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Abstract 
 
There are many solutions to polynomial equations that have over the centuries been developed 
by mathematicians. These methods adopt different approaches such as substitution, complex 
number algebra, trigonometry, reduction to depressed form, elimination, and, decomposition 
of the original polynomial into solvable products of polynomials of lesser degree.  In this paper, 
a historical preview of the methods used to solve polynomial equations is provided together 
with review of recent methods demonstrated for solving polynomial equations. This paper also 
proposes a new unified method of solving polynomial equations based on the inversion of the 
nth roots of variables that will explicitly determine the root. The method is applicable to all 
polynomials within the limits of solvability of polynomials by radicals. The method follows a 
reverse route to the common methods and logically finds roots that are algebraically expressed 
as radicals of real numbers although the formulation of the solution is starting with inversion 
by finding the nth root of either real or complex numbers. By contrast, methods such as the 
Cardan’s solution to cubic equations give solutions that have cube roots of complex numbers 
whereas the roots are real numbers. The proposed method is simple and intuitive to understand 
and use. Examples have been provided to demonstrate the application of the proposed method.   
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1. Introduction 
 
The techniques of solving polynomial equations, including quadratic and cubic equations, have 
been recorded in ancient times, with the Babylonians around 2000 BC. The algebraic solution 
to cubic and quartic equations were successfully established during the Renaissance period 
(1450-1630). Scipione Del Ferro (1465-1526) found the solution for the cubic equation 
formulated in reduced form but his solution was kept secret (Conner, 1956). Tartaglia also 
developed the solution to cubic equation which was also not published but only told to Cardano. 
Girolamo Cardano (1501-1576) published the first public method of solving cubic equations 
crediting Del Ferro for the method. Francois Viete (1540-1603) also similarly established a 
method for solving cubic equations using two step transformation involving one variable only 
rather than the two variables involved in Cardano’s method. The original solution for cubic 
equations by both Cardano and Viete are not exactly intuitive and look somehow magical 
discoveries. Later attempts at more explicit and intuitive approaches have been forwarded 
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(Mukundan, 2010).  Simplifications of the solution using derivatives have also been used 
(Abesheck Das, 2014; Tiruneh, 2020).  
 
Jospeh Luis Lagrange (1736-1813) used a combination of symmetric functions that are enough 
to specify the polynomial equations in reduced from and thus solve them.  Lagrange’s solution 
as such implicitly used Fourier transform though the Fourier transform was not yet established 
during that time (Jansen, 2009). Lagrange’s method is also said to be a precursor to the Group 
theory credited to Evariste Gallois (1811-1832). 
 
The solution to quartic polynomial equations was first established by Ferrari (1522-1565). 
However, since the method involves solving a resolvent cubic equation, Ferrari’s method 
became public only when the method for solving cubic equations were established (Dickson, 
1920). Rene Descartes (1596-1650) and a number of other mathematicians also suggested 
methods of solving quartic polynomial equations (Dickson, 1914).  The occurrence of repeating 
roots in quartic equations could be apparent when the resolvent cubic has also repeating root 
(Neumark, 1965). Leonard Euler (1707-1783) made use of the fact that the sum of the four 
roots is equal to zero for the reduced quartics and hence was able to offer solution by solving 
a resolvent cubic arising out of the three variables (Nickalls, 2009). Fathi and Sharifan (2013) 
provided a new method of solving quartic equations by expressing the original root x as a sum 
of three transformed variables u, v and w in a manner similar to the solution provided by 
Cardano. Kulkarni (2006) suggested a unified method for solving polynomial equations which 
has a more explicit and intuitive form compared to earlier methods.  
 
 
Over the centuries since the attempt at solving cubic and quartic equations have become 
successful, numerous methods have been proposed for solving polynomial equations of degree 
less than five. These methods demonstrate the dynamics of the different ways in which 
polynomial equations can be solved and the intelligence of the authors that came up with 
solutions to the polynomial equations. While the complexity of the solutions proposed over the 
years vary, there are certain aspects of the solutions that are apparent in each method. For 
example, for solving a polynomial equation of degree N, the methods involve solving a 
resolvent polynomial equation of degree N-1. This means cubic equations involve solving a 
quadratic of a transformed variable and quartic equations involve solving a cubic resolvent 
equation.  
 
The attempt at solving quintic and higher degree polynomial equations using the same 
techniques as those of lesser degree polynomial were not successful and mathematicians 
successfully established the condition for the solvability of polynomials which proved that all 
polynomials of degree less than five are solvable in terms of radicals as the historical 
development of the solutions also suggest. Early attempts at solving quintic equations using 
methods similar to those of quartic and cubic equations resulted in a resolvent polynomial 
equation that is a six degree polynomial which is greater than the original five degree 
polynomial.  This provided early hint to mathematicians like Lagrange that quintic and higher 
degree polynomial equations may be impossible to solve in terms of radicals like those of lesser 
degree polynomials. This led to attempts at proving the general non-solvability of polynomials 
of degree five and greater. On the other hand there were apparently quintic and higher degree 
polynomial equations such as p(x) = x5-1=0, that can be solved as they occur in solvable form. 
The condition for the solvability of such polynomials has been provided through Galois Group 
Theory (Nguyen and Ruan, 2024). The proof and demonstration of non-solvability of certain 
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polynomials of degree five and higher have earlier been provided by Abel and Ruffini (Tignol, 
2016).   
 
 
Examples of recent demonstrations of methods for solving polynomials is discussed below 
including unified approaches that apply to all polynomial equations such as ones that are given 
by Vieira (2011) and Kulkarni (2006). In the case of the method shown by Vieira (2011) which 
is related to the use of complex numbers by Lagrange, the direct application of complex 
numbers for solving quadratic, cubic and quartic equations is demonstrated.  
 
 
 

i. Unified approach using complex number substitution (Vieira, 2011) 
 
The solution to the quadratic, cubic and quartic equations in reduced form given below are 
solved by substituting  z= x + w*y, where by x and y are real numbers and w is the nth root of 
negative one (for quadratic and cubic equations) and  nth root of one for quartic equations 
 

𝑧! + 𝑎𝑧 + 𝑏 = 0					; 		𝑧 = 𝑥 + 𝑤𝑦			; 		𝑤 = 	√−1 	= 𝑖 

𝑧" + 𝑎𝑧 + 𝑏 = 0		; 𝑧 = 𝑥 + 𝑤𝑦		; 		𝑤 = 		 √−1! 	= 	
1 ± √−3

2  

𝑧# + 𝑎𝑧! + 𝑏𝑧 + 𝑐 = 0		; 		𝑧 = 𝑥 + 𝑤𝑦; 			𝑤 = 	 √1" 		= 	±𝑖 
 
For each of the equations, substituting z = x + w*y and separating the real and imaginary parts 
of the equations gives a system of two equation in two unknowns, i.e., x and y. Eliminating y 
form the equations gives single equation in x that can be solved in explicit form.  
 

ii. Unified method for solving polynomials by Kulkarni (2010),  
 
A given polynomial of degree N is decomposed in to the form shown below: 
 

[𝑉$(𝑥)]% −	𝑝%[𝑉$(𝑥)]%

1 − 𝑝%  

 
Where VM(x) and WM(x) are polynomials of degree M<N and p is unknown constant to be 
determined.  The decomposed polynomial has degree KM = N. There are a total of 2M+1 
unknowns, m coefficients of the polynomial from each of VM(x) and WM(x) and the additional 
unknown which is the p value. In order for the system to be solvable 2M+1 = N for odd value 
of N and 2M+1 = N+1 for even N.  
 
The following decomposed forms of the polynomials have been suggested for the quadratic, 
cubic and quartic equations: 
 
Quadratic: 
 

(𝑥& + 𝑏&))! −	𝑝!(𝑥& + 𝑐&)!

1 − 𝑝! 			 ; 		𝑐& = 0 
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Cubic: 
 
 

(𝑥& + 𝑏&))" −	𝑝"(𝑥& + 𝑐&)"

1 − 𝑝" 			 

 
Quartic: 
 
 

(𝑥! + 𝑏'𝑥 + 𝑏&))! −	𝑝!(𝑥! + 𝑐'𝑥 + 𝑐&)!

1 − 𝑝! 			 ; 		𝑐' 	= 0			 

 
 
The choices such as c0=0 and c1=0 are taken so that the number of unknows in the decomposed 
polynomial are equal to the number of coefficient terms in the given polynomial. Once the 
undetermined coefficients of the decompose polynomial together with the p value are 
determined explicitly by solving a polynomial equation of degree N-1 (for an equation 
involving polynomial of degree N), the solution proceeds by decomposing the polnomial and 
equating each term to zero. The decomposable polynomial can be decmposed in to the 
following:  
 
 

[𝑉$(𝑥)]% −	𝑝%[𝑉$(𝑥)]%

1 − 𝑝% 			= 		 :
𝑉$(𝑥) − 	𝑝𝑉$(𝑥)

1 − 𝑝 ;<
𝐹()$(𝑥)
∑ 𝑝*%)'
*+&

?		 

 
Where FN-M(x) is a decomposed polynomial of degree N-M. Each of the polynomias in brackets 
in the above expression are of degree less than N (the degree of the given polynomial)  and are 
solved to determine the roots of the polynomial. Kulkarni (2006) further suggested a similar 
procedure for solving quintics by transforming it into sextic equations which probably leads to 
coefficients of the original polynomials being dependnet on each other that makes them 
solvable quintics. This, however, can not be taken as a general solution as it belongs to only a 
certain class of quintic polynmials in which the coefficents of the polynomial are not 
independent from each other.  
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iii. Solution to cubic equations by Mochimaro (2015) 
 
 
A given equation x3+Ax2+Bx+C= 0 is transformed through a new variable y such that x=y+b 
to the form: 
 

𝑦" + 𝑎𝑦! + 𝑏𝑦 + 𝑐 = 0 
𝑎 = 𝐴 + 3𝛽 

𝑏 = 3𝛽! + 2𝐴𝛽 + 𝐵 
𝑐 = 	𝛽" + 𝐴𝛽! + 𝐵𝛽 + 𝐶 

 
Further condition is attached to the transformation such that b2=3ac. This condition imposed 
on b and c coefficients of y will give the following quadratic equation that determines variable 
transformation constant b: 
 

(𝐴! − 3𝐵)𝛽! +	(𝐴𝐵 − 9𝐶)𝛽 + 𝐵! − 3𝐴𝐶 = 0 
 
The coefficients  a, b and c are now worked out once b is determined and it is easy to see that 
the new cubic equation in y with the condition b2 = 3ac imposed can be reformulated as follows: 
 

:
𝑏
𝑎𝑦 + 1;

"

= 1 −	
3𝑏
𝑎!  

 
Finally the three roots of y are determined from the following equation that also makes use of 
De Movire’s theorem; 
 

𝑏
𝑎𝑦 	= 	−1 + 𝜔 :1 −

3𝑏
𝑎!;

'
"
		 ; 			𝜔 = 	 𝑒!,-*/" 

 
 
Special condition where either of a, b or c=0 is handled differently in the above method by 
Mochimaro (2015).  
 
 

iv. Quartic equation solution by Tehrani (2020) 
 
 
Given a quartic equation in depressed form: 
 

𝑓(𝑧) = 	 𝑧# + 𝑎𝑧! + 𝑏𝑧 + 𝑐 = 0 
 
An equivalent polynomial is constructed in decomposed form which is given by: 
 

𝑓(𝑧) = 	 (𝑧 − 𝑅')(𝑧 − 𝑅!)(𝑧! + 𝑝𝑧 + 𝑞) = 	 [𝑧! − (𝑅' + 𝑅!)𝑧 +	𝑅'𝑅!][𝑧! + 𝑝𝑧 + 𝑞] 
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Comparison of the coefficients with the original equation gives: 
 

𝑝 = 	𝑅' + 𝑅! = 	𝛾 
𝑎 = 𝑞 + 𝜆 − 𝛾! 
𝑏 = 	𝛾(𝜆 − 𝑞) 

𝑐 = 𝑞𝜆 
 
The three by three non-linear equation in q, g and l  above when solved for g2 will give a cubic 
equation which always has a real number solution. After this, the other unknowns q and l are 
determined from the three by three equations above. This will in turn provide the roots R1 and 
R2 form the quadratic equations of R1+R2 = g  and R1R2 =l. The other roots are likewise 
determined by solving z2+pz+q=0. 
 
 
 

v. Sousa’s Solution (2021) 
 
Jose Risomar Sousa (2021) provided a solution to cubic equations based on completing the 
cube in a manner similar to completing the squares that lead to the quadratic equation solution. 
According to Sousa (2021), the solution to the cubic equation can be directly worked without 
conversion to a depressed form. For a given cubic equation  
 

𝑎𝑥" + 𝑏𝑥! + 𝑐𝑥 + 𝑑 = 0 
 
The equation is transformed by defining a new variable p  such that  
 

𝑥	 = 	𝜋 + 𝑚 
 
This results in the equation in p: 
 

𝑎𝜋" + 𝜋!(3𝑎𝑚 + 𝑏) + 𝜋(3𝑎𝑚! + 2𝑏𝑚 + 𝑐)𝑎𝑚" + 𝑏𝑚! + 𝑐𝑚 + 𝑑 = 0 
 
 

Δ" 	= 𝑎𝑚" + 𝑏𝑚! + 𝑐𝑚 + 𝑑 
3Δ!𝛿 = 3𝑎𝑚! + 2𝑏𝑚 + 𝑐 

3Δ𝛿! = 3𝑎𝑚 + 𝑏 
 
The following expression is true from Sousa’s Solution: 
 

Δ"

3Δ!𝛿 		= 		
1
3 <

3Δ!𝛿
3Δ𝛿!? 

Inserting the expression above: 
 

𝑎𝑚" + 𝑏𝑚! + 𝑐𝑚 + 𝑑
3𝑎𝑚! + 2𝑏𝑚 + 𝑐 		= 		

1
3 <
3𝑎𝑚! + 2𝑏𝑚 + 𝑐

3𝑎𝑚 + 𝑏 ? 
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Simplifying the above expression further: 
 

(𝑏! − 3𝑎𝑐)𝑚! +	(𝑏𝑐 − 9𝑎𝑑)𝑚 + 𝑐! − 3𝑏𝑑 = 0 
 
The solution for m is obtained using the quadratic formula: 
 

𝑚 =	
−(𝑏𝑐 − 9𝑎𝑑) ± Q(𝑏𝑐 − 9𝑎𝑑)! − 4(𝑏! − 3𝑎𝑐)(𝑐! − 3𝑏𝑑)

2(𝑏𝑐 − 9𝑎𝑑)  

 
 
The transformed cubic equation in p is now transformed as: 
 

𝑎𝜋" + 3∆(𝛿𝜋)! + 3∆!𝛿𝜋 + ∆"= 0 
 
Completing the cube is done by adding and subtracting (dp)3 as follows: 
 

𝑎𝜋" − (𝛿𝜋)" + (𝛿𝜋)" + 3∆(𝛿𝜋)! + 3∆!𝛿𝜋 + ∆"= 0 
(𝛿𝜋 + ∆)" =	−𝜋"(𝑎 − 𝛿") 

 
The above equation is solved for p which will eventually give the solution in x as follows: 
 

𝜋 = 	
−∆

𝛿 + 𝜔(𝑎 − 𝛿")'/" 

 

𝑥 = 	𝜋 + 𝑚 = 𝑚 −
−∆

𝛿 + 𝜔(𝑎 − 𝛿")'/" 

 
Where: 
 

Δ = Q𝑎𝑚" + 𝑏𝑚! + 𝑐𝑚 + 𝑑! 	 
And 

𝛿 =
3𝑎𝑚! + 2𝑏𝑚 + 𝑐

3Δ! 	 
 
However, the author did not specify how to handle the situation where (bc-9ad)=0 which will 
not allow the quadratic solution for the m value.  
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2. Method Development 
 
The unified procedure for finding the roots of polynomial equations is based on inversion 
through finding the roots of the following systems of equations: 
 
 

(𝐴 + 𝐵)( 	= 𝐶 + 𝐷;													(1)			 
 

		(𝐴 − 𝐵)( 	= 		𝐶 − 𝐷											(2)						 
 
The variables A, B, C and D in Equations (1) and (2) each can be real (without complex part) 
or complex number (without real part). The root of a polynomial equation is related through 
the inversion procedure that solves the system of equations above for the variable A, i.e.,  
 
 

𝐴 = 		
1
2 U √𝐶 + 𝐷

# V 	± √𝐶 − 𝐷# )									(3) 

 
The above solution is solved separately for two cases which is shown below: 
 
 
2.1. Case I Both C and D are either purely real numbers or purely complex numbers 
 
When both C and D are both either real numbers or both complex numbers, the solution is 
solved without involving complex numbers. This is seen from the following relation: 
 

		𝑏𝑜𝑡ℎ	𝑟𝑒𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟𝑠:		(𝑎 + 𝑏)( 	= 𝑐 + 𝑑;				 
 
If C and D are both real numbers, a and b should also be real numbers since by definition they 
cannot have a mixed part (they are both either purely real numbers or purely complex numbers)  
 
Similarly if both C and D are purely complex numbers the following relation holds true 
 

		𝑏𝑜𝑡ℎ	𝑐𝑜𝑚𝑝𝑙𝑒𝑥	𝑛𝑢𝑚𝑏𝑒𝑟𝑠:		(𝑎𝑖 + 𝑏𝑖)( =	±𝑖((𝑎 + 𝑏)( = 𝑐𝑖 + 𝑑𝑖 = 𝑖(𝑐 + 𝑑)			 
 

		(𝑎 + 𝑏)( = ±(𝑐 + 𝑑)			 
 
It is clear that both a and b should also be both purely complex numbers since a mixed number 
such as a+bi when raised to the power of n will also have a mixed number c+di which 
contradicts the assumption that both c and d are complex numbers of the form ci and di. 
Therefore, the system reverts to a real number form since the complex term i is cancelled from 
both sides of the equation.  The solution belonging to case I is solved as the roots of real 
numbers whose solution can be real number or complex number depending on the discriminant 
as will be shown further.  
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2.2. Case II: Either C or D is a complex number and the other a real number 
 
When either C or D is a complex number and the other a real number, for convenience we 
switch the real part designation as C=c and the complex part as D=di. Therefore, 
 

(𝑎 + 𝑏𝑖)( 	= 𝑐 + 𝑑𝑖				 
 
It is clear that a and b should also b mixed, i.e., when one is real the other should be complex 
number. For convenience the real part is designated as A=a and the complex part as B=bi. The 
system is solved by finding the roots of complex numbers which as will be shown further turn 
out to be real numbers. The application of De Movier’s Theorem is relevant for this case where 
the solution involves finding the cube roots of complex number.  
 
The detail of the development of the method for quadratic, cubic and quartic equations is now 
provided below.  
 
 
 
2.3. Method for Quadratic Equations 
 
For quadratic equation, n=2, the solution for A is given from the equation: 
 
 

(𝐴 + 𝐵)! 	= 𝐶 + 𝐷 

(𝐴 − 𝐵)! 	= 		𝐶 − 𝐷 

 
Taking the square roots of each term on either side of both equations 
 

(𝐴 + 𝐵) 	= ±√𝐶 + 𝐷 

(𝐴 − 𝐵) 	= 		±√𝐶 − 𝐷 

The solution for A is found by adding the equations together: 
 

𝐴 = 		
1
2 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V								(4) 

 
As will be shown further the above solution gives two independent roots although it appears 
initially there are four solutions from the combination of the plus and minus signs. This is due 
to the fact that the variable A is related to the variable in the quadratic equation X through X = 
A2 and the values of A that are equal in magnitude but opposite in sign will both give the same 
value of  X when squared through X= A2. 
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Two relate the above solution A to the quadratic equation, consider the system of equations 
again: 
 

(𝐴 + 𝐵)! 	= 𝐶 + 𝐷 

(𝐴 − 𝐵)! 	= 		𝐶 − 𝐷 

Adding and subtracting the above equations in turns gives: 

𝐴! +	𝐵! 	= 𝐶					𝑎𝑛𝑑						2𝐴𝐵 = 𝐷 

Eliminating B from the equation containing C gives: 

 

𝐴! +	:
𝐷
2𝐴;

!

− 𝐶 = 0 

Rearranging gives: 

𝐴# − 𝐶𝐴! +	
𝐷!

4 	= 0 

Let X = A2 so that: 

𝑋! − 𝐶𝑋 +	
𝐷!

4 	= 0											(5) 

Given the quadratic equation: X2 + RX +S and equating the constants gives: 

𝐶 = 	−𝑅		𝑎𝑛𝑑		𝐷 = 	√4𝑆 

From the solution obtained above for A, i.e.,  
 

𝐴 = 		
1
2 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V 

The value of X is then obtained: 

𝑋 = 	𝐴! 	= 	
1
4 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V

!
								(6) 

 
Now we consider the solution for the two cases. 
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Case I : Solution for quadratic in the real number domain of both C and D 
 
In this case A=a, b=b  c= C and D=d are all taken as real numbers. 
 
Given the quadratic equation: X2 + RX +S and 	

𝑋! − 𝐶𝑋 +	
𝐷!

4 	= 0 

Equating the constants gives: 

𝐶 = 	−𝑅		𝑎𝑛𝑑		𝐷 = 	√4𝑆 

 

𝑋 = 	𝐴! 	= 	
1
4 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V

!
 

Substituting the values of  𝐶 = 	−𝑅		𝑎𝑛𝑑		𝐷 = 	√4𝑆 in the above equation gives the quadratic 
formula as shown below: 

𝑋 = 	𝐴! 	= 	
1
4<
d−𝑅 + √4𝑆 			± d−𝑅 − √4𝑆?

!

 

𝑋 = 	𝐴! 	= 	
1
4 e−𝑅 + √4𝑆 − 𝑅 − √4𝑆 	±

Q((−𝑅)! − 4𝑆)	f 

𝑋 = 	𝐴! 	= 	
1
2 e−𝑅 ±

Q𝑅! − 4𝑆	f 

 
This gives the familiar quadratic formula. The discriminant: 
 

𝑅! − 4𝑆 = 	𝐶! − 𝐷! 
 
Will determine if the system has a real or complex root. If C is less than D the roots are both 
complex and if C is greater than D the roots are both real.  
 
 
Case II: Solution for quadratic in the Complex number domain of c+di 
 
This case occurs when C and D are mixed, i.e., one is real and the other complex. For 
convenience, C=c is taken to be the real part and D= di the complex part. The application of 
De Moivre’s theorem is used as follows:   
 

𝑋 = 	𝐴! 	= 	
1
4 U
√𝑐 + 𝑑𝑖 			± √𝑐 − 𝑑𝑖V

!
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Let  	𝑟 = 	√𝑐! +	𝑑!   and  𝜃 = 	𝐶𝑜𝑠)' e/
0
f 

√𝑐 + 𝑑𝑖 	= 	 𝑟'/! <𝐶𝑜𝑠 :
𝜃
2; + 𝑖	𝑆𝑖𝑛 :

𝜃
2;? 

√𝑐 − 𝑑𝑖 	= 	 𝑟'/! <𝐶𝑜𝑠 :
−𝜃
2 ; + 𝑖	𝑆𝑖𝑛 :

−𝜃
2 ;? 

𝑋 = 	𝐴! 	= 	
1
4hi𝑟

'/! <𝐶𝑜𝑠 :
𝜃
2; + 𝑖	𝑆𝑖𝑛 :

𝜃
2;?j			± i𝑟

'/! <𝐶𝑜𝑠 :
−𝜃
2 ; + 𝑖	𝑆𝑖𝑛 :

−𝜃
2 ;?jk

!

 

𝑋 = 	𝐴! 	= l𝑟 <𝐶𝑜𝑠 :
𝜃
2;?

!

, −𝑟	 <𝑆𝑖𝑛 :
𝜃
2;?

!

n 										(7) 

 
It turns out that both roots are always real numbers.  This is seen from the relation 
 

𝐶 = 	−𝑅		𝑎𝑛𝑑		𝐷 = 	√4𝑆 

For D to be a complex number, S should be less than zero, or negative number. The 
discriminant R2- 4S = c2+d2 will always be a positive as is shown below and guaranteeing the 
roots are both real numbers.  
 

𝑅! − 4𝑆 = 	𝐶! − 𝐷! =	𝑐! − (𝑑𝑖)! =	𝑐! + 𝑑! 
 
 
2.4. Method for Cubic Equations 
 

A similar procedure is followed for cubic equations whereby the variable A is solved by 
taking the cubic roots of C+D. i.e.,  

 
(𝐴 + 𝐵)" 	= 𝐶 + 𝐷 

(𝐴 − 𝐵)" 	= 		𝐶 − 𝐷 

 Taking the cube roots of the expressions on either sides of the above equations: 
	
𝐴 + 𝐵 = 	 √𝐶 + 𝐷!  

 
𝐴 − 𝐵 =	 √𝐶 − 𝐷!  
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Eliminating B by adding the two equations yields the solution for A, i.e.,  
 

𝐴 = 	
1
2		 √𝐶 + 𝐷

! 		+ 	
1
2		 √𝐶 − 𝐷

! 									(8)	 
 
Now we consider the two cases for the solution to cubic equations. 
 
 
Case I: Solution for cubic equation in the real number domain of C and D 
 

As has been mentioned above, when both C and D are either purely real or purely complex, 
the solution occurs in the real number domain. Expanding the cubic power of both equations 
gives: 

(𝐴 + 𝐵)" 	= 𝑎" + 3𝑎!𝐵 + 	3𝑎𝐵! +	𝐵" 	= 	𝐶 + 𝐷							 
 
 

(𝐴 − 𝐵)" 	= 𝑎" − 3𝑎!𝐵 + 3𝑎𝐵! − 𝐵" 	= 𝐶 − 𝐷 
 

Adding and subtracting the above two equations gives: 

𝑎" + 3𝑎𝐵! 	= 𝐶						; 	3𝑎!𝐵 + 𝐵" = 		𝐷	 
 
Eliminating the variable B form the above two equations will give the equation in a as 
follows:  
 

𝑎1 	− 	
3
4 𝑐𝑎

2 −	
[15𝑐! − 27𝑑!]

64 𝑎" −	
𝑐"

64 	= 0 
 
Using the substitution m = a3 to convert the above equation into general cubic equation gives; 
 
 

𝑚" 	− 	
3
4 𝑐𝑚

! −	
[15𝑐! − 27𝑑!]

64 𝑚 −	
𝑐"

64 	= 0 
 
The above equation is converted into depressed form and equated to the given polynomial 
equation in x. To do this, the usual variable transformation equation to depressed cubic form is 
used, i.e.,  
 

𝑚 = 𝑥 −
1
3 :
−3
4 𝑐; 		= 		𝑥 +	

1
4 	𝑐 

 
Using this transformation the cubic equation in m is transformed in to x variable as follows: 
 

𝑥" − q
27
64
(𝑐! −	𝑑!)r 𝑥 −	q

27
256

(𝑐" −	𝑑!𝑐)r = 0 
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Equating the terms of the above equation to that of the given equation:   x3 + Rx + S = 0, 
 
 

𝑅 = 	− q
27
64
(𝑐! −	𝑑!)r			 ; 		𝑆 = 	−	q

27
256

(𝑐" −	𝑑!𝑐)r 
 
 
Solving for c and d in terms of R and s will eventually give: 
 

𝑐 = 	
4𝑆
𝑅 						 ; 						𝑑 = 	±

4
3	√3		𝑅

	Q(4𝑅" + 27𝑆!)												(9) 

 

In order for Case I to be true, both c and d should be real numbers.  For the given cubic 
equation: 

x3 + Rx + S = 0 

Since c= 4S/R, the condition for c to be real number is automatically satisfied since R and S 
are both assumed to be real numbers in the given cubic equation. From the expression for d 
given in terms of the coefficients of the cubic equation, for d to be real number, the following 
condition shall be satisfied: 

	(4𝑅" + 27𝑆!) > 0	 

In other words, the discriminant has to be positive. It is interesting to note that this condition is 
similar to that of Cardan solution where the discriminant is positive in case the solution does 
not involve manipulating complex numbers or where there is no need to apply De Movires’ 
Theorem. 

The solution in the real number domain of c= real and D= real proceeds first by computing 
the values of c and d from the coefficients of the given equation: x3 + Rx + S = 0 

𝑐 = 	
4𝑆
𝑅 						 ; 						𝑑 = 	±

4
3	√3		𝑅

	Q(4𝑅" + 27𝑆!) 

 

The roots of the cubic equation are then given by: 
 

𝑥 = 	𝑎" −	
𝑆
𝑅												(10) 
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Case II: Solution for cubic equation in the complex number domain of C +D = c+di 
 

The solution to the equation when C+D takes the form c+di  is obtained through the cubic 
root of a complex number c + di   such that: 
 

(𝑎 + 𝑏𝑖)" 	= 𝑐 + 𝑑𝑖 
 
Expanding the (a+bi)3 term and equating it to c+di gives: 
 

[𝑎! 	− 3𝑎𝑏!] 	+ 	 [3𝑎!𝑏 − 𝑏"]𝑖	 = 		𝑐 + 𝑑𝑖 
 
From which it is apparent that: 
 

𝑎! 	− 3𝑎𝑏! 	= 𝑐						; 	3𝑎!𝑏 − 𝑏" = 𝑑	 
 
Eliminating the complex coefficient b and expressing the above equation in terms of the real 
part of a+bi, i.e., a only gives: 
 

𝑎1 	− 	
3
4 𝑐𝑎

2 −	
[15𝑐! + 27𝑑!]

64 𝑎" −	
𝑐"

64 	= 0 
 
Using the substitution m = a3 to convert the above equation into general cubic equation gives; 
 
 

𝑚" 	− 	
3
4 𝑐𝑚

! −	
[15𝑐! + 27𝑑!]

64 𝑚 −	
𝑐"

64 	= 0 
 
The above equation is converted into depressed form and equated to the given polynomial 
equation in x. To do this, the usual variable transformation equation to depressed cubic form is 
used, i.e.,  
 

𝑚 = 𝑥 −
1
3 :
−3
4 𝑐; 		= 		𝑥 +	

1
4 	𝑐 

 
Using this transformation the cubic equation in m is transformed in to x variable as follows: 
 

𝑥" − q
27
64
(𝑐! +	𝑑!)r 𝑥 −	q

27
256

(𝑐" +	𝑑!𝑐)r = 0 
 
Equating the terms of the above equation to that of the given equation:   x3 + Rx + S = 0, 
 
 

𝑅 = 	− q
27
64
(𝑐! +	𝑑!)r			 ; 		𝑆 = 	−	q

27
256

(𝑐" +	𝑑!𝑐)r 
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Solving for c and d in terms of R and s will eventually give: 
 

𝑐 = 	
4𝑆
𝑅 						 ; 						𝑑 = 	±

4
3	√3		𝑅

	Q−(4𝑅" + 27𝑆!) 

 
Now working backwards from c and d to the equation in x variable, since a +bi is the cube root 
of c +di, the value of a is computed using De Moivre’s Theorem as the real part of the cube 
root of the complex number c +di as follows: 
 

𝑎 = 	 𝑟'/" 	q𝐶𝑜𝑠 :
𝜃 + 2𝑛𝜋

3 ;r 												𝑛 = 0, 1, 2								(11) 
 
Where the values of r and q  are given by: 
 

𝑟 = 		Q𝑐! +	𝑑!									; 								𝜃	 = 	𝐶𝑜𝑠)' e
𝑐
𝑟f								(12) 

 
The roots of the cubic equation are given by: 
 

𝑥 = 		𝑚 −	
1
4 𝑐		 

 
Using the relation: 
 

𝑚 =	𝑎"				; 			𝑐 = 		
4𝑆
𝑅  

 
gives: 
 
 

𝑥 = 		 𝑎" −	
𝑆
𝑅 

 
 
It is apparent from the two cases, that the same formula is used with different signs of the 
discriminant in the square root. Which of the cases apply depends on the discriminant  
 

(4𝑅" + 27𝑆!) 
 
The expression in the square root is negative for it to be formulated through complex number 
of the c+di which requires applying De Movier’s Theorem.  This is seen from the formula for 
c and d: 
 

𝑐 = 	
4𝑆
𝑅 						 ; 						𝑑 = 	±

4
3	√3		𝑅

	Q−(4𝑅" + 27𝑆!) 

 
 
 
 
 



17 
 

While c is automatically a real number in both cases, for to get a real number of the square 
root, the discriminant should be negative, i.e., 

	
(4𝑅" + 27𝑆!) < 0 

 
 
This means that the expression for d is always a real number whereas in Cardan’s method d 
can have complex number part although the solution is a real number whereby the complex 
parts cancel each other.  The table below provides comparison of the conditions between 
Cardan’s Method and the proposed method.  
 
 
 
Table 1: Formulation of solution to cubic equation based on the sign of discriminant: 
Comparison of the proposed method with Cardan’s solution 

Discriminant Cardan’s method Proposed method 
Discriminant  Positive Negative Positive Negative 
4𝑅" + 27𝑆! Solution 

formulated as 
average of cube 

roots of real 
numbers C+D 

and C-D 

Solution  
involves 
complex 

numbers and 
formulated 
using De 
Movire’s 
Theorem 

Solution 
formulated as 

average of cube 
roots of the real 
numbers C+D 
and C-D same 

as Cardan’s 
Method 

Solution starts 
with complex 
numbers but 
eventually 

formulated in 
real number 

form 

 
 
 
2.5. Method for Quartic equations 
 
The quartic equation is solved as a combination of the roots of two quadratic equations as 
follows. For a given four degree polynomial equation that is expressed in depressed form: 
 

𝑥# 	+ 𝑝𝑥! + 𝑞𝑥 + 𝑟	 = 0													(13) 
 
The solution to the equation is obtained through the square roots of a pair of complex number 
A, B, C, D, E, F and H such that: 
 
 

(𝐴 + 𝐵)! 	= 𝐶 + 𝐷; 		(𝐴 − 𝐵)! 	= 		𝐶 − 𝐷				(14) 

 
(𝐸 + 𝐹)! 	= −𝐶 + 𝐻; 		(𝐸 − 𝐹)! 	= 	−𝐶 − 𝐻    (15) 

 
To solve this quartic equation as a product of two quadratics, the following relationships are 
established whereas E, F, C and H are defined similarly like AB, C and D to have real or 
complex number form: 
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(𝐴 + 𝐵)! 	= 𝐶 + 𝐷 

(𝐸 + 𝐹)! 	= −𝐶 + 𝐻 

With the definition X=A2 and E= X2 two sets of quadratic equations are formed: 

𝑋! − 𝐶𝑋 +	
𝐷!

4 	= 0 

𝑋! + 𝐶𝑋 +	
𝐻!

4 	= 0 

Multiplying the two quadratics and using lower case symbols gives:  
 

<𝑥! − 𝑥𝑐 +
𝑑!

4 ?<𝑥
! + 𝑥𝑐 +

ℎ!

4 ? 	= 		0				(16)							 

 
Equation (16) is expanded further as follows: 
 

𝑥# −	<
𝑑!

4 +
ℎ!

4 +	𝑐!? 𝑥! + <
ℎ!

4 −	
𝑑!

4 ?
(𝑐)𝑥 +

ℎ!𝑑!

16 			= 		0								(17) 

 
Equating the coefficients p, q and r of the given quartic polynomial equation given in 
Equation (13) with those of equation (17) will give the following: 
 

𝑑!

4 +
ℎ!

4 +	𝑐! =	−𝑝										(18) 
 

<
ℎ!

4 −	
𝑑!

4 ?
(𝑐) 	= 𝑞							(19) 

 
ℎ!𝑑!

16 	= 𝑟									(20) 
 
 
Solving Equations 18, 19 and 20 simultaneously for the variable c gives the following six 
degree equation: 
 
 

𝑐2 	+ 2	𝑝	𝑐# + (𝑝! − 4𝑟)	𝑐! − 𝑞! 	= 0									(21) 
 
and using the substitution: 
 

𝑦	 = 		 𝑐!															(22)																															 
 
Gives cubic equation in y, i.e., 
 

𝑦" 	+ 2𝑝𝑦! + (𝑝! − 4𝑟)𝑦 − 𝑞!									(23) 
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Once the value of y is found by solving the cubic equation given in Equation (23), the values 
of c, d and h are found as given by the equations stated in Section 2.1: 
 

𝑐	 = 		Q𝑦																																			(24) 
 
The values of d and h are found from: 
 

𝑑 = 	d−2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!												(25) 

 

ℎ = 	d+2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!												(26) 

 
 
The values of d and h serve as the discriminant of the quartic equations with the following 
relationship to the roots: 
 

1. If both D and H are real numbers, all the roots of the quartic equation are real numbers 
and De Movier’s formula can be applied 

2. If both D and H are complex numbers, the roots of the quartic equations are either real 
or complex numbers and interestingly De Movie’s formula cannot be used as the 
solution is expressed in real number coefficients whereas the roots may turn out to be 
real numbers or complex numbers depending on the occurrence of the square root of a 
positive number or a negative number respectively.  

3. If either of D or H is a complex number, the quartic equation has two real number and 
two complex conjugate solutions. De Movier’s Formula can be applied to the part (d or 
h) that is a real number.  

 

Case 1: Solution when D and H are complex numbers 
 
This corresponds to Case I above in which both D and H are real numbers, all the roots are 
real numbers and De Movier’s formula can be applied. 
 
The values of a and e to the left sides of equations (14) and (15) are determined using De 
Moivre's Formula 
 
Let  	𝑟3 =	√𝑐! +	𝑑!   and  𝜃3 =	𝐶𝑜𝑠)' e

/
0$
f 

𝑋3 =	𝐴! 	= l𝑟3 <𝐶𝑜𝑠 :
𝜃3
2 ;?

!

, −𝑟3 	<𝑆𝑖𝑛 :
𝜃3
2 ;?

!

n 

 

Let  	𝑟4 =	√𝑐! +	ℎ!   and  𝜃4 =	𝐶𝑜𝑠)' e
/
0%
f 
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𝑋4 =	𝐸! 	= l𝑟4 <𝐶𝑜𝑠 :
𝜃4
2 ;?

!

, −𝑟4 	<𝑆𝑖𝑛 :
𝜃4
2 ;?

!

n 

 
Case 2: Solution when both D and H are real numbers 
 

This is the case in which, the roots can be real or complex. In this case the De Movier’s 
formula cannot be applied and the roots are found from the following solutions: 

𝑋3 =	𝐴! 	= 	
1
2 e𝐶 ±

Q𝐶! − 𝐷!f 

𝑋4 =	𝐸! 	= 	
1
2 e𝐶 ±

Q𝐶! − 𝐻!f 

 

Case 3:  Solution when either D or H (bot not both) is either real number or complex number 

This is a mixed case which results in roots in which at least two of which are real numbers 
corresponding to the either of D or H being a complex number as for Case I above. The 
remaining two roots can be real or complex conjugates like it was for case II above. If for 
example D is complex number and H is a real number, the solution is obtained as follows: 
 

𝑋3 =	𝐴! 	= l𝑟3 <𝐶𝑜𝑠 :
𝜃3
2 ;?

!

, −𝑟3 	<𝑆𝑖𝑛 :
𝜃3
2 ;?

!

n 

 

𝑋4 =	𝐸! 	= 	
1
2 e𝐶 ±

Q𝐶! − 𝐻!f 

 
In general, the expressions for d and h given by: 
 

𝑑 = 	d−2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!											 

 

ℎ = 	d+2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!											 

 
 
Will determine the nature of the roots being real, complex or a combination of real and complex 
numbers. 
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3. Application Example 
 
 
3.1. Quadratic Equation Examples 

 
Example 3.1.1   x2-2x-3 = 0;  R = -2  and S = -3 
 

𝐶 = 	−𝑅	 = 2		𝑎𝑛𝑑	𝑑	 = 	√4𝑆 = 	√4 ∗ −3 		= 	√12𝑖 
 
This is Case II, where C+D is in the complex form: C+D = c+di 
 

𝑋 = 	𝐴! 	= 	
1
4 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V

!
 

𝑋 = 	
1
4<
d2 + √12𝑖 			± d2 − √12𝑖?

!

 

 

=
1
4h2 + √12𝑖 + 2 − √12𝑖	 ± 2 ∗ <

d2! − U√12𝑖V
!
?k	 

 

=
1
4
(4 ± 8) 	= 	 {3	, −1} 

 
The application of De Moivre’s Theorem is shown below for this example: 
 
 
Let  	𝑟 = 	√𝑐! +	𝑑!   and  𝜃 = 	𝐶𝑜𝑠)' e/

0
f 

𝑟 = 	d2! +	√12
!
	= 4 

𝜃 = 	𝐶𝑜𝑠)' :
2
4; 	= 	60

& 

𝑋 = 	𝐴! 	= l𝑟 <𝐶𝑜𝑠 :
𝜃
2;?

!

, −𝑟	 <𝑆𝑖𝑛 :
𝜃
2;?

!

n 

 

𝑋 = 	𝐴! 	= z4U𝐶𝑜𝑠(30&)V!, −4	U𝑆𝑖𝑛(30&)V!{ 
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𝑋 = 	𝐴! 	= l4 <
√3
2 ?

!

, −4	 :
1
2;

!

n 

 

𝑋 = 	𝐴! 	= {3, −1} 

 
 
Example 3.1.2   x2+2x+10 = 0;  R = 2  and S = 10 
 

𝐶 = 	−𝑅	 = −2		𝑎𝑛𝑑	𝑑	 = 	√4𝑆 = 	√4 ∗ 10 		= 	√40 
 
This is Case I, where C+D is in the real number form: C+D = c+d  
 
 

𝑋 = 	𝐴! 	= 	
1
4 U√𝐶 + 𝐷 			± √𝐶 − 𝐷V

!
 

𝑋 = 	
1
4<
d−2 + √40			± d−2 − √40?

!

 

 

𝑋	 =
1
4h−2 + √40 + −2 − √40	± 2 ∗ <

d(−2)! − U√40V
!
?k	 

 

𝑋	 =
1
4
(−4 ± 12𝑖) 	= 	 {−1 + 3𝑖, −1 − 3𝑖	} 

 
 
 
3.2. Cubic equations Examples 

 
The method developed is tested through three cubic equations examples having discriminants 
negative, zero and positive respectively. The solutions are worked out for each cases as 
provided below: 
 
Example 1:    x3 - 6x + 4 = 0 
 
In this equation R = -6 and S = 4. The Discriminant   
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅" + 27𝑆! = 4(−6)" + 27(4)! =	−432	 ≤ 	0 
 
This corresponds to Case II of C+D being in the form C+D = c+di, i.e., complex number 
domain. All the solutions of the cubic equations must be real numbers. 
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The values of c and d are given by: 
 

𝑐 = 	
4𝑆
𝑅 	= 	

4 ∗ 4
−6 = 	−

8
3									 ;			 

 

		𝑑 = 	±
4

3	√3		𝑅
	Q−(4𝑅" + 27𝑆!) 	= 	±

4
3	√3		(−6)

	Q−(−432) 	= 	±
8
3 

 
 
 
The value of a is computed using De Moivre’s Theorem as the real part of the cube root of the 
complex number c + di as follows: 
 

𝑎 = 	 𝑟'/" 	q𝐶𝑜𝑠 :
𝜃 + 2𝑛𝜋

3 ;r 												𝑛 = 0, 1, 2 
 
Where the values of r and q  are given by: 
 

𝑟 = 		Q𝑐! +	𝑑! 		= 	
8√2
3 						 ;								 

 

𝜃	 = 	𝐶𝑜𝑠)' e
𝑐
𝑟f = 	𝐶𝑜𝑠

)' :
−1
√2
; = 	

3𝜋
4 	 

 
The values of a are worked out as follows: 
 

𝑎' =	𝑟'/" 	q𝐶𝑜𝑠 :
𝜃
3;r 	= 		 <

8√2
3 ?

'/"

}𝐶𝑜𝑠 e
𝜋
4f~ = <

8√2
3 ?

'/"

:
1
√2
; 

 
 

𝑚' =	𝑎'" 	= 		
8√2
3 i

1

U√2V
"j 	= 	

4
3 

 
 

𝑎! =	𝑟
'
" 	q𝐶𝑜𝑠 :

𝜃 + 2𝜋
3 ;r 	= 		 <

8√2
3 ?

'
"
q𝐶𝑜𝑠 :

11𝜋
12 ;r 

 

=	<
8√2
3 ?

'/"

(−0.965925826) = 	−1.503505501 

 
 

𝑚! =	𝑎!" 	= 	−3.398717474 
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𝑎" =	𝑟
'
" 	q𝐶𝑜𝑠 :

𝜃 + 2𝜋
3 ;r 	= 		 <

8√2
3 ?

'
"
q𝐶𝑜𝑠 :

19𝜋
12 ;r 

 

= <
8√2
3 ?

'/"

(0.258819045) = 	0.402863084 

 
 

𝑚" =	𝑎"" 	= 	0.06538414 
 
 
 
The root of the cubic equation are then given by: 
 

𝑥' =	𝑎'" −	
𝑆
𝑅 	= 		

4
3 	−	:

4
−6; = 2	 

 
 

𝑥! =	𝑎!" −	
𝑆
𝑅 	= 		−3.398717474	 −	:

4
−6; = −2.732050808	 

 
 

𝑥" =	𝑎"" −	
𝑆
𝑅 	= 		0.06538414	 −	:

4
−6; = 0.732050807	 

 
 
 
Example 2:    x3 - 3x - 2 = 0 
 
In this equation R = -3 and S = -2. The Discriminant   
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅" + 27𝑆! = 4(−3)" + 27(−2)! = 	0 
 
 
This cubic equation has repeating roots since Discr = 0. 
 
 
The values of c and d are given by: 
 
 

𝑐 = 	
4𝑆
𝑅 	= 	

4 ∗ −2
−3 = 	

8
3									 ;			 

 
 

		𝑑 = 	±
4

3	√3		𝑅
	Q−(4𝑅" + 27𝑆!) 	= 	±

4
3	√3		(−3)

	Q−(0) 	= 	0 
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The value of a is computed using De Moivre’s Theorem as the real part of the cube root of the 
complex number c + di as follows: 
 

𝑎 = 	 𝑟'/" 	q𝐶𝑜𝑠 :
𝜃 + 2𝑛𝜋

3 ;r 												𝑛 = 0, 1, 2 
 
Where the values of r and q  are given by: 
 

𝑟 = 		Q𝑐! +	𝑑! 		= 	
8
3						 ;								 

 
𝜃	 = 	𝐶𝑜𝑠)' e

𝑐
𝑟f = 	𝐶𝑜𝑠

)'(1) = 	0	 
 
The values of a are worked out as follows: 
 

𝑎' =	𝑟'/" 	q𝐶𝑜𝑠 :
𝜃
3;r 	= 		 :

8
3;

'/"
[𝐶𝑜𝑠(0)] = :

8
3;

'/"
(1) 

 
 

𝑚' =	𝑎'" 	= 		
8
3
(1") 	= 	

8
3 

 
 

𝑎! =	𝑟
'
" 	q𝐶𝑜𝑠 :

𝜃 + 2𝜋
3 ;r 	= 		 :

8
3;

'
"
q𝐶𝑜𝑠 :

2𝜋
3 ;r 

 

=	:
8
3;

'/"

:
−1
2 ; 

 
 

𝑚! =	𝑎!" 	= 	 :
8
3; :

−1
2 ;

"

	= 	−
1
3 

 
 

𝑎" =	𝑟
'
" 	q𝐶𝑜𝑠 :

𝜃 + 4𝜋
3 ;r 	= 		 :

8
3;

'
"
q𝐶𝑜𝑠 :

4𝜋
3 ;r 

 

=	:
8
3;

'/"

:
−1
2 ; 

 
 

𝑚" =	𝑎"" 	= 	 :
8
3; :

−1
2 ;

"

	= 	−
1
3 
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The root of the cubic equation are then given by: 
 

𝑥' =	𝑎'" −	
𝑆
𝑅 	= 		

8
3 	−	:

−2
−3; = 2	 

 
 

𝑥! =	𝑎!" −	
𝑆
𝑅 	= 		−

1
3 −	:

−2
−3; = −1 

 
 

𝑥" =	𝑎"" −	
𝑆
𝑅 	= 		−

1
3 −	:

−2
−3; = −1 

 
 
The repeating root is x=1 as the solution indicates. 
 
 
Example 3:    x3 - 2x + 4 = 0 
 
In this equation R = -2 and S = 4. The Discriminant   
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅" + 27𝑆! = 4(−2)" + 27(4)! = 	400 > 	0 
 
 
This corresponds to Case I where C+D is in the real number domain C+D = c+d both c and d 
are real numbers. This equation has one real root and two complex roots. To get the real root, 
the formula given in Case 2 of the Methods section is applied. 
 
 
The values of c and D are given by: 
 

𝐶 = 	
4𝑆
𝑅 	= 	

4 ∗ 4
−2 	= 	−8									;				 

 

	𝐷 = 	±
4

3	√3		𝑅
	Q(4𝑅" + 27𝑆!)	 

 

= ±
4

3	√3		(−2)
	√400 	= 	∓

40
3√3

	= 		∓7.698003589 

 
Both +D and –D give the same result hence choose D = 7.698003589 
 

√𝐶 + 𝐷! 	= 		 √−8 + 7.698003589! 		= 	−0.670914627 
 

√𝐶 − 𝐷! 	= 		 √−8 − 7.698003589! 		= 	−2.503887477 
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The value of a is given by: 
 

𝑎 = 	
1
2		 √𝐶 + 𝐷

! 		+ 	
1
2		 √𝐶 − 𝐷

! 		 
 

𝑎 = 	
1
2		
(−0.670914627		 − 2.503887477) = 	−1.587401052	 

 
 

𝑚" =	𝑎"" 	= 	 (−1.587401052)" 	= 	−4 
 
The real root of the cubic equation is then given by: 
 

𝑥 = 	𝑎" −	
𝑆
𝑅 = 	−4 − q

4
−2r 	= 	−4 + 2 = 	−2	 

 
To obtain the other (complex) roots, synthetic division of the cubic equation by x + 2 gives: 
 

𝑥" − 2𝑥 + 4
𝑥 + 2 	= 	𝑥! − 2𝑥 + 2 

 
The roots of the quadratic equation using function evaluation: 
 

𝑧 = 	−
−2
2 	= 1 

 
𝑓(𝑧) = 	1! − 2(1) + 1 = 1 

 
 

𝑥 = 𝑧	 ±	Q−𝑓(𝑧) 			= 1 ± 𝑖 
 
 
Therefore, the other complex roots of the cubic equation are 1 + it and 1 - i. 
 
 
 
3.3. Quartic equations 
 
Let us now try to solve the following quartic polynomial equation that is given in depressed 
form as follows (to avoid the hustle of having to convert other forms to the depressed form: 
 

𝑥# − 19.375𝑥! − 20.625	𝑥 + 26.05078	 = 0 
 
 
In Equation (37),   p = -19.375; q = -20.625 and r = 26.05078. Now we try to solve the 
resolving cubic equation given by Equation (16)   , i.e.,  
 

𝑦" 	+ 2𝑝𝑦! + (𝑝! − 4𝑟)𝑦 − 𝑞! 		= 0 
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𝑦" 	+ 2 ∗ (−19.375) ∗ 𝑦! + ((−19.375)! − 4 ∗ 26.05078)𝑦 − (−20.625)! = 0						 
 
 

𝑦" − 38.75 ∗ 𝑦! + 271.1875 ∗ 𝑦 − 425.390625 = 0						 
 
Taking one of the roots of the above cubic equation in y,  
 

𝑦 = 2.25			, 𝑐 = 	Q𝑦 		= 	√2.25 	= 	±1.5 
 
The values of d and h are found from Equations (18) and (19) 
 
 

𝑑 = 	d−2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!												(18) 

 
 

𝑑 = 	�−2:
−20.625
±1.5 ; − 2(−19.375) − 2 ∗ (±1.5)! 				= 			 {7.85812	, 2.5980}				 

 
 
 

ℎ = 	d+2e
𝑞
𝑐f − 2𝑝 − 2𝑐

!												(19) 

 
 

ℎ = 	�+2:
−20.625
±1.5 ; − 2(−19.375) − 2 ∗ (±1.5)! 				= 	 {2.5980	, 7.85812}										 

 
 
The above pair of values show that instead of four only two solutions are unique. The 
solutions for a and e are therefore interchangeable can proceeds with either of these as 
follows. Choosing the real part of a +bi as the alternative:  
 
 
 

𝑟5 =	Q𝑐! +	𝑑!					; 			𝜃5 	= 	𝐶𝑜𝑠)' :
𝑐
𝑟5
;																							(21) 

 
Using {c, d}   =  { 1.5, 7.85812}, 
 

𝑟5 =	Q1.5! +	7.85812! = 8					; 			𝜃5 	= 	𝐶𝑜𝑠)' :
1.5
8 ; = 1.38218														 

 

𝑋3 =	𝐴! 	= l𝑟3 <𝐶𝑜𝑠 :
𝜃3
2 ;?

!

, −𝑟3 	<𝑆𝑖𝑛 :
𝜃3
2 ;?

!

n 
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𝑥5' = 8 ∗ 𝐶𝑜𝑠! :
1.38218

2 ; = 4.75 
 
 

𝑥5! = −8 ∗ 𝑆𝑖𝑛! :
1.38218

2 ; = −3.25 
 
 
Using {-c. h}  = {-1.5, 2.5980} 
 

𝑟6 =	Q1.5! +	2.5980! = 3					; 			𝜃6 	= 	𝐶𝑜𝑠)' :
−1.5
3 ; = 2.094395														 

 
 

{𝑋6', 𝑋6!} = 	𝐸! 	= �3 ∗ i𝐶𝑜𝑠 :
2.094395

2 ;j
!

, −3 ∗ 	i𝑆𝑖𝑛 :
2.094395

2 ;j
!

� 

The solution set, therefore, is: 
 

𝑋 = 	 {4.75, 3.25,							0.75,			 − 2.25} 

 
 
 
4. Conclusion 
 
 
Methods for solving polynomial equations have been developed over the years that adopted 
variable approaches and that involve varying degree of complexity. The methods are broad in 
approaches involving substitution, complex number algebra, and trigonometry, reduction to 
depressed form, elimination and decomposition of the original polynomial into solvable 
products of polynomials of lesser degree. Some methods are unified in that they apply to the 
broader range of the degree of polynomial equations while others specific such as applying to 
cubic or quartic equations only.   
 
This paper presented and discussed a unified approach for solving polynomial equations of 
degrees 2, 3 and 4. The method uses an inversion of the roots of variables that allow explicit 
determination of the roots within the limits of solvability of polynomials by radicals. The 
approach is simple to develop understand and even formulate the solution as the discussion on 
method development show. The method in addition follows a reverse route to the common 
methods of solving polynomials, starting with the dependent variable of the polynomials and 
inverting through the nth root to find explicit solution of the roots of the equations. 
 
In following up through finding the roots of the equations in this method, it is noticed that the 
final solution to the roots of the equation eventually appear in the form they have to appear. In 
other words, real roots appear real numbers and complex roots appear as complex numbers. As 
a comparison, Cardan’s solution starts with real numbers and arrives at solution that involve 
complex number manipulation whereas the roots are eventually real numbers. In this proposed 
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method, the solution starts with general form irrespective of whether the solution are real or 
complex but arrives at the solutions that are always expressed as radicals of real numbers. 
Moreover, this method proceed from complex to real numbers and hence takes a reverse detour 
to Cardan’s Method. The use of complex number arithmetic for solving equations that may be 
eventually expressed in real number forms is also further demonstrated.  This approach is one 
further example of the many ways in which polynomial equations can be solved  
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