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Abstract

Abiotic and biotic stresses often impede optimal plant germination by disrupting natural growth and development

mechanisms. Gram-negative Azotobacter, among crop growth-promoting rhizobacteria, emerges as a potent agent for

enhancing plant health. Azotobacter employs various mechanisms, such as nitrogen fixation, phosphorus solubilization,

pesticide and fungicide degradation, siderophore production, and synthesis of growth-promoting hormones, collectively

contributing to improved plant vigor. Furthermore, Azotobacter-based biofertilizers offer additional benefits for soil

fertility enhancement. As a favorable and cost-effective alternative to chemical fertilizers, the utilization of biofertilizers

has gained traction. Nonetheless, commercial-scale microbial biofertilizer formulation remains a challenge. This study

aims to consolidate the advantageous attributes and effective research endeavors regarding Azotobacter biofertilizers

for fostering sustainable agroecosystems.
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1. Introduction

Rise in global population, there is an urgent need to enhance agricultural productivity to ensure food security (Harold and
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Reetz, 2016; Reetz, 2016). Achieving this objective necessitates the optimization of agricultural lands with essential

nutrients (Keane, 2009). Annually, approximately 52.3 billion tons of phosphorus and 0.2% of nitrogen are consumed from

chemical fertilizers to meet plant nutritional requirements, with nitrogen-based fertilizers contributing to almost half of the

global food production; consequently, a significant increase in consumer demand is anticipated by 2025 (Bindraban et al.,

2015). However, nearly 50% of traditional nitrogen fertilizers are lost to the environment and soil, leading to soil

acidification, nitrous oxide volatilization, and water eutrophication. Addressing the world's agricultural demands requires

sustainable and eco-friendly nitrogen fertilizers (Lescourret et al., 2015).

There is considerable scope for developing novel "food and feed" approaches to meet growing demands with reduced

reliance on traditional fertilizers. By conserving natural resources, environmental quality can be maintained through

meticulous mineral and biological resource management. Biologically fixed nitrogen poses a challenge in highly mobile

nutrient environments within agroecosystems. Noteworthy nitrogen-fixing bacteria such as Azotobacter, Azospirillum,

Beijerinckia, Herbaspirillum, Burkholderia, and Clostridium exhibit significant efficacy (Malik et al., 2002; Bhattacherjee

and Dey, 2014; Kennedy et al., 2015; Ladha et al., 2016). Azotobacter, as a nitrogen fixer, serves as a primary nitrogen

source in diverse soil ecosystems lacking Symbiotic Nitrogen Fixation (SNF) (Choudhury and Kennedy, 2004; Das and

Saha, 2007). Additionally, Azotobacter inoculation increases carbon and sulfur content, reducing metal absorption by

roots while enhancing nitrogen through Biological Nitrogen Fixation (BNF) (Velmourougane et al., 2019).

Azotobacter is a free-living, gram-negative, anaerobic nitrogen-fixing bacterium with spherical or oval-shaped morphology

and cysts, resilient to unfavorable soil conditions. Some Azotobacter species exhibit motility with peritrichous flagella,

while others are immotile (Martyniuk and Martyniuk, 2003). Polymorphic in size, Azotobacter ranges from 2 to 10 mm in

length and 1 to 2 mm in width. Initially identified as a free-living anaerobic nitrogen fixer in 1901 by Dutch microbiologist

and botanist Beijerinck and colleagues, Azotobacter utilizes atmospheric nitrogen in the soil for protein synthesis,

rendering nitrogen accessible to plants. Azotobacter offers several advantages for crop growth, including the release of

plant pathogen inhibitors, growth-promoting hormones, stimulation of rhizosphere microorganisms, and biological nitrogen

fixation (Lenart, 2012). Notably, Azotobacter releases various amino acids into the medium when supplemented with

nitrogen and carbon sources, crucial for promoting plant growth (Kurrey et al., 2018). A. chroococcum, in particular,

enhances crop quality and yield through growth hormone release when employed as a microbial inoculant, as extensively

studied in various experimental designs. Besides nitrogen fixation, Azotobacter exhibits beneficial mechanisms such as

siderophore production, ammonia excretion, synthesis of antifungal and pesticidal substances, along with the release of

growth-promoting hormones, vitamins, and regulators.

The production of biofertilizers involves three critical steps: strain development, biomass upscaling, and inoculant

preparation. To ensure effective application, moist formulations with high microbial density are prepared by aseptically

blending bacterial growth broth with specific carriers such as charcoal, peat, and lignite. While growth, development, and

maintenance are conducted in research laboratories, commercial biofertilizer production units face challenges in this

process. Nonetheless, several advancements have been made to make soil-, region-, and crop-specific microbial strains

readily available to production units. Biofertilizers, being high-concentration microbial formulations, require continuous

monitoring of desired microorganism presence and cell count to prevent contamination (Rupela et al., 1997). There is a
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pressing need to develop procedures for maintaining and marketing biofertilizers in small rural areas, promoting their use

as an agribusiness alternative to chemical fertilizers.

This review focuses on research and development concerning Azotobacter, summarizing the beneficial effects of

Azotobacter biofertilizers on different crops over the last decade. It highlights the highly beneficial properties of

Azotobacter and its potential as an alternative to synthetic nitrogen fertilizers. Additionally, the study provides detailed

insights into the production, formulation, and commercialization of Azotobacter-based biofertilizers, paving the way for

further research on product innovation and market investment, addressing associated challenges.

2. Beneficial Activities of Azotobacter

2.1. Plant Growth Promotion

Plant growth-promoting hormones, produced by both plants and microorganisms, exert either inhibitory or stimulatory

effects on their biochemical and physiological processes (Ansari and Mahmood, 2019a; Ansari and Mahmood, 2019b). In

vitro studies have demonstrated that the presence of tryptophan in the media facilitates the release of Indole-3-acetic acid

(IAA), as first reported by Brakel and Hilger in 1965, whereas the absence of tryptophan correlates with the absence of

IAA (Hennequin and Blachère, 1966). Quantitative studies have shown that A. chroococcum exhibits the presence of

auxins and three gibberellins-like compounds in a single strain (Brown et al., 1968). Cultures of a 14-day-old strain have

been reported to contain 0.01-0.1 Ig GA3 equivalent/ml and five cytokines in culture filtrate (Nieto and Frankenberger,

1989). These findings have been further confirmed by field experiments on various crops, demonstrating that Azotobacter

produces growth-promoting hormones (cytokines, auxins, and gibberellins-like compounds) that play a beneficial role in

plant growth.

2.2. Nitrogen Fixation

Nitrogen fixation by microorganisms and the recycling of nitrogen, coupled with the maintenance of biosphere nitrogen

homeostasis, enhance soil fertility and productivity, making it one of the most crucial biological activities on Earth (Wani et

al., 2016). Azotobacter emerges as an effective bioinoculant for studying nitrogen fixation, as it can fix large quantities of

nitrogen with swift and rapid growth, thereby making atmospheric nitrogen available to plants and converting it into

ammonia (Prajapati et al., 2008). Nitrogen-fixing bacteria exhibit resistance to oxygen for hydrogenase uptake and

protection of the nitrogenase enzyme through a switching on-off mechanism (Hakeem et al., 2016). The hydrogen

released from nitrogen fixation is metabolized during hydrogenase uptake to enhance the growth and nitrogen-fixing ability

of Azotobacter, with calcium playing a crucial role as a necessary nutrient, while high levels of nitrogen may suppress the

ability of Azotobacter (Nosrati and Gooshchi, 2013).
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Fig. 1. Azotobacter species have a mechanistic role using atmospheric nitrogen in non-symbiotic fixation

Nitrogen and phosphorus are major nutrients that play crucial roles in the biochemistry and physiology of plants and

microbes. Various insoluble forms of phosphate are present in the soil, such as aluminum phosphate (Al3PO4), tricalcium

phosphate (Ca3PO4)2, and iron phosphate (Fe3PO4). Unfortunately, even if the soil contains a surplus of phosphate,

plants cannot utilize it in its unprocessed form due to its low mobility and interaction with other soil constituents (Nosrati et

al., 2014; Hinsinger, 2001). Azotobacter species are efficient members of phosphorus-solubilizing microbes. For example,

about 43% of phosphate rock in Egypt was solubilized by A. vinelandii strain (El-Badry et al., 2016), while another study

identified A. exopolysaccharides as the primary factor in microbial solubilization of tricalcium phosphate (Yi et al., 2008).

Azotobacter species undergo mutagenesis in the soil to improve their ability to solubilize phosphate, making them

advantageous candidates over the consumption of chemical fertilizers (Nosrati et al., 2014). Although the exact

mechanism of phosphate solubilization is not fully understood, solubilization by organic acids has been widely studied and

proposed as the main mechanism of phosphate solubilization (Azaroual et al., 2020).

Nitrogen and phosphorus are vital nutrients essential for the biochemical and physiological processes of both plants and

microbes. In soil, various forms of phosphate exist in insoluble states, including aluminum phosphate (Al3PO4), tricalcium

phosphate (Ca3PO4)2, and iron phosphate (Fe3PO4). Despite the soil's potential surplus of phosphate, plants cannot

readily absorb it in its raw form due to its limited mobility and interactions with other soil components (Nosrati et al., 2014;

Qeios, CC-BY 4.0   ·   Article, July 13, 2024

Qeios ID: OVM1DB   ·   https://doi.org/10.32388/OVM1DB 4/19



Hinsinger, 2001). Azotobacter species are known for their efficiency in solubilizing phosphorus. For instance, studies have

shown that A. vinelandii strain solubilized approximately 43% of phosphate rock in Egypt (El-Badry et al., 2016), while A.

exopolysaccharides have been identified as key contributors to the microbial solubilization of tricalcium phosphate (Yi et

al., 2008). Through mutagenesis in the soil, Azotobacter species enhance their capacity to solubilize phosphate,

presenting them as favorable alternatives to chemical fertilizers (Nosrati et al., 2014). While the precise mechanism of

phosphate solubilization remains unclear, research suggests that solubilization via organic acids is a widely studied and

proposed mechanism (Azaroual et al., 2020).

Fig. 2. Representation of the role of Microbial Phosphorus Solubilization (PSM) in Plant growth

2.3. Siderophore Production

Siderophores constitute a group of iron-chelating molecules that alter iron availability in the extracellular matrix by

outcompeting other ligands (Wichard et al., 2009). Microbes utilize siderophores to access iron-rich areas or sources in

the environment. While around five hundred different siderophores have been reported, only certain moieties are utilized to

capture iron. Azotobacter species absorb soluble iron from the environment through membrane-bound receptors in the

form of Fe-siderophore complexes (Palanché et al., 2004). These complexes exhibit anti-pathogenic activity by competing

with other microorganisms, thereby aiding in plant growth and protection (Hayat et al., 2010). Additionally, A. vinelandii

possesses the advantageous property of uptaking metals other than iron, including toxic heavy metals, as its siderophores

can bind to Vanadium (V) and molybdenum (Mo), crucial for nitrogenase activity (Bellenger et al., 2008). A. chroococcum

is reported to produce cochelins, a novel family of siderophores, along with amphibactins and vibroferrin. Despite its

significant agricultural importance, the structure of siderophores and the mechanism of iron uptake remain unclear,

warranting further investigation into these parameters (McRose et al., 2018).
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2.4. Removal of Oil Contamination

Certain species of Azotobacter have been investigated for their ability to metabolize various organic substances, including

benzoic acid, mannitol, phenolic compounds, and organic acids, serving as carbon and energy sources. Consequently,

these bacteria demonstrate efficacy in mitigating oil contamination.

2.5. Pesticide Degradation

Microorganisms play a crucial role in pesticide degradation, with some utilizing pesticides themselves as substrates for

degradation (Abo-Amer, 2011). Azotobacter species are known to degrade aromatic compounds and their derivatives,

including p-hydroxybenzoate, benzoate, 2,4-D, 2,4,6-trichlorophenol, and protocatechuic acid. They are also capable of

degrading several chlorinated phenols such as 4-Chlorophenol, 2-Chlorophenol, 2,4,6-trichlorophenol, and 2,6-

Dichlorophenol. A. chroococcum, in particular, degrades 2,4-dichlorophenoxyacetic acid as the primary carbon source.

Even at low concentrations (around 10 ppm), A. chroococcum can degrade lindane both in situ and ex situ (Anupama and

Paul, 2009). However, higher concentrations of lindane hinder and reduce the efficiency of degradation, possibly due to

the production of inhibitors for bacterial growth (Ergüder et al., 2003). These bacteria not only benefit crop growth and

protection but also contribute to environmental harmony.

2.6. Heavy Metal Tolerance

The presence of toxic heavy metals and organic particles from sludge and wastewater exerts pressure on soil microbial

communities, altering their activities and diversity and ultimately affecting soil fertility. While some heavy metals are

required for microbial growth at low concentrations, high concentrations disrupt essential ecological processes, creating a

toxic environment for microorganisms (Afef et al., 2011). The accumulation of heavy metals in the soil indicates the

presence of heavy metal-tolerant microbes. These microbes play an essential role in the bioremediation of heavy metal-

contaminated environments through mechanisms such as detoxification and resistance (Abo-Amer et al., 2013). Several

studies have shown that ten strains of Azotobacter from metal-contaminated soil exhibit resistance to certain heavy metals

such as Zn2+, Co2+, Cu2+, and Ni2+ (Abo-Amer et al., 2014).

2.7. Survival in Saline Environments

Salinity is a major abiotic stress that adversely affects plant well-being and health by impeding plant physiology, growth,

and morphology, ultimately leading to plant death through disturbances in ionic and water movement within plant cells

(Maggio et al., 2007). Natural environmental processes and anthropogenic activities contribute to soil salinization

(Rengasamy, 2002). To overcome abiotic stresses, microorganisms play a vital role in improving plant growth and

biochemical pathways, producing organic compounds that enable plants to tolerate abiotic stresses.

2.8. Disease Management
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In addition to their growth-promoting activities, Azotobacter is associated with controlling pathogenic plant diseases.

Various studies have demonstrated the ability of different species of Azotobacter to suppress diseases, such as the wheat

rhizosphere strain of A. chroococcum, TRA2, which improves plant growth and exhibits an antagonistic relationship with

root rot fungi like Macrophomina phaseolina and F. oxyporum (Maheshwari et al., 2012). Another study found that the

application of A. chroococcum on chickpea plants reduced root knot nematode (Meloidogyne incognita) disease (Akram et

al., 2016). Disease management mechanisms adopted by microbes include the release of antimicrobial substances,

production of siderophores, and various growth hormones, all of which depend on environmental conditions, bacterial

strains, and the type of pathogen. Previous studies have demonstrated the in vitro production of several antifungal and

antimicrobial substances by A. chroococcum.

2.9. Stress Tolerance

Azotobacter species are subjected to various abiotic stresses, including temperature, pH, soil moisture, and organic

matter levels. Salt concentration can affect the growth-promoting activities of Azotobacter, although tolerance to 10%

NaCl has been observed in some species such as A. salinestris. Azotobacter is a mesophilic microbe requiring an optimal

temperature of 25-30°C for activity, with cysts forming at 45-48°C and germinating later under favorable conditions.

3. Current Trends in the Utilization of Azotobacter as an Effective Biofertilizer

Azotobacter, a non-parasitic and free-living microorganism, has gained considerable attention due to its ability to

significantly enhance plant growth when used either independently or in conjunction with other biofertilizers. When

employed in a consortium with other microorganisms, Azotobacter demonstrates an amplified effect on plant growth, either

by directly providing enhanced nutrients or by synergistically stimulating the action of other biofertilizers.

3.1. Azotobacter Consortium with Various Biocontrol Fungi

Studies have shown that when Azotobacter is combined with mycorrhizal fungi, known for their phosphorus-solubilizing

capabilities, there is a notable enhancement in plant growth characteristics akin to fungal biofertilizers (Behl et al., 2003).

The symbiotic relationship between Azotobacter and arbuscular mycorrhiza, which are nitrogen-fixing fungi, has been

observed to be particularly synergistic (Ishac et al., 1986; Akram et al., 2016). Research has indicated a significant

increase in bacterial population, including actinomycetes, when both Azotobacter chroococcum and Glomus fasciculatum

are inoculated in the tomato rhizosphere compared to single inoculum scenarios. Furthermore, the presence of Glomus

fasciculatum has been found to augment the population of Azotobacter chroococcum in the tomato rhizosphere,

maintaining it for an extended duration.

3.2. Bacterial Consortium Development

Various experiments conducted in laboratories, fields, and greenhouses have demonstrated positive responses to the co-
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inoculation of Rhizobium and Azotobacter (Wani and Gopalakrishnan, 2019). Azotobacter's symbiotic behavior, which

includes the production of auxin and gibberellins, enhances root growth, thereby increasing the root area available for

infection and subsequently enhancing nitrogen fixation, nodulation, and crop yield (Verma et al., 2014). Additionally,

positive reports have been documented for the synergistic behavior of Azospirillum and Azotobacter when applied to

various crops, including Cicer arietinum (Parmar and Dadarwal, 1999), Brassica napus L (Yasari et al., 2009), Brassica

juncea (Tilak and Sharma, 2007), and Capsicum annum L (Khan et al., 2012).

3.3. Nutrient Use Efficiency Enhanced in Response to Azotobacter Inoculation

Field trials and laboratory experiments have consistently revealed Azotobacter as the superior strain for microbial

inoculation as a nitrogen biofertilizer, leading to growth and production rate increases of up to 15-20% in maize and 40%

in cauliflower compared to standard fertilizers (Bhattacherjee and Dey, 2014). This enhancement is attributed to the

production of biologically effective materials by Azotobacter, which activate rhizospheric microbial populations and

increase the availability of essential nutrients such as nitrogen, phosphorus, and carbon through biological nitrogen

fixation and mineralization of biological residues in the soil (Lévai et al. 2008; Lenart 2012). The presence of Azotobacter

during crop cultivation has been associated with improved seed germination rates, increased nutrient absorption capacity,

enhanced root development, leaf expansion, and augmented biomass production (Wani et al., 2016). Studies have also

highlighted the positive impact of Azotobacter, either alone or in combination with Azospirillum or phosphorus-solubilizing

organisms, on crop quality, including protein content and fruit yield. Over the past decade, numerous Azotobacter-based

biofertilizers tailored for various crops have been developed and cataloged, as shown in Table 1

Sr. No. Strain/Organism Crop/ target Findings
%Yield
enhancement

Reference

1. Azotobacter
Onion (Allium
cepa)

The use of fly ash as a carrier to Azotobacter inefficient capacity in the
presence of a high concentration of heavy metals. In terms of growth,
parameters fly ash can be used successfully to enhance the yield.

Chlorophyll
13% carotene
3% and NRA
10%

(Deepti and
Mishra 2014)

2.
Azotobacter,
Anabaena variabilis,
Chlorella vulgaris

Rice (Oryza
sativa)

The finding showed that ZOB-1 remained the most efficient consortium with
the presence of Anabaena variabilis, Chlorella Vulgaris and Azotobacter sp.
As a biofertiliser and simulator, it upgraded the rice growth quality.

(Length of the
rice plant
sprout) 27%

(Zayadan et al.
2014)

3.
Azotobacter, PSB
(Phosphate
Solubilizing Bacteria)

Wheat
(Triticum
aestivum L.)

Liquid or carrier based inoculants of Azotobacter along with phospha te
solubilising bacteria enhanced the fertility of the soil and provided optimum
possible yield.

9.1%
(Khandare et
al. 2015)

4.
Azotobacter,
vermicompost

Corn/Maize,
(Zea mays)

vermicompost and
Azotobacter The combination of bio and chemical fertilisers simultaneously
not only simultaneously increases the consumption of nutrients but also
enhances the various positive traits and yield in maise.

69.4%
(Shirkhani and
Nasrolahzadeh
2016)

5.

Azotobacter
chrocoocum,
Pseudomonas
putida

Wheat
(Triticum
aestivum L.)

The shortage of water decrease in total chlorophyll and other essential
content in the plants. Thus, by the use of biofertilisers based on Azotobacter
chroococcum and Pseudomonas putida the quality and yield of wheat can be
improved and increased even with limited availability of water.

17.40%
(Babaei et al.
2017)

Azotobacter, PSB

(Phosphate
Wheat

Azotobacter and liquid form of PSB (Phosphate Solubilizing Bacteria) for (MeCarty et al.

Table 1. Summary of Azotobacter based biofertilizers for various crops in the last decade
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6.
(Phosphate
Solubilizing Bacteria)

 

(Triticum
aestivum L.)

Azotobacter and liquid form of PSB (Phosphate Solubilizing Bacteria) for
wheat crop remained the most suitable combination for better grain yield.

46%
(MeCarty et al.
2017)

7.

Azotobacter
chroococcum,
Azospirillum
brasilense,

Pseudomonas
putida

Devil's-pepper
(Rauwolfia
serpentina)

Generally, biofertilisers can enhance the nitrogen content of the soil. The
microbial combinations in the case of the medicinal plant Rauwolfia increases
the yield and product quality.

37.87%
(Rai et al.
2017)

8. Azotobacter

Lettuce
(Lactuca
sativa)

Mustard
(Brassica
rapa L. var.
rapa)

The Azotobacter based biofertilisers increase the bioavailability of nitrogen
and manuring serpentina effect surges the nitrogen fixation.

5.0%.
(Ramadhan et
al. 2018)

9.

Azotobacter
beijerinckii CHB 461,

Azotobacter
chroococcum CHB
846

Azotobacter
chroococcum CHB
869, PBS
(Phosphate
Solubilizing Bacteria)

Rice (Oryza
sativa)

 

The diverse profile of individual Azotobacter strains for the capability to utilise
the carbon source. Thus, in this study the plant growth promoting trait was
enhanced for the cultivation of rice and providing base for biofertiliser
development and formulation.

17.64%
(Chen et al.
2018)

10. Azotobacter niger

Calabash
Gourd
(Lagenaria
siceraria)

 

Okra
(Abelmoschus
esculentu) s

 

The Azotobacter niger strain during the field trails along with L. siceraria and
A. esculentus were selected for biofertiliser trails. Moreover, the combination
of phosphorus solubilising and A. niger had enhanced the overall quality and
yield.

 

2.97%

 

38.88%

 

(Din et al.
2019)

11. Azotobacter

Cauliflower
(Brassica
oleracea L.
var. botrytis)

Azotobacter with 25% and 50% Nitrogen on Cauliflower (Brassica oleracea L.
var. botrytis) as biofertiliser improves morphological characters and yield.

29.80% (ASM 2019)

12.
Azotobacter Manure
and inorganic
fertiliser (N.P.K.).

Wheat
(Triticum
aestivum L.)

var. gautam
Abelmoschus
esculentus

The Azotobacter with manure and inorganic fertiliser (N.P.K.) for wheat as
biofertiliser resulted in product yield.

16.5%–
19.42%

(Mahato and
Kafle 2018)
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13.
Azotobacter PBS
(Phosphate
Solubilizing Bacteria)

Wheat
(Triticum
aestivum L.)

The Azotobacter and PBS (Phosphate Solubilizing Bacteria) with 75% and
100% N for making carrier and liquid formulations of biofertilisers which
enhances the yield and nutrients uptake and soil biological properties.

10.8%

(Khandare et
al. 2020)

 

14.

Azotobacter spp.

Streptomyces badius

 

Wheat
(Triticum
aestivum L.)

 

Biofertilisers are comprised of proficient microorganisms that can fix nitrogen
and solubilise phosphate. The infield experiments show 87.5% N + 87.5% P
with Azotobacter spp. and Streptomyces badius (Stand 75% N, 75% P +
Azotobacter

35.12 %
(Kumar et al.
2021)

15.

Azotobacter

PBS (Phosphate
Solubilizing Bacteria)

100%RDF

 

Sesame
(Sesamum
indicum L.)

The Azotobacter, PBS (Phosphate Solubilizing Bacteria) and RDF were found
to be effective biofertilisers for Sesame (Sesamum indicum L.) for increasing
quality, productivity and yield.

20.55%
(Aglawe et al.
2021)

16.
Azotobacter
75%R.D.N.

Cabbage
(Brassica
oleracea) var.
capitata L.

Azotobacter along with 75% R.D.N. as biofertiliser for Cabbage Brassica
oleracea. var. capitata L. for better yield quality of the plant.

75.13%
(Anushruti et
al. 2022)

17.

Azotobacter
Azospirillum

 

 

Cherry
Tomato
(Solanum
lycopersicum)

 

Azotobacter and Azospirillum were recorded in cherry Tomato (Solanum
Lycopersicum) as biofertilisers. Under different salinity levels, the qualitative
and quantitative attributes of plants significantly improve.

60.41%

 

(El-Beltagi et
al. 2022)

18.

Azotobacter
Rhizophagus

 

Yam
(Dioscorea
alata)

 

The nitrogen-fixing Azotobacter and Rhizophagus provide significant amount
of nutrients to get a decent yield of nutrient of yam. This biofertiliser treatment
improves the nutrient quality and traits yield.

40.88 %
(Kumar et al.
2022)

4. Production of biofertilizers involves a critical aspect

The implementation of quality control procedures to ensure product quality, competency, and compliance with standards

(Arora et al., 2016). The assurance of quality and purity of the inoculum is paramount and is achieved through several

steps, including screening and competency assessment at the laboratory level, formulation preparation, assembly, and

storage at the industrial level, all conducted in accordance with established standards (see Fig. 1). Unfortunately, many

biofertilizer units fail to adhere to these standards and protocols due to a lack of knowledge and technical expertise.
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Fig. 3. Bio fertilization Manufacturing is six stage process Quality Control is acquired at a very stage before passing

to the next and the project can be rejected at any stage where quality control is compromised where till

commercialization

4.1. Strain Identification Techniques

Currently, there is a lack of standardized quality control procedures and regulations at the international level for assessing

bacterial activity and growth during inoculum preparation and formulation. However, various proficiency testing methods,

such as the spread plate method and Most Probable Number (MPN) count method, are employed to determine viability

counts, each with its own advantages and limitations. While these enumeration methods are effective for assessing

population levels, they may not be specific to individual strains and can be influenced by contaminants, thus limiting their

accuracy in strain identification. To address this limitation, molecular biology techniques are utilized for precise and

accurate assessment of microbial populations in the rhizosphere, soil, and commercially used inoculums. Specifically,

SCAR (Sequence Characterized Amplified Region) marker and qPCR (Quantitative Polymerase Chain Reaction) methods

are employed for assessing inoculant cell load gram/ml and fingerprinting, as demonstrated in Fig. 2 (Reddypriya et al.,

2019). Through DNA analysis, bacterial strains like B. megaterium, A. brasilense, and A. chroococcum in the rhizosphere

of biofertilizer-inoculated crops, such as maize, can be identified based on their specific DNA lengths (375bp, 584bp, and

299bp, respectively). Additionally, for farmer satisfaction and quality assurance, SCAR markers are targeted using

RTPCR (Reverse Transcription Polymerase Chain Reaction) and Multiplex PCR methods. Immunoblotting procedures are

also employed for the detection of specific strains like Citrobacter freundii in carrier media, whether sterile or unsterile, in

commercial products (Rodríguez‐Couto et al., 2009). Furthermore, recent studies have explored the use of Next

Generation Sequencing (NGS) techniques for comprehensive identification and enumeration of microbes (Abbasian et al.,
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2018).

5. Formulation

A high-quality formulation is characterized by simplicity, cost-effectiveness, and efficient delivery to plants, incorporating

biocontrol and biofertilizer strains that can be readily applied to crops. The shelf life and application methods of the

formulation are contingent upon the physical state, whether solid or liquid, of the strain applied to crops (Mercado-Blanco

and JJ Lugtenberg, 2014). In the selection of the method, factors such as the efficacy of microbial biomass, adherence,

coverage, sustainability, and the presence of microbial cells at the targeted site after application are crucial. Bacterial

inoculants are available in both solid forms (such as dust and wettable powders, granules, or microgranules) and liquids

(including water, oil, or emulsions) (Schisler et al., 2004). Gram-positive spore-producing bacteria are commonly utilized in

bioformulation production, with some treatments exhibiting high resistance to spores. Similarly, sporulating fungi can be

effectively utilized in dry formulations, such as powders and granules (Kaur et al., 2011; Woo et al., 2014). Furthermore,

gram-negative bacterial strains are sensitive to extreme environmental conditions such as heat and drought (Kamilova et

al., 2015). The efficacy of the formulation may be compromised when contaminated with undesirable cells, which can alter

or deactivate the strain's properties. The cost of formulation increases when production occurs under sterile conditions;

however, a simple or cost-effective process is often preferred and desirable (Arora and Mishra, 2016).

6. Genetic Engineering of Azotobacter

For the large-scale production of Azotobacter, enhancing its capacity and growth in the fermentation process while

maintaining contamination-free conditions is essential to improve various nutritional and cultural parameters (Gomare et

al., 2013). Genetic engineering techniques involving the insertion or deletion of targeted gene(s) can effectively boost the

capabilities of Azotobacter. For instance, in the nitrogen fixation mechanism of Azotobacter, the nif-A gene acts as an

activator, while nif-L functions as an inhibitor. In the presence of oxygen, the inhibitor and activator form complexes that

hinder function but are associated with increased levels of ammonium release (Das, 2019). Genetic modification involving

the disruption of a portion or the complete nif-L gene results in the release of a higher amount of ammonium compared to

the wild strain (Ortiz-Marquez et al., 2012). In another study, the HKD15 strain of A. chroococcum was developed through

the deletion of a nif-L negative regulatory gene, which was successfully utilized as an alternative to urea fertilizer,

exhibiting a 60% increase in wheat yield (Bageshwar et al., 2017). Furthermore, besides employing genetic engineering

for nitrogen fixation, phosphate solubilization genes can also be modified to improve formulation, produce more resilient

cysts, and increase shelf life to withstand harsh environments.
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Fig. 4. Schematic illustration for biofertilizer production

7. Prospects and Commercialization of Azotobacter Biofertilizer

Azotobacter stands out as one of the most advantageous microbes for enhancing crop productivity as a biofertilizer. Its

versatility lies not only in nitrogen fixation and phosphorus solubilization but also in its ability to produce growth hormones,

siderophores, and pesticides, ultimately contributing to soil health improvement. A comprehensive understanding of each

of these facets of Azotobacter holds the promise of advancing crop enhancement in the future (Kyaw et al., 2019).

Nevertheless, unraveling the molecular mechanisms involved necessitates research efforts geared towards developing

advanced screening methods and characterizing essential pesticide and growth-promoting compounds derived from

Azotobacter (Verma et al., 2010). Moreover, delving into soil genomics could unveil Azotobacter's efficiency in enhancing

soil fertility. To fully exploit the potential of biofertilizers, detailed studies are imperative to identify host plants compatible

with each strain of Azotobacter (Wani et al., 2013).
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