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Abstract 
 
Solving polynomial equations by starting with complex numbers appears counter-intuitive 
particularly when real roots of equations are sought after. However, when attempting to solve 
polynomial equations such as cubic equations, complex numbers finally appear in the solution 
even if the roots are all real numbers. Cardan’s solution as such proceeds from real to complex 
numbers. This paper demonstrates that by starting with complex numbers, it is possible to 
arrive at the solution that eventually appears in real number form. In effect, such a procedure 
follows a reverse detour, i.e., from complex to real numbers. In addition, certain factors are 
simple when expressed in complex forms. This paper presents methods of solving quadratic, 
cubic, and quartic equations using complex numbers. The formulation of the method and 
application of the formulae based on the roots of complex numbers is simple and intuitive to 
follow. Examples are provided for the application of the methods for solving polynomial 
equations of degrees less than five. The method shows the power of using complex number 
arithmetic in solving equations despite the fact that the solution can be a real number. 
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1. Introduction 
 
The techniques of solving polynomial equations including quadratic and cubic equations have 
been recorded with the Babylonians around 2000 BC. The algebraic solution to cubic and 
quartic equations was successfully established during the Renaissance period (1450-1630). 
Scipione Del Ferro (1465-1526) found the solution for the cubic equation in reduced form but 
his solution was kept secret (Conner, 1956). Tartaglia also developed the solution to the cubic 
equation which was also not published but only told to Cardano. Girolamo Cardano (1501-
1576) published the first public method of solving cubic equations crediting Del Ferro for the 
method. Francois Viete (1540-1603) also similarly established a method for solving cubic 
equations using two-step transformation involving one variable only rather than the two 
variables involved in Cardano’s method. The original solutions for cubic equations by both 
Cardano and Viete are not exactly intuitive and look somehow magical discoveries. Later 
attempts at more explicit and intuitive approaches have been forwarded (Mukundan, 2010). 
Simplifications of the solution using derivatives have also been used (Abesheck Das, 2014; 
Tiruneh, 2020). 
 
Joseph Luis Lagrange (1736-1813) used a combination of symmetric functions that are enough 
to specify the polynomial equations in reduced form and thus solve them. Lagrange’s solution 
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as such implicitly used the Fourier transform though the Fourier transform was not yet 
established during that time (Jansen, 2009). Lagrange’s method is also said to be a precursor 
to the Group theory credited to Evariste Gallois (1811-1832). 
 
The solution to quartic polynomial equations was first established by Ferrari (1522-1565). 
However, since the method involves solving a resolvent cubic equation, Ferrari’s method 
became public only when the method for solving cubic equations was established (Dickson, 
1920). Rene Descartes (1596-1650) and a number of other mathematicians also suggested 
methods of solving quartic polynomial equations (Dickson, 1914). The occurrence of repeating 
roots in quartic equations could be apparent when the resolvent cubic has also a repeating root 
(Neumark, 1965). Leonard Euler (1707-1783) made use of the fact that the sum of the four 
roots is equal to zero for the reduced quartics and hence was able to offer a solution by solving 
a resolvent cubic arising out of the three variables (Nickalls, 2009). Fathi and Sharifan (2013) 
provided a new method of solving quartic equations by expressing the original root x as a sum 
of three transformed variables u, v, and w in a manner similar to the solution provided by 
Cardano. Kulkarni (2006) suggested a unified method for solving polynomial equations which 
has a more explicit and intuitive form compared to earlier methods. 
 

2. Methods 

2.1. Quadratic Equations 

2.1.1.  Method A: Complex roots 

In the first method for quadratic equations, the root can be derived from the roots of real or 
complex numbers. The application of De Moivre’s theorem is demonstrated in the examples 
for the calculation of real roots from complex numbers. Let A, B, C, and D be numbers (real 
or complex) such that: 

(𝐴 + 𝐵)! 	= 𝐶 + 𝐷 

(𝐴 − 𝐵)! 	= 	𝐶 − 𝐷 

Adding and subtracting the above equations in turn gives: 

𝐴! +	𝐵! 	= 𝐶	𝑎𝑛𝑑	2𝐴𝐵 = 𝐷 

Eliminating B from the equation containing C gives: 

 

𝐴! +	/
𝐷
2𝐴0

!

− 𝐶 = 0 

Rearranging gives: 

𝐴" − 𝐶𝐴! +	
𝐷!

4 	= 0 

Let x = A2 so that: 
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𝑋! − 𝐶𝑋 +	
𝐷!

4 	= 0 

 

Given the quadratic equation: X2 + RX +S and equating the constants gives: 

𝐶 = 	−𝑅	𝑎𝑛𝑑	𝐷 = 	√4𝑆 

The value of the root X is determined from the value of A as follows: 

(𝐴 + 𝐵) 	= ±√𝐶 + 𝐷 

(𝐴 − 𝐵) 	= 	±√𝐶 − 𝐷 

As far as X is concerned which is the square of A, the above equations yield two independent 
values, unlike the four values suggested by the above equations. In other words, it is enough 
to express A in terms of two independent values, i.e., 

𝐴 = 	
1
2 9√𝐶 + 𝐷 	± √𝐶 − 𝐷: 

The value of X is then obtained: 

𝑋 = 	𝐴! 	= 	
1
4 9√𝐶 + 𝐷 	± √𝐶 − 𝐷:

!
 

Substituting the values of 𝐶 = 	−𝑅	𝑎𝑛𝑑	𝐷 = 	√4𝑆 in the above equation gives the quadratic 
formula as shown below: 

𝑋 = 	𝐴! 	= 	
1
4;
<−𝑅 + √4𝑆 	± <−𝑅 − √4𝑆=

!

 

𝑋 = 	𝐴! 	= 	
1
4 >−𝑅 + √4𝑆 − 𝑅 − √4𝑆 	±

?((−𝑅)! − 4𝑆)	@ 

𝑋 = 	𝐴! 	= 	
1
2 >−𝑅 ±

?𝑅! − 4𝑆	@ 

The examples, in the results section demonstrate the application of the above method. The 
application of De Moivre’s theorem where the roots involve complex numbers follows from 
the following: 

𝑋 = 	𝐴! 	= 	
1
4 9
√𝑐 + 𝑑𝑖 	± √𝑐 − 𝑑𝑖:

!
 

Let	𝑟 = 	√𝑐! +	𝑑!	and	𝜃 = 	𝐶𝑜𝑠#$ >%
&
@ 
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√𝑐 + 𝑑𝑖 	= 	 𝑟$/! ;𝐶𝑜𝑠 /
𝜃
20 + 𝑖	𝑆𝑖𝑛 /

𝜃
20= 

√𝑐 − 𝑑𝑖 	= 	 𝑟$/! ;𝐶𝑜𝑠 /
−𝜃
2 0 + 𝑖	𝑆𝑖𝑛 /

−𝜃
2 0= 

𝑋 = 	𝐴! 	= 	
1
4GH𝑟

$/! ;𝐶𝑜𝑠 /
𝜃
20 + 𝑖	𝑆𝑖𝑛 /

𝜃
20=I	± H𝑟

$/! ;𝐶𝑜𝑠 /
−𝜃
2 0 + 𝑖	𝑆𝑖𝑛 /

−𝜃
2 0=IJ

!

 

𝑋 = 	𝐴! 	= K𝑟 ;𝐶𝑜𝑠 /
𝜃
20=

!

, −𝑟	 ;𝑆𝑖𝑛 /
𝜃
20=

!

M 

 

2.1.2. Method B: Derivation through complex arithmetic 

A complex arithmetic is presented here to derive the quadratic formula. Consider the general 
real quadratic expression: 

𝑎! 	+ 	𝑏!	(7) 

Equation (7) can be factored into two complex factors as follows: 

𝑎! 	+ 	𝑏! 	= 	 (𝑎 + 𝑏𝑖)	(𝑎 − 𝑏𝑖)	(8) 

Now it is possible to express the quadratic equation in Equation (1) in the form given by 
Equation (7). i.e., 

𝑥! + 𝑏𝑥	 + 𝑐 = 0 = 	
1
2	
(𝑥 − 𝑝)! 	+

1
2	
(𝑥 − 𝑞)!	(9) 

Term-by-term comparison of the expressions in Equation (9) gives; 

𝑝 + 𝑞 = 	−𝑏;	𝑝! +	𝑞! 	= 2𝑐	(10) 

Now using the complex factoring given in Equation (8), the solution to Equation (9) can be 
expressed in the complex form as: 

V𝑥 − 𝑝	 +	
(𝑥 − 𝑞)𝑖	 = 0

𝑥 − 𝑝 −	(𝑥 − 𝑞)𝑖	 = 0	(11) 

Solving Equation (11) for x one gets: 

𝑥 = 	
𝑝	 ± 𝑖𝑞
1 ± 𝑖 	(12) 

Equation (12) can be reduced by eliminating the complex denominator: 
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𝑥 = 	
𝑝	 ± 𝑖𝑞
1 ± 𝑖 	∗ 	

1 ∓ 𝑖
1 ∓ 𝑖 	= 	

𝑝 + 𝑞
2 	±	

1
2
(𝑝 − 𝑞)𝑖	(13)	

Using the relation in Equation (10), Equation (13) becomes; 

𝑥 = 	
−𝑏
2 	±	

1
2
(𝑝 − 𝑞)𝑖	(14)	

Considering again Equation (10) 

(𝑝 + 𝑞)! 	= 	 𝑏! 	= 	 𝑝! + 2𝑝𝑞 + 𝑞! 	= 2𝑐 + 2𝑝𝑞 

From which: 

2𝑝𝑞 = 𝑏! − 2𝑐	(15) 

Considering Equations (14) and (15): 

[(𝑝 − 𝑞)𝑖]! 	= 2𝑝𝑞 −	(𝑝! + 𝑞!) = 	𝑏! − 2𝑐 − 2𝑐 = 𝑏! − 4𝑐	(16)	

Taking the square root in (16): 

(𝑝 − 𝑞)𝑖	 = 	±?𝑏! − 4𝑐		(17) 

Finally substituting Equation (17) into Equation (14) and knowing that the sign +/- 
combinations eventually give only two choices gives: 

𝑥 = 	
−𝑏
2 	±	

1
2
(𝑝 − 𝑞)𝑖 = 	

−𝑏
2 	±

1
2
?𝑏! − 4𝑐	 = 	

−𝑏	 ± √𝑏! − 4𝑐
2 	(18)	

Equation (18) is the quadratic formula as is known free from the complex expression initially 
employed to derive it. 

 
 
2.2. Cubic Equations 

The solution of the cubic polynomial equation is formulated starting with the cube roots of a 
complex number whose real and complex part is determined from the equation. Two separate 
formulations are made, according to the discriminant of the equation. The procedure is 
described below for the two separate cases 
 
Case I: 

Given a polynomial equation in the depressed form: 
 
     x3 + Rx + S = 0 
 
The discriminant 𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≤ 	0, the solution to the equation is obtained through 
the cubic root of a complex number c + di such that: 
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(𝑎 + 𝑏𝑖)( 	= 𝑐 + 𝑑𝑖 
 
The values of c and d are given by: 
 

𝑐 = 	
4𝑆
𝑅 ; 	𝑑 = 	±

4
3	√3	𝑅

	?−(4𝑅( + 27𝑆!) 

 
The value of a is computed using De Moivre’s Theorem as the real part of the cube root of the 
complex number c+di as follows: 
 

𝑎 = 	 𝑟$/( 	_𝐶𝑜𝑠 /
𝜃 + 2𝑛𝜋

3 0a 	𝑛 = 0, 1, 2 
 
Where the values of r and θ are given by: 
 

𝑟 = 	?𝑐! +	𝑑!; 	𝜃	 = 	𝐶𝑜𝑠#$ >
𝑐
𝑟@ 

 
The roots of the cubic equation are then given by: 
 

𝑥 = 	𝑎( −	
𝑆
𝑅 

 
 
Case II: 

Given a polynomial equation in the depressed form: 
 
     x3 + Rx + S = 0 
 
The discriminant 𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≥ 0, the solution to the cubic equation is obtained 
through a cubic root of a real number by transforming Case I equation from complex to the real 
number domain through the substitutions, namely, B = bi and D = di such that: 
 

(𝑎 − 𝐵)( 	= 𝑐 − 𝐷 
 
The values of c and D are given by: 
 

𝑐 = 	
4𝑆
𝑅 ; 	𝐷 = 	±

4
3	√3	𝑅

	?(4𝑅( + 27𝑆!) 

 
The value of a is given by: 
 

𝑎 = 	
1
2	 √𝑐 + 𝐷

! 	+ 	
1
2	 √𝑐 − 𝐷

! 	
 
The roots of the cubic equation are then given by: 
 

𝑥 = 	𝑎( −	
𝑆
𝑅 
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2.2.1. Proof of Method 

The proofs of the formulae given in Case I and II above are provided below separately for each 
case. First, we start with case I in which the discriminant is negative in which all the roots of 
the cubic equations are real. It is interesting to note that in the case of Cardan’s method, the 
solution involves the roots of a complex number whereas in this proposed method as 
demonstrated below it involves the square root of a real number. 
 
Case I:	𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≤ 	0	
 
 
Assuming that the polynomial equation is already converted into the depressed form: 
 
     x3 + Rx + S = 0 
 
The discriminant	𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≤ 	0, the solution to the equation is obtained through 
the cubic root of a complex number c + di such that: 
 

(𝑎 + 𝑏𝑖)( 	= 𝑐 + 𝑑𝑖 
 
Expanding the (a+bi)3 term and equating it to c+di gives: 
 

[𝑎! 	− 3𝑎𝑏!] 	+ 	[3𝑎!𝑏 − 𝑏(]𝑖	 = 	𝑐 + 𝑑𝑖 
 
From which it is apparent that: 
 

𝑎! 	− 3𝑎𝑏! 	= 𝑐; 	3𝑎!𝑏 − 𝑏( = 𝑑	
 
Eliminating the complex coefficient b and expressing the above equation in terms of the real 
part of a_+bi, i.e., a only gives: 
 

𝑎) 	− 	
3
4 𝑐𝑎

* −	
[15𝑐! + 27𝑑!]

64 𝑎( −	
𝑐(

64 	= 0 
 
Using the substitution m = a3 to convert the above equation into a general cubic equation gives; 
 
 

𝑚( 	− 	
3
4 𝑐𝑚

! −	
[15𝑐! + 27𝑑!]

64 𝑚 −	
𝑐(

64 	= 0 
 
The above equation is converted into depressed form and equated to the given polynomial 
equation in x. To do this, the usual variable transformation equation to depressed cubic form is 
used, i.e., 
 

𝑚 = 𝑥 −
1
3/
3
4 𝑐0 	= 	𝑥 +	

1
4 	𝑐 

 



 

Page 8 of 22 
 

Using this transformation the cubic equation in m is transformed into x variable as follows: 
 

𝑥( − _
27
64
(𝑐! +	𝑑!)a 𝑥 −	_

27
256

(𝑐( +	𝑑!𝑐)a = 0 
 
Equating the terms of the above equation to that of the given equation: x3 + Rx + S = 0, 
 
 

𝑅 = 	− _
27
64
(𝑐! +	𝑑!)a ; 	𝑆 = 	−	_

27
256

(𝑐( +	𝑑!𝑐)a 
 
 
Solving for c and d in terms of R and s will eventually give: 
 

𝑐 = 	
4𝑆
𝑅 ; 	𝑑 = 	±

4
3	√3	𝑅

	?−(4𝑅( + 27𝑆!) 

 
Now working backwards from c and d to the equation in the x variable, since a +bi is the cube 
root of c +di, the value of a is computed using De Moivre’s Theorem as the real part of the 
cube root of the complex number c +di as follows: 
 

𝑎 = 	 𝑟$/( 	_𝐶𝑜𝑠 /
𝜃 + 2𝑛𝜋

3 0a 	𝑛 = 0, 1, 2 
 
Where the values of r and θ are given by: 
 

𝑟 = 	?𝑐! +	𝑑!; 	𝜃	 = 	𝐶𝑜𝑠#$ >
𝑐
𝑟@ 

 
The roots of the cubic equation are given by: 
 

𝑥 = 	𝑚 −	
1
4 𝑐	

 
Using the relation: 
 

𝑚 =	𝑎(; 	𝑐 = 	
4𝑆
𝑅  

 
gives: 
 
 

𝑥 = 	𝑎( −	
𝑆
𝑅 

 
 
 
 
 
Case II:	𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≥ 	0	
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In the case where the discriminant of the cubic equation x3 + Rx + S = 0 given as 
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! ≤ 	0 
 
Represents a cubic equation in which the solution consists of a real number and a complex 
number with its conjugate. From the relation established in Case I, i.e., 
 
 

𝑎! 	− 3𝑎𝑏! 	= 𝑐; 	3𝑎!𝑏 − 𝑏( = 𝑑	
 
Substituting B = bi and D = di gives after rearrangement; 
 
 

𝑎! + 3𝑎𝐵! 	= 𝑐; 	3𝑎!𝐵 + 𝐵( = 𝑑𝑖 = 	𝐷	
 
Adding and subtracting the above two equations gives: 
 

𝑎! + 3𝑎𝐵! + 	3𝑎!𝐵 + 𝐵( 	= (𝑎 + 𝐵)( 	= 	𝑐 + 𝐷	
 
 

𝑎! − 3𝑎!𝐵 + 3𝑎𝐵! − 𝐵( 	= (𝑎 − 𝐵)( 	= 𝑐 − 𝐷 
 
 
From the above two relations: 
 

𝑎 + 𝐵 = 	 √𝑐 + 𝐷!  
 

𝑎 − 𝐵 = 	 √𝑐 − 𝐷!  
 
Eliminating B from the above two equation yields; 
 

𝑎 = 	
1
2	 √𝑐 + 𝐷

! 	+ 	
1
2	 √𝑐 − 𝐷

! 	
 
The values of c and D=di are given as worked out in Case I: 
 

𝑐 = 	
4𝑆
𝑅 ; 	𝐷 = 𝑑𝑖 = 	±

4
3	√3	𝑅

	?(4𝑅( + 27𝑆!) 

 
The roots of the cubic equation are then given by: 
 

𝑥 = 	𝑎( −	
𝑆
𝑅 

 
It is also interesting to note that opposite to Cardan’s method the discriminant is negative where 
the solution to the cubic equation has one real root only. In the case of the Cardan’s Method, 
the discriminant is positive. It is, however, useful to observe that the solution in the end is 
formulated using real numbers only in both cases. Case I though requires application of De 
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Moivre’s theorem to start with whereas case II is all a real number workout. By contrast, 
Cardan’s method ends up with a solution, which involves complex numbers in the end. 
 
 
2.3. Quartic Equations 

Consider a quartic polynomial equation that is in reduced form; f(x) = x4 +bx2+cx +d=0. The 
solution to this quartic equation is established through an equivalent polynomial P(x) of the 
form: 
 

𝑃(𝑥) = 	
1
2
((𝑥! + 𝑝𝑥 + 𝑞)!) +

1
2
((𝑥! − 𝑝𝑥 + 𝑟)!) = 𝑓(𝑥) = 	𝑥" + 𝑏𝑥! + 𝑐𝑥 + 𝑑 = 0	

 
The solution to the quartic polynomial involving complex numbers is: 
 

(𝑥! + 𝑝𝑥 + 𝑞) 	±	(𝑥! − 𝑝𝑥 + 𝑟)𝑖 = 0 
 
The resulting quadratic equation is of the form: 
 

(1 ± 𝑖)𝑥! 	+ 	(1 ∓ 𝑖)	𝑝𝑥 + 𝑞	 ± 𝑟𝑖 = 0 
 
The root is found using the quadratic formula: 
 

𝑥 = 	
−(1 ± 𝑖)𝑝	 ±	?(1 ± 𝑖)!𝑝! − 4(1 ± 𝑖)(𝑞 ± 𝑟𝑖)

2(1 ± 𝑖)  

 
To reduce the denominator to a real term the following multiplication is made: 
 

𝑥 = 	
−(1 ∓ 𝑖)𝑝	 ±	?(1 ∓ 𝑖)!𝑝! − 4(1 ± 𝑖)(𝑞 ± 𝑟𝑖)

2(1 ± 𝑖) 	;
1 ∓ 𝑖
1 ∓ 𝑖= 

 
Simplifying further gives: 
 

𝑥	 = 	±
𝑝𝑖
2 	±	

1
2	
?−𝑝! + 2(−1	 ± 𝑖)	(𝑞	 ± 𝑟𝑖) 

 
The constants p, q, and r are determined by equating P(x) with f(x): 
 

𝑃(𝑥) = 	
1
2
((𝑥! + 𝑝𝑥 + 𝑞)!) +

1
2
((𝑥! − 𝑝𝑥 + 𝑟)!) = 𝑓(𝑥) = 	𝑥" + 𝑏𝑥! + 𝑐𝑥 + 𝑑 

 
 
Expanding P(x) gives: 
 

	𝑃(𝑥) = 	𝑥" 	+ 	 (𝑝! + 𝑞 + 𝑟)𝑥! + 𝑝(𝑞 − 𝑟)𝑥 +	
𝑞!

2 	+	
𝑟!

2 	= 0 
 
Equating the coefficients with the original polynomial f(x): 
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𝑝! + 𝑞 + 𝑟	 = 𝑏 
 

𝑝(𝑞 − 𝑟) 	= 𝑐 
 

𝑞!

2 	+	
𝑟!

2 	= 𝑑 
 
Solving for q and r in terms of p using the first two equations: 
 

𝑞 = 	
𝑏
2 	−	

𝑝!

2 	+	
𝑐
2𝑝 

 

𝑟 = 	
𝑏
2 	−	

𝑝!

2 −	
𝑐
2𝑝 

 
Inserting the values of q and r in terms of p into the final third equation gives, after 
simplification: 
 

𝑝* − 2𝑏𝑝" 	+ 	(𝑏! − 4𝑑)𝑝! +	𝑐! 	= 0 
 
Defining a variable y = p2: 
 
 

𝑦( − 2𝑏𝑦! 	+ 	 (𝑏! − 4𝑑)𝑦 +	𝑐! 	= 0 
 
The above resolvent cubic equation is solved and the value of p is determined from: 
 

𝑝 = 	?𝑦 
 
Inserting the expression for q and r in terms of p in the solution for x finally gives: 
 

𝑥	 = 	±
𝑝𝑖
2 	±	

1
2	h𝑝

! − 	2𝑏	 ±
2𝑐
𝑝 𝑖	 

 
The four solutions are: 
 

𝑥$ 	= 	+
𝑝𝑖
2 	+	

1
2	h𝑝

! − 	2𝑏 +
2𝑐
𝑝 𝑖	 

 

𝑥! 	= 	+
𝑝𝑖
2 	−	

1
2	h𝑝

! − 	2𝑏 +
2𝑐
𝑝 𝑖	 

 

𝑥( 	= 	−
𝑝𝑖
2 	+	

1
2	h𝑝

! − 	2𝑏 −
2𝑐
𝑝 𝑖	 
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𝑥" 	= 	−
𝑝𝑖
2 	−	

1
2	h𝑝

! − 	2𝑏	 −	
2𝑐
𝑝 𝑖	 

 
 
 
3. Results and discussion 
 
3.1. Quadratic Equation Examples 

Example 1: x2-2x-3 = 0; R = -2 and S = -3 
 

𝐶 = 	−𝑅	 = 2	𝑎𝑛𝑑	𝑑	 = 	√4𝑆 = 	√4 ∗ −3 	= 	√12𝑖 
 

𝑋 = 	𝐴! 	= 	
1
4 9√𝐶 + 𝐷 	± √𝐶 − 𝐷:

!
 

𝑋 = 	
1
4;
<2 + √12𝑖 	± <2 − √12𝑖=

!

 

 

=
1
4G2 + √12𝑖 + 2 − √12𝑖	 ± 2 ∗ ;

<2! − 9√12𝑖:
!
=J	

 

=
1
4
(4 ± 8) 	= 	 {3, −1} 

 
The application of De Moivre’s Theorem is shown below for this example: 
 
 
Let	𝑟 = 	√𝑐! +	𝑑!	and	𝜃 = 	𝐶𝑜𝑠#$ >%

&
@ 

𝑟 = 	<2! +	√12
!
	= 4 

𝜃 = 	𝐶𝑜𝑠#$ /
2
40 	= 	60

+ 

𝑋 = 	𝐴! 	= K𝑟 ;𝐶𝑜𝑠 /
𝜃
20=

!

, −𝑟	 ;𝑆𝑖𝑛 /
𝜃
20=

!

M 

 

𝑋 = 	𝐴! 	= k49𝐶𝑜𝑠(30+):!, −4	9𝑆𝑖𝑛(30+):!l 
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𝑋 = 	𝐴! 	= K4 ;
√3
2 =

!

, −4	 /
1
20

!

M 

 

𝑋 = 	𝐴! 	= {3, −1} 

 
 
Example 2: x2+2x+10 = 0; R = 2 and S = 10 
 

𝐶 = 	−𝑅	 = −2	𝑎𝑛𝑑	𝑑	 = 	√4𝑆 = 	√4 ∗ 10 	= 	√40 
 

𝑋 = 	𝐴! 	= 	
1
4 9√𝐶 + 𝐷 	± √𝐶 − 𝐷:

!
 

𝑋 = 	
1
4;
<−2 + √40	± <−2 − √40=

!

 

 

𝑋	 =
1
4G−2 + √40 + −2 − √40	± 2 ∗ ;

<(−2)! − 9√40:
!
=J	

 

𝑋	 =
1
4
(−4 ± 12𝑖) 	= 	 {−1 + 3𝑖, −1 − 3𝑖	} 

 
 
 
3.2. Cubic equations Examples 

 
The method developed is tested through three cubic equation examples having discriminants 
negative, zero, and positive respectively. The solutions are worked out for each case as 
provided below: 
 
Example 1: x3 - 6x + 4 = 0 
 
In this equation R = -6 and S = 4. The Discriminant 
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! = 4(−6)( + 27(4)! =	−432	 ≤ 	0 
 
All the solutions of the cubic equations must be real numbers. 
 
The values of c and d are given by: 
 

𝑐 = 	
4𝑆
𝑅 	= 	

4 ∗ 4
−6 = 	−

8
3 ;	
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𝑑 = 	±
4

3	√3	𝑅
	?−(4𝑅( + 27𝑆!) 	= 	±

4
3	√3	(−6)

	?−(−432) 	= 	±
8
3 

 
 
 
The value of a is computed using De Moivre’s Theorem as the real part of the cube root of the 
complex number c + di as follows: 
 

𝑎 = 	 𝑟$/( 	_𝐶𝑜𝑠 /
𝜃 + 2𝑛𝜋

3 0a 	𝑛 = 0, 1, 2 
 
Where the values of r and θ are given by: 
 

𝑟 = 	?𝑐! +	𝑑! 	= 	
8√2
3 ;	

 

𝜃	 = 	𝐶𝑜𝑠#$ >
𝑐
𝑟@ = 	𝐶𝑜𝑠

#$ /
−1
√2
0 = 	

3𝜋
4 	

The values of a are worked out as follows: 
 

𝑎$ =	𝑟$/( 	_𝐶𝑜𝑠 /
𝜃
30a 	= 	;

8√2
3 =

$/(

m𝐶𝑜𝑠 >
𝜋
4@n = ;

8√2
3 =

$/(

/
1
√2
0 

 
 

𝑚$ =	𝑎$( 	= 	
8√2
3 H

1

9√2:
(I 	= 	

4
3 

 
 

𝑎! =	𝑟
$
( 	_𝐶𝑜𝑠 /

𝜃 + 2𝜋
3 0a 	= 	 ;

8√2
3 =

$
(
_𝐶𝑜𝑠 /

11𝜋
12 0a 

 

=	;
8√2
3 =

$/(

(−0.965925826) = 	−1.503505501 

 
 

𝑚! =	𝑎!( 	= 	−3.398717474 
 
 

𝑎( =	𝑟
$
( 	_𝐶𝑜𝑠 /

𝜃 + 2𝜋
3 0a 	= 	 ;

8√2
3 =

$
(
_𝐶𝑜𝑠 /

19𝜋
12 0a 

 

= ;
8√2
3 =

$/(

(0.258819045) = 	0.402863084 
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𝑚( =	𝑎(( 	= 	0.06538414 

 
 
 
The root of the cubic equation is then given by: 
 

𝑥$ =	𝑎$( −	
𝑆
𝑅 	= 	

4
3 	−	/

4
−60 = 2	

 
 

𝑥! =	𝑎!( −	
𝑆
𝑅 	= 	−3.398717474	 −	/

4
−60 = −2.732050808	

 
 

𝑥( =	𝑎(( −	
𝑆
𝑅 	= 	0.06538414	 −	/

4
−60 = 0.732050807	

 
 
 
Example 2: x3 - 3x - 2 = 0 
 
In this equation R = -3 and S = -2. The Discriminant 
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! = 4(−3)( + 27(−2)! = 	0 
 
 
This cubic equation has repeating roots since Discr = 0. 
 
 
The values of c and d are given by: 
 
 

𝑐 = 	
4𝑆
𝑅 	= 	

4 ∗ −2
−3 = 	

8
3 ;	

 
 

𝑑 = 	±
4

3	√3	𝑅
	?−(4𝑅( + 27𝑆!) 	= 	±

4
3	√3	(−3)

	?−(0) 	= 	0 

 
 
 
The value of a is computed using De Moivre’s Theorem as the real part of the cube root of the 
complex number c + di as follows: 
 

𝑎 = 	 𝑟$/( 	_𝐶𝑜𝑠 /
𝜃 + 2𝑛𝜋

3 0a 	𝑛 = 0, 1, 2 
 
Where the values of r and θ are given by: 
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𝑟 = 	?𝑐! +	𝑑! 	= 	
8
3 ;	

 
𝜃	 = 	𝐶𝑜𝑠#$ >

𝑐
𝑟@ = 	𝐶𝑜𝑠

#$(1) = 	0	
 
The values of a are worked out as follows: 
 

𝑎$ =	𝑟$/( 	 _𝐶𝑜𝑠 /
𝜃
30a 	= 	 /

8
30

$/(
[𝐶𝑜𝑠(0)] = /

8
30

$/(
(1) 

 
 

𝑚$ =	𝑎$( 	= 	
8
3
(1() 	= 	

8
3 

 
 

𝑎! =	𝑟
$
( 	_𝐶𝑜𝑠 /

𝜃 + 2𝜋
3 0a 	= 	 /

8
30

$
(
_𝐶𝑜𝑠 /

2𝜋
3 0a 

 

=	/
8
30

$/(

/
−1
2 0 

 
 

𝑚! =	𝑎!( 	= 	 /
8
30 /

−1
2 0

(

	= 	−
1
3 

 
 

𝑎( =	𝑟
$
( 	_𝐶𝑜𝑠 /

𝜃 + 4𝜋
3 0a 	= 	 /

8
30

$
(
_𝐶𝑜𝑠 /

4𝜋
3 0a 

 

=	/
8
30

$/(

/
−1
2 0 

 
 

𝑚( =	𝑎(( 	= 	 /
8
30 /

−1
2 0

(

	= 	−
1
3 

 
 
 
The root of the cubic equation is then given by: 
 

𝑥$ =	𝑎$( −	
𝑆
𝑅 	= 	

8
3 	−	/

−2
−30 = 2	

 
 

𝑥! =	𝑎!( −	
𝑆
𝑅 	= 	−

1
3 −	/

−2
−30 = −1 
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𝑥( =	𝑎(( −	
𝑆
𝑅 	= 	−

1
3 −	/

−2
−30 = −1 

 
 
The repeating root is x=1 as the solution indicates. 
 
 
Example 3: x3 - 2x + 4 = 0 
 
In this equation R = -2 and S = 4. The Discriminant 
 

𝐷𝑖𝑠𝑐𝑟 = 	4𝑅( + 27𝑆! = 4(−2)( + 27(4)! = 	400 > 	0 
 
 
This equation has one real root and two complex roots. To get the real root, the formula given 
in Case 2 of the Methods section is applied. 
 
 
The values of c and D are given by: 
 

𝑐 = 	
4𝑆
𝑅 	= 	

4 ∗ 4
−2 	= 	−8;	

 

𝐷 =	±
4

3	√3	𝑅
	?(4𝑅( + 27𝑆!)	

 

= ±
4

3	√3	(−2)
	√400 	= 	∓

40
3√3

	= 	∓7.698003589 

 
Both +D and –D give the same result hence choose D = 7.698003589 
 

√𝑐 + 𝐷! 	= 	 √−8 + 7.698003589! 	= 	−0.670914627 
 

√𝑐 − 𝐷! 	= 	 √−8 − 7.698003589! 	= 	−2.503887477 
 
 
The value of a is given by: 
 

𝑎 = 	
1
2	 √𝑐 + 𝐷

! 	+ 	
1
2	 √𝑐 − 𝐷

! 	
 

𝑎 = 	
1
2	
(−0.670914627	 − 2.503887477) = 	−1.587401052	

 
 

𝑚( =	𝑎(( 	= 	 (−1.587401052)( 	= 	−4 
 
The real root of the cubic equation is then given by: 
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𝑥 = 	𝑎( −	
𝑆
𝑅 = 	−4 − _

4
−2a 	= 	−4 + 2 = 	−2	

 
To obtain the other (complex) roots, synthetic division of the cubic equation by x + 2 gives: 

𝑥( − 2𝑥 + 4
𝑥 + 2 	= 	𝑥! − 2𝑥 + 2 

 
The roots of the quadratic equation using function evaluation: 
 

𝑧 = 	−
−2
2 	= 1 

 
𝑓(𝑧) = 	1! − 2(1) + 1 = 1 

 
 

𝑥 = 𝑧	 ±	?−𝑓(𝑧) 	= 1 ± 𝑖 
 
 
Therefore, the other complex roots of the cubic equation are 1 + i and 1 - i. 
 
3.3. Quartic equations Examples 

 
An example is provided below for the application of the formula for solving quartic 
polynomial equations using complex number arithmetic 
 
 
Example: Given a quartic equation: 
 
   𝑥" − 𝑥( − 19𝑥! − 11𝑥 + 30	 = 0 
 
The solution to the above quartic equation is: 
 

x = 	 {−3,−2, 1, 5} 
 
The given quartic equation can be reduced using the method of function evaluation (Tiruneh, 
2020). This method of function evaluation can also be derived from binomial expansion as 
follows. Define variables z and t such that: 

𝑥 = 𝑧 + 𝑡 
 
The value of z is chosen such that the resulting quartic polynomial equation is in reduced form 
in terms of the variable t. Using the binomial expansion, the original equation can be expressed 
in terms of z and t as follows: 
 

𝑓(𝑡) = 	 𝑡" +	
𝑓′′′(𝑧)
3! 	𝑡( +	

𝑓′′(𝑧)
2! 	𝑡! +	𝑓,(𝑧)𝑡 + 𝑓(𝑧) = 0 

 
Since the coefficient of t3 has to be zero in the reduced form, it follows that; 
 

𝑓,,,(𝑧) = 0 
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24𝑧 − 6 = 0 

 

𝑧 =
1
4 

 
Evaluating the other coefficients: 
 

𝑓(𝑧) = 𝑓 /
1
40 = 	/

1
40

"

− /
1
40

(

− 19	 /
1
40

!

− 11/
1
40 + 30 = 	26.05078125 

 

𝑓,(𝑧) = 𝑓, /
1
40 = 4𝑧( − 3𝑧! − 38𝑧 − 11 = 	−20.625 

 

𝑓,,(𝑧) = 𝑓,, /
1
40 = 	12𝑧! − 6𝑧 − 38 = 	−38.75 

 
The reduced quartic then becomes: 
 

𝑓(𝑡) = 	 𝑡" +	
𝑓′′′(𝑧)
3! 	𝑡( +	

𝑓′′(𝑧)
2! 	𝑡! +	𝑓,(𝑧)𝑡 + 𝑓(𝑧) = 0 

 
𝑓(𝑡) = 	 𝑡" − 19.375	𝑡! 	− 20.625	𝑡 + 26.05078125 = 0 

 
 
Considering the resolvent cubic equation: 
 

𝑦( − 2𝑏𝑦! 	+ 	 (𝑏! − 4𝑑)𝑦 +	𝑐! 	= 0 
 
The coefficients corresponding to the given example of a reduced quartic equation are 
evaluated as follows 
 

−2𝑏 = 	−2(−19.375) = 38.75;	𝑏! − 4𝑑	 = 	 (−19.375)! − 4(26.05078123) 	
= 271.1875 

 
𝑐! 	= 	 (−20.625)! 	= 425.390625 

 
The resolvent cubic equation becomes: 
 

𝑦( + 38.75	𝑦! 	+ 	271.1875𝑦 + 	425.390625	 = 0 
 
The roots of the above cubic equation are: 
 

𝑦 = 	 {	−2.25, −6.25, −30.25} 
 
Taking y = -2.25 (the other roots also give the same answer) and evaluating p, q, and r. 
 

𝑝	 = 	√−2.25 	= 1.5𝑖 
 
The solution in terms of t are: 
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𝑡$ 	= 	+
(1.5𝑖)𝑖
2 	+	

1
2	
h(1.25𝑖)! − 	2(−19.375) +

2(−20.625)
1.5𝑖 𝑖		

 

=	−0.75 + 0.5 ∗ √36.5 − 27.5 	= 	−0.75 +	
1
2	
(3) = 0.75 

 
 

𝑡! 	= 	+
(1.5𝑖)𝑖
2 −	

1
2	
h(1.25𝑖)! − 	2(−19.375) +

2(−20.625)
1.5𝑖 𝑖		

 

=	−0.75 − 0.5 ∗ √36.5 − 27.5 	= 	−0.75 −	
1
2	
(3) = −2.25 

 
 
 

𝑡( 	= 	−
(1.5𝑖)𝑖
2 	+	

1
2	
h(1.25𝑖)! − 	2(−19.375) −	

2(−20.625)
1.5𝑖 𝑖		

 

=	+0.75 + 0.5 ∗ √36.5 + 27.5 	= 	+0.75 +	
1
2	
(8) = 4.75 

 

𝑡" 	= 	−
(1.5𝑖)𝑖
2 −	

1
2	
h(1.25𝑖)! − 	2(−19.375) −

2(−20.625)
1.5𝑖 𝑖		

 

=	+0.75 − 0.5 ∗ √36.5 + 27.5 	= 	+0.75 −	
1
2	
(8) = −3.25 

 
 
Finally, the solution in terms of the original variable x will be: 
 

𝑥$ 	= 	 𝑡$ + 𝑧	 = 	0.75 + 0.25	 = 	1 
 

𝑥! 	= 	 𝑡! + 𝑧	 = 	−2.25 + 0.25	 = 	−2 
 

𝑥( 	= 	 𝑡( + 𝑧	 = 	4.75 + 0.25	 = 	5 
 

𝑥" 	= 	 𝑡" + 𝑧	 = 	−3.25 + 0.25	 = 	−3 
 
 
The example demonstrates the ability of complex number arithmetic to offer solutions that may 
be expressed in real terms. Many approaches to solving equations routinely follow the path of 
real number arithmetic whereas the solution may involve imaginary numbers. This new 
approach is further proof that complex number arithmetic can be used to eventually solve 
equations that may be expressed in real or imaginary number forms. 



 

Page 21 of 22 
 

 
 
4. Conclusion 
 
A method for solving polynomial equations of degrees 2, 3, and 4 is presented that starts with 
the use of complex number arithmetic in order to arrive at possible real roots of the equations. 
For cubic equations, it is known that Cardan’s method results in solutions involving complex 
numbers even though all the roots are known to be real numbers. In effect, Cardan’s Method 
starts with real numbers and eventually ends up with complex numbers to contend with in the 
final solution while the actual roots of the cubic equations are all real. This is revealed by the 
fact that the Discriminant is negative when all the roots of the cubic equations are real. In the 
approach demonstrated in this paper, the reverse route is taken whereby the solution starts with 
complex numbers, and by manipulating the real part of this complex number, the final solution 
is worked out eventually using real number arithmetic only, without involving complex number 
arithmetic. On the other hand, the discriminant in this method is a positive number opposite to 
that of Cardan’s method when all the roots are real numbers. As such this method proceeds 
from complex to real numbers and hence takes a reverse detour to Cardan’s Method. The use 
of complex number arithmetic for solving equations that may be eventually expressed in real 
number forms is thus demonstrated. This approach is also one further example of the many 
ways in which polynomial equations can be solved 
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