j) = Φj , Ω2(j) = Ψj , M1(ω) = N(ω), M2(ω) = N ′(ω)

and
T1 = Xj , T2 = Yj .

Accordingly, (τj+1 − τj)j≥1 is a sequence with two-fold randomness in the fol-
lowing sense, which makes (τj+1−τj)j≥1 essentially different from any sequence
of random variables on Ω.

(i) At each ω ∈ Ω+, the sequence (τj+1−τj)j≥1 consists of two subsequences,
such that the division of (τj+1 − τj)j≥1 into the subsequences is random.

[τj+1(ω)− τj(ω)]j≥1 = [τj+1(ω)− τj(ω)]j∈N(ω) ∪ [τj+1(ω)− τj(ω)]j∈N ′(ω).

(ii) For a fixed ω ∈ Ω+, if j ∈ N(ω), then τj+1 − τj equals Xj(ω); otherwise
τj+1 − τj takes Yj(ω) as its value.

Having a finite service capacity, the server is either busy or idle with a
positive probability, and hence realistic inter-departure times always fall into
two categories. In statistical equilibrium, the probability for the server to be
busy or idle is fixed, and the inter-departure times are given by either Xj or Yj
according to values taken by Qj , see Eq.(2.1) and Eq.(2.2). In the literature, the
distribution of Xj or Yj is interpreted as the distribution of τj+1−τj conditional
on values taken by Qj . According to such interpretation, a marginal distribution
of the inter-departure times could be constructed based on the distributions of
Xj and Yj .

However, the above interpretation is incorrect. By Lemma 2.1, for each
j ∈ N, τj+1 − τj cannot be expressed as a random variable on Ω, and hence is
not eligible to have a marginal distribution; actually τj+1 − τj is a term of a
sequence with two-fold randomness; it is wrong to interpret the distribution of
Xj or Yj as the distribution of τj+1 − τj conditional on values taken by Qj , for
(Qj , τj+1 − τj) is not a random vector.

3 Departures from M/M/1 Queue and Burke’s
Theorem

Consider a stable M/M/1 queue in steady state, which is the simplest in-
stance of the GI/GI/1 queue. Customers arrive at this system according to a
Poison process; service times are mutually independent and follow a common
exponential distribution. According to Burke’s theorem [2], times between suc-
cessive departures from this queue in steady state are mutually independent,
following a marginal distribution identical to the distribution of inter-arrival
times. Let λ be the parameter of this distribution. Clearly, Burke’s theorem
contradicts Lemma 2.1 and Corollary 2.2. In the following, we shall see that
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Burke’s original proof given in [2] and Reich’s proof based on time reversibility
given in [3] are both fundamentally flawed, and simulation results claimed to be
in agreement with Burke’s theorem are misinterpreted. In other words, Burke’s
theorem is wrong.

3.1 Flaw in Burke’s Proof

In the proof given in [2], “the length of an arbitrary inter-departure interval”
is considered. In the notation of this present article, such an interval is expressed
as (τj , τj+1) for an arbitrary j. Denote by Q(t) the state of the queue (i.e., the
queue size) at time t. Burke’s proof begins with calculating the probability of
an event {Q(t) = k, τj+1−τj > t}, where t is an instant after τj , and τj is taken
to be the instant of the last previous departure. Note that comparing τj+1 − τj
with t amounts to choosing τj as the origin on the time axis.

Burke’s proof implies an assumption: τj+1 − τj is a single, fixed random
variable and can take values together with Q(t) at every ω ∈ Ω. Under this
assumption, [Q(t), τj+1 − τj ] is treated as a random vector, and τj+1 − τj is
treated as a random variable Zj on Ω. In Burke’s proof, a set of differential
equations governing the probability of {Q(t) = k, Zj > t} is established based
on the above assumption. Solving the equations yields [2]

P[Q(t) = k, Zj > t] = P[(Q(t) = k]P(Zj > t), k = 0, 1, · · ·

where P[Q(t) = k] is the equilibrium probability of {Q(t) = k}, which actually
does not depend on t, and

P(Zj > t) = e−λt.

According to the calculation above, {Q(t) = k} and {Zj > t} are mutually
independent for any k ≥ 0, and inter-departure times are distributed as inter-
arrival times. However, the assumption underlying Burke’s proof is false, as it
leads to contradictions.

To see this, consider first Q(t) = 0, i.e., the server is idle at time t. Because
τj is the instant of the last previous departure, and taken to be the origin on
the time axis, the arrival instant of cj+1 must be in the interval (t, τj+1), and no
departure occurs in the open interval (0, τj+1). Moreover, {Q(t) = 0, Zj > t}
implies {Q(0) = 0, Zj > t}, i.e.,

{Q(t) = 0, Zj > t} ⊂ {Q(0) = 0, Zj > t}. (3.1)

Otherwise there would be at least one departure in the interval (0, τj+1), which
is impossible. On both sides of Expression (3.1), Zj is the same random vari-
able on Ω. According to Burke’s proof, Zj follows the exponential distribution
with parameter λ. However, as required by the chronological order of events
experienced by customers, whenever Q(0) = 0,

Zj = Ij + Sj+1

8



where Sj+1 is a service time, and the idle time Ij is distributed as an inter-
arrival time. Clearly, Ij + Sj+1 does not follow the distribution of inter-arrival
times. We see a contradiction.

Now consider Q(t) = k > 0, i.e., the server is busy at time t. As we can
readily see, either

{Q(t) = k, Zj > t} ⊂ {Q(0) = 0, Zj > t}

or
{Q(t) = k, Zj > t} ⊂ {Q(0) = k′, Zj > t}

where 0 < k′ ≤ k. The former expression leads to Zj = Ij + Sj+1, and we see
the same contradiction as shown above. In the latter expression, Zj = Sj+1,
which is a service time. According to the assumption implied by Burke’s proof,
in the two expressions above, Zj is the same random variable on Ω; we see a
contradiction again. The contradictions are due to the assumption that Q(t)
and τj+1 − τj , where τj+1 − τj is treated as a single, fixed random variable, can
take values together at each ω ∈ Ω. Because of this false assumption, τj+1 − τj
is mistaken for a random variable Zj on Ω with a marginal distribution resulting
from

∞∑
k=0

P[Q(t) = k, Zj > t] = e−λt.

However, such a single, fixed random variable Zj is not defined on Ω, and fails
to describe realistic inter-departure times.

As shown in Section 2 (Lemma 2.1), for any given j, there are two kinds
of realistic inter-departure times, Xj and Yj , see Eq.(2.1) and Eq.(2.2), which
are already defined on Φj and Ψj , respectively, and cannot be expressed by any
random variable on Ω. Such inter-departure times are terms of a sequence with
two-fold randomness, and do not have a marginal distribution; their distribu-
tions cannot be determined by joint distributions of random vectors defined on
Ω. The calculation leading to Burke’s theorem is invalid; it ignores completely
the dependence of departures on the state of the server. Such dependence is
part of the constraints imposed by physical systems to be studied based on the
queuing model.

3.2 Flaw in Reich’s Proof

As a birth-death process in steady state, Q(t) is a time-reversible Markov
process. Denote by Q∗(t) the time-reversed process of Q(t), such that points of
time are ordered in the reversed direction. The reversed process Q∗(t) is also
a birth-death process; this results in a different proof of Burke’s theorem. The
proof is given in [3] and goes like this: In steady state, Q(t) and Q∗(t) have
the same probabilistic structure; the points of time at which Q(t) increases by
1 form a Poisson process at rate λ, and hence the time points at which Q∗(t)
increases by 1 also form a Poisson process at rate λ; customers depart at the
latter points of time, so departures from the M/M/1 queue constitute a Poisson
process with rate λ. See also [4].
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The proof above is questionable. Although the time points at which Q(t)
increases by 1 constitute a Poisson process, the time points τj at which Q∗(t)
increases by 1 cannot form a Poisson process. The length |τj − τj+1| between
two successive points at which Q∗(t) increases by 1 is exactly the same length
as τj+1− τj between two successive points at which Q(t) decreases by 1. As we
can readily see below, for a birth-death process in whatever direction of time,
times between consecutive deaths and times between consecutive births do not
necessarily follow the same distribution.

In an open interval between two consecutive deaths, the state of a birth-
death process may change m times, where m ≥ 0. For Q(t), which represents
the number of customers in the M/M/1 queue at time t, “death” and “birth”
refer to “departure” and “arrival”, respectively. Consequently, intervals be-
tween consecutive deaths are inter-departure intervals, and a change of Q(t)
in (τj , τj+1) is due to an arrival in (τj , τj+1). It is sufficient to consider the
following two cases.

Case 1: m = 0. That is, Q(t) remains unchanged in (τj , τj+1), which implies
Q(t) > 0 for τj ≤ t < τj+1.

Q(t) =

 k + 2 t < τj
k + 1 τj ≤ t < τj+1

k t = τj+1.

Because Q(t) decreases by 1 if and only if one customer has been served, the
inter-departure time τj+1 − τj is a service time.

Case 2: m ≥ 1. That is, Q(t) changes at least once in (τj , τj+1). In this case,
either Q(t) > 0 for τj ≤ t < τj+1, or Q(t) = 0 for τj ≤ t < t1 where t1 < τj+1,
and Q(t) > 0 for t1 ≤ t < τj+1.

Q(t) =



k + 1 t < τj
k τj ≤ t < t1
k + 1 t1 ≤ t < t2
k + 2 t2 ≤ t < t3
· · · · · ·
k +m tm ≤ t < τj+1

k +m− 1 t = τj+1.

If k > 0, τj+1 − τj is still a service time. However, if k = 0, τj+1 − τj consists
of an idle time of the server (i.e., t1 − τj) and a service time (i.e., τj+1 − t1).
In both cases above, τj+1 − τj does not follow the distribution of inter-arrival
times.

Similarly, for Q∗(t), where points of time are ordered in the reversed direc-
tion, if m = 0,

Q∗(t) =

 k t = τj+1

k + 1 τj+1 < t ≤ τj
k + 2 t > τj
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and |τj − τj+1| = Sj+1. When m ≥ 1,

Q∗(t) =



k +m− 1 t = τj+1

k +m τj+1 < t ≤ tm
· · · · · ·
k + 2 t3 < t ≤ t2
k + 1 t2 < t ≤ t1
k t1 < t ≤ τj
k + 1 t > τj

and |τj − τj+1| = Sj+1 if k > 0; otherwise |τj − τj+1| = Ij + Sj+1. As shown
above, in steady state, times between consecutive departures from the M/M/1
queue always follow two different distributions, neither of which is identical to
the distribution of inter-arrival times.

It is well known that, for a given t, Q(t) is independent of future arrivals
after t. Time reversibility is often used to argue that Q(t) is also independent
of past departures before t. Based on an analogy between Q(t) and Q∗(t),
the argument goes as follows: Q(t) is independent of future arrivals after t;
departures are “arrivals” when looking backwards in time; because Q(t) and
Q∗(t) are statistically identical, Q(t) is independent of past departures before t.

However, the analogy between Q(t) and Q∗(t) is not appropriate, and the
argument based on the analogy is wrong. Although Q(t) is independent of
arrivals after t, both arrivals and departures prior to t determine Q(t): Increase
inQ(t) is due to arrivals before t, and decrease inQ(t) is due to departures before
t. For a stable M/M/1 queue in steady state, Q(t) depends on departures before
t necessarily.

Any queuing model for solving problems in the real world must satisfy the
constraints imposed by physical systems to be studied based on the model.
The reversed process Q∗(t) is merely a pure mathematical entity constructed
without considering the chronological order of events experienced by customers,
and hence irrelevant to the departure process from the M/M/1 queue. By
Corollary 2.2, (τj+1 − τj)j≥1 is even not a sequence of random variables on Ω.
As shown in Section 2, (τj+1 − τj)j≥1 is a sequence with two-fold randomness;
its terms do not have a marginal distribution. Time reversibility cannot change
(τj+1 − τj)j≥1 into a sequence of i.i.d. random variables on Ω.

3.3 Misinterpreted Simulation Results

Some simulation results are claimed to be in agreement with Burke’s the-
orem. However, as shown below, such results are misinterpreted. Let µ < ∞
represent the parameter of the service-time distribution. The mean inter-arrival
time and the mean service time are 1/λ and 1/µ, respectively. In steady state,

P(Qj = 0) = 1− ρ

and
P(Qj > 0) = ρ
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for all j, where ρ = λ/µ. Clearly, 0 < ρ < 1. When Qj = 0, τj+1 − τj is given
by Xj , see Eq.(2.1), and its probability density function (pdf) for the M/M/1
queue is

fX(t) =
λµ

µ− λ
(e−λt − e−µt).

If Qj > 0, τj+1 − τj is given by Yj , see Eq.(2.2), and its pdf for the M/M/1
queue is fY (t) = µe−µt.

If we let the service rate µ approach infinity, then ρ → 0, P(Qj = 0) → 1,
P(Qj > 0)→ 0, and for any given t,

lim
µ→∞

fX(t) = λe−λt, lim
µ→∞

fY (t) = 0.

As µ → ∞, Sj approaches zero, and τj+1 − τj tends to the exponentially dis-
tributed inter-arrival time for all j. This corresponds to the ideal scenario
discussed in Section 2. Only in this idealized situation, the departures from the
M/M/1 queue constitute a Poisson process at rate λ.

Let Kt represent a time interval (t, t+ dt] of an infinitesimal length dt. For
a stable M/M/1 queue with µ <∞ in steady state, a simple calculation yields

P(Qj = 0, Xj ∈ Kt) + P(Qj > 0, Yj ∈ Kt) = λe−λtdt. (3.2)

The above equation is indeed in agreement with the simulation, but it cannot
be interpreted as

P(Zj ∈ Kt) = P(Qj = 0, Zj ∈ Kt) + P(Qj > 0, Zj ∈ Kt) (3.3)

where Zj is a random variable representing τj+1 − τj at every ω ∈ Ω.
By Lemma 2.1, τj+1 − τj cannot be expressed by any random variable on

Ω, and (Qj , τj+1 − τj) is not a random vector. It is wrong to consider Eq.(3.2)
identical to Eq.(3.3), for {Zj ∈ Kt} 6∈ A . That is, Zj is not a random variable
on Ω (see Section 2). In fact, Eq.(3.2) is merely the probability of an event
given below.

Hj,t = {Qj = 0, Xj ∈ Kt} ∪ {Qj > 0, Yj ∈ Kt}.

Simulation studies are based on the strong law of large numbers. In simula-
tions, the strong law is usually applied to a sequence of i.i.d. random variables
on Ω. However, it is not legitimate to apply the strong law to (τj+1 − τj)j≥1,
which is not a sequence of random variables on Ω; its terms do not have a
marginal distribution (see Corollary 2.2). Actually (τj+1 − τj)j≥1 is a sequence
with two-fold randomness. Nevertheless, if we consider I(Hj,t), the indicator of
Hj,t, it is not difficult to see that I(H1,t), I(H2,t), · · · constitute a sequence of
i.i.d. random variables on Ω for any given t. By the strong law,

lim
n→∞

∑n
j=1 I(Hj,t)

n
= E[I(H1,t)]
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with probability one, where

E[I(H1,t)] = P(Q1 = 0, X1 ∈ Kt) + P(Q1 > 0, Y1 ∈ Kt) = λe−λtdt.

The above analysis not only explains why Eq.(3.2) is consistent with the simula-
tion, but it also explains why Eq.(3.2) differs from Eq.(3.3); the latter equation
does not hold.

4 Queuing Networks and Jackson’s Theorem

Consider a Jackson network in which there are J queues denoted by Qm,m =
1, 2, · · · , J . At Qm there are sm servers, and the mean service time is 1/µm. In
Jackson’s theorem [5], these queues are considered stable if λm < smµm, where
λm is the total arrival rate of customers at Qm, determined by the following
equations.

λm = γm +
J∑
n=1

λnPnm, m = 1, 2, · · · , J. (4.1)

In Eq.(4.1), γm is the arrival rate of customers at Qm from outside of the system,
and Pnm is the probability for a customer to join Qm immediately after leaving
Qn. So the arrival rate of customers at Qm from Qn is λnPnm. All the proofs of
Jackson’s theorem, including Jackson’s original proof and the proof with time
reversibility, rely on Eq.(4.1).

According to Jackson’s interpretation (e.g, [5, 6]), after the network has
been in operation for an infinitely long time, it behaves as if the numbers in
the queues were independent random variables with their joint distribution ex-
hibiting a product form. However, this interpretation is inconsistent with the
notion of statistical independence. As we shall see below, the condition in Jack-
son’s theorem, i.e., λm < smµm,m = 1, 2, · · · , J , does not imply stability of
every queue in the network, because Eq.(4.1) relies on an unjustified assump-
tion (see below), which holds only in an unrealistic scenario. Consequently, the
assumption makes Jackson’s theorem irrelevant to physical systems modeled
by Jackson networks of queues, although the solution of Eq.(4.1) may not be
difficult to find.

Consider two queues Q1 and Q2 in tandem, where Q1 is a stable M/M/1
queue in steady state. Customers arrive first at Q1 according to a Poisson
process with a rate λ. After being served at Q1, they join Q2 immediately;
Q2 also has an infinite waiting room. Service times of a customer spent at
Q1 and Q2 are mutually independent, following exponential distributions with
finite service rates µ1 > λ and µ2 > λ. In addition, service times at Q2 are not
only mutually independent but also independent of arrivals both at Q1 and at
Q2.

According to Burke’s theorem, departures from Q1 constitute a Poisson pro-
cess with the rate λ. By the interpretation based on Burke’s theorem, Q2

behaves as if it were a stable M/M/1 queue isolated from Q1. Such interpreta-
tion allows Q1 and Q2 to be viewed as a Jackson network of queues [6], which
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will be used here as a counterexample to show that Jackson’s theorem does not
hold, and its proofs are all flawed. By considering this simple network, we shall
not only find out what is wrong in Jackson’s theorem in a straightforward way,
but also see why time reversibility cannot explain away the inconsistent results
in the literature.

According to Jackson’s theorem [5], the numbers of customers in Q1 and Q2

are independent, and follow a product-form joint distribution after the network
has been in operation for an infinitely long time. For these two queues, Eq.(4.1)
is simply

λ1 = λ2 = λ (4.2)

which can also be obtained by using Burke’s theorem.
In the literature, it is claimed that Q2 is a stable queue; the claimed stabil-

ity of Q2 follows from Eq.(4.2). However, because times between consecutive
departures (i.e., τj+1 − τj) from Q1 are times between consecutive arrivals at
Q2, and because τj+1−τj cannot be described by any single, fixed random vari-
able, the number of customers in Q2 cannot be described by any single, fixed
random variable either, even if Q1 is stable and statistical equilibrium obtains
with respect to the number of customers in Q1.

The unjustified assumption underlying Eq.(4.1) and Eq.(4.2) is the following:
times between successive departures from a stable queue in steady state follow
a marginal distribution. This assumption is the basis to define the arrival rate
at a queue for customers coming from inside of the system. By Lemma 2.1, for
the network of Q1 and Q2 in tandem, the assumption does not hold, unless the
server at Q1 has an infinite service capacity; only in this unrealistic scenario,
treating Q2 as a stable M/M/1 queue isolated from Q1 will not lead to the
inconsistent results. Because service capacities in the real world must be finite,
it is illegitimate to use λ, the arrival rate at Q1, to characterize the arrivals
at Q2. As terms of a sequence with two-fold randomness, τj+1 − τj do not
have a marginal distribution; time reversibility cannot change this fact, see also
Subsection 3.2.

In general, so long as inter-arrival times between customers at a queue are
times between consecutive departures from another queue, any single, fixed
random variable cannot describe such inter-arrival times. Consequently, any
single, fixed random vector cannot describe the behavior of a Jackson network of
queues, regardless of whether the structure of the network is simple or complex;
in a Jackson network, with or without feedback paths, at least one queue is not
stable. That is, statistical equilibrium with respect to the numbers of customers
in all the queues in the network as a whole does not exist. Therefore, Jackson’s
theorem is false, and no Jackson network is stable.

By definition [1], if the number of customers in a queue remains finite after
the queue has been in operation for an infinitely long time, the queue is sub-
stable. A stable queue is of course sub-stable. But a sub-stable queue may
not necessarily be stable. If a queue is sub-stable but not stable, the queue is
properly sub-stable. If a queue is properly sub-stable, the number of customers
in the queue is always finite, but its distribution will not converge to a limit.
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That is, the behavior of the queue cannot be described by any single, fixed
random variable. The meaning of “not stable” is not “unstable”; the latter
means “not sub-stable”. The number of customers in an unstable queue will
become infinitely large as time approaches infinity. As we have seen, in Jackson’s
theorem, properly sub-stable queues are mistaken for stable queues.

Now consider a system of work-conserving, single-server queues in series.
Each queue has a finite service capacity and an infinite waiting room. At each
queue, service times are generally distributed, mutually independent, and inde-
pendent of its arrivals. All customers arrive from outside of the system at the
first queue, which is a stable GI/GI/1 queue in statistical equilibrium. After
receiving service at a queue that is not the last queue in the system, a customer
goes immediately to the next queue; all customers leave the system from the
last queue after being served there.

Except the first queue, other queues in the system, called the downstream
queues, are not stable; they are merely properly sub-stable, and this system of
queues in series as a whole is not stable, in the sense that its behavior cannot
be described by any single, fixed random vector. As shown above, for the down-
stream queues, the two different notions, proper sub-stability and stability, are
confused in the literature; the confusion leads to mistaking properly sub-stable
queues for stable queues. Such proper sub-stability due to two-fold randomness
exhibited in the departure processes is entirely ignored.

The above analysis can be generalized in several ways straightforwardly. For
example, it may apply to a queuing network with a more general topological
structure; we may also allow each queue in the network to have multiple work-
conserving servers with finite service capacities, and the waiting room may not
necessarily be infinite; external arrivals at a queue may not necessarily form a re-
newal process; service times may have different distributions at different queues
in the network; external arrivals and service times may also be dependent.

5 Conclusion

In this article, counting processes with multiple randomness, which differ
essentially from known stochastic processes in the existing literature, are intro-
duced. With examples in queuing theory, the existence of these new stochastic
processes is demonstrated, and their properties are illustrated. By identify-
ing counting processes with two-fold randomness in queuing models, the long-
standing inconsistencies concerning Burke’s theorem and Jackson’s theorem are
resolved.
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