
16 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Performant Automatic BLAS O�oading
on Uni�ed Memory Architecture with
OpenMP First-Touch Style Data
Movement

Junjie Li1

1. Texas Advanced Computing Center, The University of Texas at Austin, USA

BLAS is a fundamental building block of advanced linear algebra libraries and many modern

scienti�c computing applications. GPU is known for its strong arithmetic computing capability, and

highly suited for BLAS operations. However, porting code to GPUs often requires signi�cant e�ort

especially for large complex codes or legacy codes, even for BLAS heavy applications. While various

tools exist to automatically o�oad BLAS to GPU, they are often impractical due to the high costs

associated with mandatory data transfers. The advent of uni�ed memory architectures in recent GPU

designs, such as the NVIDIA Grace-Hopper, allows cache-coherent memory access across all types of

memory for both CPU and GPU, potentially eliminating the bottlenecks faced in conventional

architectures. This breakthrough paves the way for innovative application developments and porting

strategies. In this paper, building on my preliminary work[1] demonstrating the possibility of

performant automatic *gemm o�oad, I extend the framework to all level-3 BLAS operations, and

present SCILIB-Accel[2], a novel tool for automatic BLAS o�oad . SCILIB-Accel leverages the cache-

coherent NVLink C2C interconnect in Grace-Hopper and introduces a Device First-Use data

movement policy. This policy, inspired by the OpenMP First-Touch approach in multi-socket CPU

programming, minimizes CPU-GPU data transfers for typical scienti�c computing codes.

Additionally, utilizing the dynamic binary instrumentation technique, the tool intercepts BLAS

symbols directly from a CPU binary, requiring no code modi�cations or recompilation. SCILIB-Accel

has been evaluated using multiple quantum physics codes on up to a few hundred GPU nodes,

yielding promising speedups. Notably, for the LSMS method in the MuST suite, a 3x speedup was

Qeios

qeios.com doi.org/10.32388/PBN15B 1

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


achieved on Grace-Hopper compared to Grace-Grace. SCILIB-Accel is the �rst tool to deliver

practical, high-performance automatic BLAS o�oad for scienti�c applications.

Corresponding author: Junjie Li, nicejunjie@gmail.com

1. Introduction

The Basic Linear Algebra Subprograms (BLAS) serves as a building block for many scienti�c

computing applications and forms the foundation for advanced linear algebra libraries such as

LAPACK and ScaLAPACK. These libraries are extensively used in mathematical software like

Mathematica and MATLAB, as well as in data science packages such as NumPy, and in computational

chemistry and physics applications. Notably, BLAS is heavily utilized in quantum chemistry and

quantum physics codes, as linear algebra is the natural language of quantum mechanics.

Modern general-purpose Graphics Processing Units (GPUs) are known for their exceptional

arithmetic compute power. Their raw FP32 and FP64 compute capabilities signi�cantly outpace those

of CPUs, making GPUs an ideal platform for running BLAS-intensive applications. While all major GPU

manufacturers provide highly optimized BLAS libraries, such as cuBLAS for NVIDIA GPUs and rocBLAS

for AMD GPUs, these GPU libraries have slightly di�erent interfaces and are not drop-in replacements

for CPU BLAS libraries. More critically, using these GPU BLAS libraries, like any other GPU porting

task, requires developers to manually manage data movement for optimal performance.

Consequently, porting large codes, legacy codes and codes with complex work�ow to GPU isn’t trivial,

sometimes daunting and requires signi�cant investment of manpower. Furthermore, supercomputers

are becoming increasingly GPU-centric due to the rapid advancement of GPUs and the surge of AI

applications, this trend generates a pressing needs to port more scienti�c codes to GPU, but many

researchers lack the expertise for GPU porting and face challenges securing funding for pure code-

porting e�orts. Given BLAS’ central role and its extensive GPU support, there have been numerous

attempts to automate GPU usage, as outlined in Section 2.2. However, limitations inherent to

conventional GPU architectures often necessitate frequent data transfers between main memory and

GPU memory, resulting in overheads that are unacceptable for practical use.

In recent years, GPU manufacturers have introduced highly innovative architectures featuring uni�ed

memory connected via cache-coherent interconnects, such as AMD’s MI250X and MI300X GPUs with

qeios.com doi.org/10.32388/PBN15B 2

mailto:nicejunjie@gmail.com
https://www.qeios.com/
https://doi.org/10.32388/PBN15B


In�nity Fabric and NVIDIA’s Grace-Hopper with NVLink-C2C. Additionally, designs like AMD’s

MI300A Accelerated Processing Unit (APU) integrate CPUs and GPUs with a single type of memory.

These innovations eliminate the constraints of conventional architectures and inspire new

programming approaches that may make automatic o�oading feasible.

In our previous work[1][2], we presented a proof-of-concept framework for doing symbol interception

and replacement with Dynamic Binary Instrumentation (DBI), and preliminary test of automatically

o�oad the *gemm (general matrix multiplication) routines, proo�ng that performat automatic BLAS

o�oad is achievable. In this paper, I further extend the implementation to all level-3 BLAS calls, and

focus on discussing a novel data management strategy named Device First-use policy. Inspired by the

OpenMP First-Touch memory management approach in multi-socket CPU or NUMA programming,

The Device First-Use policy is designed for CPU-GPU systems where data is moved to GPU memory (or

general device memory) upon its �rst use by a GPU kernel. This approach is both simple and e�ective,

minimizing data transfers in practical BLAS use cases. Tests across several BLAS-intensive scienti�c

applications on up to hundreds of GPU nodes demonstrate signi�cant speedups. Although all tests are

done on the NVIDIA Grace-Hopper system, the methodology is generic for any CPU-GPU system with

cache coherency.

The remainder of this paper is organized as follows: Section 2 reviews the NVIDIA Grace-Hopper

uni�ed memory architectures and related BLAS o�oading work. Section 3 details the implementation

of SCILIB-Accel. In Section 4, we apply the tool to two BLAS-intensive scienti�c computing codes on

up to 200 Grace-Hopper nodes and discuss the results along with performance issues of the NVIDIA

Grace-Hopper system. Finally, Section 5 concludes the paper.

2. Background and Related Work

2.1. Coherent memory in NVIDIA Grace-Hopper

In conventional architectures, GPU and host memory exist in separate memory space, preventing

direct access between CPU and GPU memory. To partially address this limitation, CUDA 6 introduced

managed memory, allowing a single memory address space that is accessible from any GPU or CPU.

This system operates through implicit page migration triggered by page faults managed by the CUDA

runtime. The NVIDIA Grace-Hopper superchip takes a step further by featuring closely integrated CPU

and GPU units along with LPDDR5x and HBM3e memory subsystems, connected by the high-

qeios.com doi.org/10.32388/PBN15B 3

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


bandwidth and cache-coherent NVLink Chip-2-Chip (C2C) interconnect[3]. While Grace-Hopper

maintains compatibility with traditional GPU memory management where GPU memory is exclusively

managed by the GPU’s memory management unit, it more importantly implements a single system-

managed page table where both CPU and GPU can cache-coherently access all memory subsystems

without page movement. In this uni�ed memory architecture, the two types of memories appear as

two NUMA domains, similar to memories in a two-socket CPU system.

Although the two memory subsystems can be cache coherently accessed by both CPU and GPU, the

bandwidth varies signi�cantly across di�erent access patterns, as shown in Table 1. When the CPU

accesses its local LPDDR5X memory, it achieves a descent bandwidth of over 400 GB/s. The GPU

accessing its local HBM3 memory delivers even more impressive performance, reaching 3.6 TB/s. The

NVLink-C2C interconnect provides 450 GB/s of bandwidth in each direction, which adequately

supports the full bandwidth of LPDDR5X, allowing GPU access to remote LPDDR5X memory at 400+

GB/s. However, CPU access to HBM3 memory is substantially slower, achieving only approximately

140 GB/s. These bandwidth disparities indicate that data locality remains crucial for Grace-Hopper

systems. Developers must carefully optimize data movement patterns to maximize performance,

similar to conventional GPU architectures, rather than relying solely on coherent uni�ed memory

access for production workloads.

qeios.com doi.org/10.32388/PBN15B 4

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


  LPDDR5 HBM3

CPU

Copy 446.46 145.56

Mul 438.58 145.50

Add 435.28 141.94

Triad 418.22 141.94

GPU

Copy 406.69 3364.55

Scale 406.65 3364.55

Add 610.34 3668.78

Triad 610.43 3679.50

Table 1. STREAM Bandwidth (GB/s)

on GH200 (120GB LPDDR5X model)

2.2. Previous automatic BLAS o�oad attempts

Numerous attempts have been made to automatically accelerate CPU BLAS calls since the early

adoption of GPUs in HPC. Cray LIBSCI_ACC[4], available for over a decade, was deployed on the Titan

supercomputer for NVIDIA Tesla K20 GPU, supporting selected BLAS, LAPACK, and ScaLAPACK

routines for o�oad when the library module is loaded. Similarly, IBM ESSL is capable of automatically

o�oad selected BLAS, LAPACK, and FFTW calls but requires the accelerated version of math library,

libesslsmpcuda, is linked. NVIDIA’s NVBLAS[5]  serves as a drop-in replacement for CPU BLAS calls,

allowing users to con�gure host BLAS libraries and selected routines for o�oad. By 

 NVBLAS, dynamically linked CPU BLAS is replaced without relinking. Unfortunately,

the NVBLAS tool is heavily over-engineered, it uses the cuBLASXT as the backend instead of cuBLAS

and has an acceptable overhead[1].

These tools make o�oad decisions at runtime based on workload sizes and handles data movement

automatically. Overall, these libraries are tailored for conventional GPU architectures, and frequent

data movement is unavoidable, therefore su�ers poor performance for small and medium sized

matrix math in real workloads.

LD_P RELOAD

qeios.com doi.org/10.32388/PBN15B 5

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


3. Performant Automatic BLAS O�oad

A basic work�ow of automatic BLAS o�oad tool is illustrated in Figure 1 where an dgemm call in the

caller code is intercepted and redirected to a BLAS wrapper that manages data movement and makes

the GPU BLAS call. Conceptually this work�ow contains two tasks: 1) intercept BLAS symbols and

replace it with a BLAS wrapper where GPU BLAS is called, 2) manage data movement between CPU and

GPU resident memories. In the following content, we will discuss how these tasks are implemented in

SCILIB-Accel, most critially how the data movement can be optimized using a novel data movement

strategy inspired by the OpenMP First-Touch data placement policy.

Figure 1. Work�ow of Automatic BLAS O�oad

3.1. Symbol Interception

Symbol interception is achieved via a trampoline-based Dynamic Binary Instrumentation (DBI)

approach: a small piece of assembly code is inserted into the original function, enabling it to jump to a

trampoline function. This trampoline function preserves the overwritten bytes by the extra jump

instruction and executes customized code before returning to the original program.

For automatic BLAS o�oad, we intercept BLAS calls where the trampoline function (BLAS wrapper

function) maintains the same signature as the original function. This results in minimal overhead, as

the register data for function arguments remain undisturbed. This mechanism �nds extensive use in

qeios.com doi.org/10.32388/PBN15B 6

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


pro�lers, and here we use the PEAK[6]  lightweight pro�ler we have developed as a DBI framework,

ensuring portability across various architectures including but not limited to x86 and ARM. Inside the

DBI framework, the FRIDA-GUM[7]  binary instrumentation backbend is chosen for simplicity and

performance.

The SCILIB-Accel automatic o�oad library can be attached to user application by 

  the library. The SCILIB-Accel initialization function is placed into the .init_array

section of Linux ELF to search and replace BLAS symbols along with other initialization tasks such as

setting GPU memory pool, initialize cuBLAS, etc. Similarly, the SCILIB-Accel �nalization function is

inserted into the .�ni_array section of the ELF to collect statistics and handle clean up tasks.

Note that the DBI approach applies to both dynamically and statically linked BLAS, while other tools

like LIBSCI_ACC[4] and NVBLAS[5], which works by resolving runtime library dependency, only work

for dynamically linked BLAS.

As DBI is widely used in pro�lers, the DBI symbol interception in SCILIB-Accel can cause con�icts

when doing pro�ling. To be pro�ler friendly, an implementation of SCILIB-Accel using dlsym() to

dynamically resolve shared library symbols to intercept BLAS calls is also provided. This approach

works by de�ning the wrapper function to be the same name as the function to be intercepted, and by

prepending the SCILIB-Accel library in  , the symbols in the wrappers get used and

the original function symbol can be obtained by looking up the next available symbol using dlsym().

This dlsym-based version have no issue being used with pro�lers, but can only intercept dynamically

linked BLAS.

3.2. Data Movement Strategies

Managing data movement is often the most critical part of GPU porting as data transfer speed has

been a limiting factor. It is even more so for developing automatic o�oad tool as the tool deals with

pure CPU code that is totally untuned for GPU. Here, we discuss three data movement strategies that

utilize di�erent features of Grace-Hopper and it helps us better understand the challenge and

opportunities for doing automatic o�oad on uni�ed memory architecture.

3.2.1. Strategy 1, Mem-Copy

This is the most intuitive strategy and used by other tools. The pseudocode is listed below. Upon

interception of a BLAS call and code is redirected to a BLAS wrapper, the input matrices are copied

LD_P RELOAD

LD_P RELOAD

qeios.com doi.org/10.32388/PBN15B 7

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


from host memory to GPU memory, then resultant matrix is copied back after cuBLAS execution. then

resultant matrix is copied back after cuBLAS execution. This strategy works on all GPUs including the

conventional PCIe-based cards without needing uni�ed memory capability, This strategy works on all

GPUs including the conventional PCIe-based cards without needing uni�ed memory capability, but at

the cost of frequent data movement. This strategy can be e�ective for codes handling very large

matrices where the compute time far exceeds the data transfer cost, but won’t be useful for most

codes that only runs small to medium sized matrices in practical use. This policy is studied here

mostly for helping us understand the limitation of the conventional automatic BLAS o�oad approach

in all other existing tools.

Listing 1. Pseudocode: Mem-Copy data movement policy

3.2.2. Strategy 2, counter-based migration

Since CPU resident memory (LPDDR5X) and the GPU resident memory (HBM3) are physically uni�ed

with cache-coherent NVLink C2C, CPU matrix pointers can be passed directly to cuBLAS calls. One can

also use numactl to force all memory resident on the HBM, but given the poor bandwidth of CPU

access HBM, a performance penalty is expect. A new feature in Grace-Hopper designed to better serve

the uni�ed memory is the access counter on Hopper GPU, the CUDA runtime will automatically move

memory page from LPDDR5X to HBM3 based on remote memory access detected by the counter. This

qeios.com doi.org/10.32388/PBN15B 8

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


counter-based migration mechanism can serve automatic o�oad when we pass CPU resident matrices

to GPU kernel. A pseudocode example is shown below.

Listing 2. Pseudocode: counter-based data migration policy

3.2.3. Strategy 3, Device First-Use policy

One alternative way to look at the Grace-Hopper superchip is that is operates as a heterogeneous

dual-socket system, with one socket being a CPU and the other a GPU. Its NUMA con�guration also

mirrors that of a dual-socket CPU system, where CPU-resident memory is assigned to NUMA 0 and

GPU-resident memory to NUMA 1. The data management challenge here in CPU-GPU superchip is a

reminiscence of the OpenMP First-Touch data placement policy used in CPU-CPU NUMA

programming. While malloc calls can theoretically be intercepted to allocate memory directly for GPU

access, these calls originate from the CPU binary, making it impractical to identify which memory

regions will later be used by the GPU. As a result, implementing a GPU-�rst-touch policy is not

feasible. To address this, I propose a GPU First-Use policy, where data is moved to the GPU the �rst

time it is accessed by a CUDA kernel. More generally, this concept can be extended to a Device First-

Use policy, applicable to any accelerator device with cache-coherent memory access. Table 2

summarizes the features of Device First-Use and highlights its similarities to OpenMP First-Touch.

qeios.com doi.org/10.32388/PBN15B 9

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Table 2. OpenMP First-Touch vs Device First-Use

Since the BLAS wrapper used to replace the CPU BLAS calls only knows the memory addresses of the

matrices, implementing Device First-Use policy requires move data from the CPU resident memory to

device (GPU) resident memory without reallocation or disrupting to the virtual memory address used

by the CPU binary. This can be achieved by relocating the physical memory page and updating the page

table to remap the virtual memory to new physical memory locations. Figure 2 illustrates the working

of virtual memory in modern operation system and how physical memory page can be dynamically

reassigned.

Remarkably, this complex process of physical page movement and remapping can be easily carried out

using the Linux move_page() system call. This system call allows specifying a group of pages to move

along along with their target NUMA destination (NUMA 1 for GPU on Grace-Hopper), simplifying the

implementation signi�cantly. Pseudocode of this implementation is presented below.

qeios.com doi.org/10.32388/PBN15B 10

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Figure 2. Virtual Memory and Physical Page Migration

Listing 3. Pseudocode: Device First-Use policy

How does this policy improve data reusability for the GPU? To answer this, we need to examine how

BLAS is typically used in scienti�c applications. In most cases, scienti�c problems are not solved with

a single BLAS call. Instead, they involve a sequence of BLAS operations, such as   followed

by  , and so on. In these work�ows, intermediate matrices (e.g., C) are frequently reused in

subsequent operations. Data reuse is also particularly common in block matrix multiplications, where

each block of a matrix is multiplied by multiple blocks from another matrix. Additionally, many

scienti�c codes adopts an iterative approach, such as the self-consistent �eld process to solve partial

C = A × B

E = D × C

qeios.com doi.org/10.32388/PBN15B 11

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


di�erential equations in quantum chemistry or physics, the same matrices and memory pointers are

re-used across all the iterations. All the data only need to be moved to the GPU once and can be re-

used by subsequent iterations. All these common use cases conceptually justi�es the appropriateness

of Device First-Use policy.

3.3. Usage Instructions

The automatic BLAS o�oad wrappers are compiled and linked together as a shared library �le (.so).

All users need to do is to load the SCILIB-Accel library by   the .so �le as shown below,

then run their CPU binary as normal.

DBI version for general use:

export LD_PRELOAD=/path/scilib-dbi.so

run your CPU binary

DLSYM-based version when using with pro�lers:

export LD_PRELOAD=/path/scilib-dl.so

run your CPU binary

Several optional environmental variables can be set to tweak o�oad behaviors including:

1. data management strategies with Device First-Use as default

2. minimum matrix size that will allow a BLAS call to be o�oaded, if matrices are small, then the

BLAS call will stay on CPU. The default threshold is   where   is the average matrix

size, the de�nition of    is routine dependent. For general matrix multiplication routines

C=AxB,    where dimensions of matrices A, B and C are  ,    and 

. The default threshold is a safe lower-bound based on preliminary dgemm testings on

Grace-Hopper and can certainly be further �ne-tuned for di�erent kernels or precisions.

3. debug output levels.

4. Performance Testings and Discussion

In this section, I perform application tests using production HPC codes. Since quantum

chemistry/physics are known to heavily relying on BLAS operations as linear algebra is the natural

language of quantum mechanics, two codes, MuST and PARSEC, from this scienti�c domain are

chosen, and they also part of the Characteristic Science Application (CSA)[8]  e�orts funded the

LD_P RELOAD

> 500Navg Navg

Navg

= (MNKNavg )1/3 M × K K × N

M × N

qeios.com doi.org/10.32388/PBN15B 12

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


National Scienti�c Foundation (NSF) as representative workloads for the Leadership Class Computing

Facility.

Di�erent o�oad strategies are extensively tested to showcase the performance of Device First-Use

data movement policy, and understand limitations of data movement approaches. In all test cases, the

o�oad threshold is    (see Section 3.3 for details) will be o�oaded which is proven to be

appropriate for these applications on Grace-Hopper.

It is important to emphasize that all performance comparisons presented here are based on an equal

number of nodes: Grace-Grace nodes (two CPUs with 144 cores) and Grace-Hopper nodes (one CPU

and one GPU). This approach ensures both simplicity and fairness in the analysis. Power and cost are

also key factors in performance study. The power consumption of a Grace-Hopper node is

approximately twice that of a Grace-Grace node under full load. Additionally, for each node-hour, the

Service Unit (SU) charged to users for Grace-Hopper nodes is three times higher than that for Grace-

Grace nodes. This charge rate re�ects the costs associated with acquiring, maintaining, and

supporting these di�erent types of nodes.

4.1. Test Environment

All tests were conducted on the Vista[9]  supercomputer at the Texas Advanced Computing Center

(TACC). The system comprises 560 Grace-Hopper (GH200) nodes and 180 Grace-Grace nodes,

con�gured as follows:

Grace-Hopper Nodes: Each node is equipped with one 72-core Grace CPU (120 GB LPDDR5X

memory) and one H100 GPU (96 GB HBM3 memory). The Grace-Hopper superchip is power-

capped at 900W.

Grace-Grace Nodes: Each node features two 72-core Grace CPUs with a combined Thermal Design

Power (TDP) of 500W.

Notably, the 120 GB Grace CPU model has approximately 30% higher memory bandwidth compared to

the 480 GB Grace model tested previously[1].

The nodes are connected with In�niband interconnects in non-blocking fat-tree topology:

Grace-Hopper nodes utilize full HDR (400 Gbps) con�guration.

Grace-Grace nodes are connected via split HDR (200 Gbps).

> 500Navg

qeios.com doi.org/10.32388/PBN15B 13

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


The software environment and con�guration include:

GPU Driver: Version 560.35.03

CUDA: Version 12.6

In�niband Firmware: Version 28.41.1000

NVHPC Compiler Suite: Version 24.9 (latest at the time of testing)

MPI: HPCX (based on OpenMPI 4.1.7a1) provided with the NVHPC compiler suite

OS: Rocky Linux 9.3

Linux Kernel: Version 5.14.0-362.24.1.el9_3.aarch64+64k

For application testing, all CPU binaries were linked to the NVIDIA Performance Library (NVPL), which

provides optimized BLAS, LAPACK, and ScaLAPACK routines. The SCILIB-Accel auto-o�oad tool

utilized cuBLAS for GPU-accelerated operations. Both NVPL and cuBLAS were from the NVHPC 24.9

compiler suite.

4.2. Application Test 1: MuST

MuST (Multiple Scattering Theory)[10][11]  is a package designed to perform electronic structure

calculations, it solves the Kohn-Sham equation by solving the Green’s function. The LSMS calculation

method is designed for large systems with linear scalability to the system size. This method is won the

2009 Gordon Bell prize[12]. The code has a heavy dependency on BLAS operations, mostly zgemm and

ztrsm, which often exceeds 80% of runtime on CPU. A major portion of the BLAS calls are from

LAPACK routines zgetrs and zgetrf. Most matrices are squared or near-square shaped. MuST natively

supports GPU o�oad, the native method implemented in MuST o�oads the matrix inverse onto a

GPU by calling cuSOLVER.

The test workload calculates energy of a CoCrFeMnNi supercell alloy using the LSMS method. Total

atom number in the supercell is 5600 and concentration of each element is identical. The number of

energy grid is 32. The calculation is limited to 3 self-consistent steps to reduce benchmark cost.

MuST is thoroughly tested at large scale on CPU, on GPU through automatic o�oad and native CUDA

port. Table 3 summarizes the performance comparison of di�erent run strategies on 50 Grace-Grace

CPU nodes or 50 Grace-Hopper nodes. As mentioned before, the code strongly relying BLAS

operations, the two major BLAS routines zgemm and ztrsm consumes about 2080s out of the total

2318s runtime. Using the native CUDA port from the developers, about 1.4x speedup is achieved

qeios.com doi.org/10.32388/PBN15B 14

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


comparing to CPU run. Surprisingly, all auto o�oad strategies are faster than the native CUDA code

illustrating the complexity and challenge of CUDA programming, the developers will need spend

substantial more amount porting e�orts to polish their CUDA code. With the most basic data

management method that copies (cudaMemcpy) matrices to/from GPU for every cuBLAS call, the total

runtime reduces to 1098s, but 292s are spent in just moving the data around. This rea�rms that

optimizing data movement is still critical on Grace-Hopper even with the fast NVLink-C2C

interconnect. The counter-based migration approach works okay, total runtime is better than doing

frequent cudaMemcpy. Note that the page migration time is included in the BLAS call time as the

counter-based does the data movement automatically behind the scene with GPU kernel. The novel

Device First-Use policy is substantially better other approaches, total runtime is reduced to 824s,

about 2.8x faster than the CPU run, the total data movement time is reduced to just 4.8s. More analysis

shows that under Device First-Use policy, each matrix that gets migrated to the GPU resident memory

gets reused 780 times by subsequent BLAS calls. Such high level of data reusage is the key factor of the

good performance we achieve here. Also note that the BLAS (zgemm and ztrsm) time in Device First-

Use is much longer than the corresponding time in Mem-Copy policy, this is due to a performance

issue of CUDA kernel accessing GPU memory allocated by system malloc, more details are discussed in

Section 4.4.3. If such performance issue is resolved by NVIDIA, performance of automatic o�oad can

be further improved.

Hardware Setup
Total runtime

(s)

zgemm+ztrsm

(s)

Data movement

(s)

CPU: Grace-Grace CPU binary linked to NVPL 2318.4 2079.2 0

GPU: Grace-

Hopper

native CUDA port 1685 N/A N/A

auto o�oad: Mem-Copy 1098 439.8 291.7

auto o�oad: counter-based

migration
858 616.0 included in BLAS

auto o�oad: Device First-Use 824 580.0 4.8†

Table 3. MuST: Performance on GPU vs CPU using 50 Nodes

qeios.com doi.org/10.32388/PBN15B 15

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


† Matrices migrated to GPU resident memory are reused 780 times.

 

Large scale strong scaling tests were also performed for this code. Table 4 shows the runtime of CPU

run, GPU run with native CUDA code, and automatic o�oad using Device First-Use policy. Scaling

range goes from 25 nodes to 200 nodes. Throughout the tests, the automatic o�oad approach is

consistent 2x faster than the native CUDA code, and up to 3x faster than the CPU run, break even with

the extra node-hour charge rate for GPU so users running on GPU not only gets faster time-to-

solution but also more e�cient in terms of energy consumption and cost. The strong scaling data is

visualized in Figure 3, both the CPU run and automatic o�oad GPU run have excellent scability, very

close to linear scaling at this wide test range.

Figure 3. MuST: Strong Scaling Test for CPU Run and Automatic GPU O�oad Run

qeios.com doi.org/10.32388/PBN15B 16

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Node

Count

Total runtime (s)

Best GPU/CPU

speedup
CPU (Grace-

Grace)

GPU: Native CUDA

port

GPU, auto o�oad: Device First-

Use

25 4598.1 3223.3 1550.9 3.0x

50 2318.4 1685.2 823.8 2.8x

75 1842.6 1244.7 623.1 3.0x

100 1192.2 903.9 446.8 2.7x

150 947.0 673.6 357.5 2.6x

200 N/A † 493.9 253.3 N/A †

Table 4. MuST: Strong Scaling Performance on CPU vs GPU

† Not enough CPU nodes available.

4.3. Application Test 2: PARSEC

PARSEC (Pseudopotential Algorithm for Real-Space Electronic Calculations)[13][14]  is a package

designed to perform Density Functional Theory (DFT) calculations of solids and molecules. It solves

the Kohn–Sham equations directly in real space, avoiding the use of explicit basis sets. Our benchmark

case calculates energy of a Silicon nanocrystal  , boundary sphere radius is set to 50 bohr,

grid spacing is 0.9 bohr, the calculation is limited to two self-consistent �eld steps to reduce

benchmark cost, but performance characteristics of a fully converged calculation is identical.

Historically, PARSEC has been a CPU-only code, relying heavily on ScaLAPACK. In typical use cases,

dgemm calls from ScaLAPACK can account for over 50% of the runtime. With the help of SCILIB-Accel

automatic o�oad, PARSEC runs on GPU for the �rst time with good performance. Tests were

conducted to evaluate all o�oad strategies alongside a CPU-only baseline. All tests were performed on

a single node: Grace-Grace for CPU runs and Grace-Hopper for GPU runs. The results are summarized

in Table 5.

Si1947H604

qeios.com doi.org/10.32388/PBN15B 17

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Hardware Setup
Total runtime

(s)

dgemm

(s)

Data movement

(s)

CPU: Grace-Grace CPU binary linked to NVPL 415.1 270.1 0

GPU: Grace-

Hopper

auto o�oad: Mem-Copy 425.7 12.4 220.7

auto o�oad: counter-based

migration
470.0 234.0 included in BLAS

auto o�oad: Device First-Use 220.3 29.1 1.3†

Table 5. PARSEC: Performance on GPU vs CPU on single node

† Matrices migrated to GPU resident memory are reused 570 times.

 

In these tests, the Mem-Copy data policy resulted in runtimes slower than dual-CPU execution. The

cudaMemcpy operations consumed 220 seconds, accounting for more than 50% of the total runtime

— a signi�cantly higher proportion than observed in the MuST test case. This is due to the fact that

most matrices used in PARSEC are long skinny matrices rather than squared shape ones. For example,

a common dgemm input in PARSEC is transA=’T’, transB=’N’, M=32, N=2400, K=93536, the extreme

skinny shapes make the total byte size of the matrices much bigger than if square matrices are used in

a calculation with equivalent computational workload. a calculation of identical compute workload but

with all square matrices. This outcome again demonstrates that the conventional data movement

strategy for automatic o�oad is impractically useful even on Grace-Hoper where NVLink-C2C

transfer rate is 450 GB/s per direction, not to mention the PCIe based cards where PCIe Gen5 x16 can

only do 64 GB/s. The counter-based data migration strategy performs even worse due to incompetent

migration algorithm, see complete discussions of NVIDIA’s migration issues later in Section 4.4.1.

Finally, the Device First-Use policy is able to e�ciently manage the data movement, enabling

signi�cant performance gains. The total runtime is nearly 2x faster than the CPU run, with dgemm

component achieving nearly 10x speedup compared to CPU run. Data transfer overhead is minimal,

totaling just 1.3 seconds. The speedup is able to o�set the extra cost from power hungry GPU. Again,

qeios.com doi.org/10.32388/PBN15B 18

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


data reuse is counted and for every matrix that is migrated to GPU resident memory, it is reused on

average 570 times by subsequent dgemm calls.

4.4. Performance Issues with Grace-Hopper Relevant to Auto O�oad

In this part of the paper, we discuss a few performance issues observed in the above application test,

these issues re�ect the immaturity of the software or hardware design in the current Grace-Hopper

system, and could be �xed in the future to further improve performance and usability of automatic

o�oad.

4.4.1. Counter-based page migration

The Hopper GPU has an access counter monitoring remote memory access, and will migrate memory

page from CPU resident memory to GPU resident memory. Due to lack of access counter on the Grace

CPU, data on GPU will not be migrated back to CPU. The details of the migration criteria is unknown.

Since the data migrated to GPU will not be migrated back, automatic o�oad with counter-based

migration should work very similar to manually implemented Device First-Use policy, but we’ve

already seen the slow performance of the counter-based migration in application tests. Here I present

a few simple dgemm test cases with di�erent matrix sizes, and provide a deeper understanding of the

issues with counter-based migration. In the following test, matrices A(M,K), B(K,N) and C(M,N) are

allocated by malloc and initialized on CPU resident memory, then multiplication    is

performed at least 5 times by passing these matrices to cublasDgemm, and the access-counter should

allow the matrices to be migrated to GPU resident memory. The NUMA locations of the matrices are

reported after each cublasDgemm call, and runtime for each call is reported. From the NUMA location,

we can infer if the data is on the CPU resident memory (NUMA 0) or GPU resident memory (NUMA 1).

Four sets of inputs with di�erent matrix sizes and shapes are tested, all use FP64 precision.

When M=N=K=1000 are used, the sizes of A, B and C are all 8.0MB. All of them are successfully

migrated to the GPU resident memory upon the �rst cublasDgemm call.

When the matrix dimensions becomes M=N=K=5000, the size of all the matrices are 200.0MB, The

migration becomes unstable and inconsistent from run-to-run. The tests were run many times. In

most cases, only matrices A and B are migrated to GPU in the �rst cublasDgemm call, while C stays on

the CPU no matter how many more cublasDgemm call iterations are added. Occasionally, matrices A

C = A × B

qeios.com doi.org/10.32388/PBN15B 19

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


and B stays on the CPU side in the �rst cycle, and only get migrated to GPU after the second call. In all

runs, matrix C is never migrated to GPU.

If the square matrix dimension is further increased to M=N=K=20000, matrix size becomes 3200.0MB

each, only matrix A is migrated to GPU, while B and C are always on the CPU memory no matter how

many more cublasDgemm cycles are added.

The case gets strange for non-square matrix dimensions. When M=32, N=2400 and K=93536, a matrix

size commonly used in my PARSEC workload, the matrix size becomes 24.0MB for A, 1795.9MB for B,

and 0.6MB for C. Throughout my test, only matrix A gets migrated to GPU, while B and C are always on

the CPU. This is very counter-intuitive as one would expect the bigger matrix B should at least be

moved as it generates the most amount of remote memory access, but NVIDIA’s counter-based

migration algorithm doesn’t agree.

From these tests, we can see that NVIDIA’s algorithm tends to migrate smaller data to GPU, this could

be that the algorithm only makes the decision based on a single CUDA kernel call, i.e. moving the big

data is costly comparing to that single CUDA kernel runtime, so it decides not to migrated disregard

the fact that the big data gets accessed by GPU many more times later on. The current counter-based

migration is unpredictable and inconsistent, NVIDIA should provide a simple way to disable it by users

instead of requiring unload a kernel model by root.

4.4.2. Impact of page sizes

The Grace-Hopper platform, similar to all other ARM-based platform, supports two base page sizes

4KB and 64KB. Most of the NVIDIA’s internal tests are done on 64KB page size which is also the

recommended page size. At TACC, we have setup both page sizes for testings, and performance issues

with the 64KB page size are revealed by comparing the test results.

Here we again run simple dgemm tests to understand the performance and issues. Notice that the

aforementioned counter-based page migration mechanism doesn’t work with 4KB page size, so I can

measure the performance of GPU kernel running on LPDDR5X, while I can’t do this when page size is

64KB as matrices are partially migrated to GPU as explained in Section 4.4.1.

Test results are summarized in Table 6. It can be seen that CPU accessing HBM3 memory is

substantially slower under 64KB page than 4KB page for both problem sizes. There is a substantial

di�erence even for CPU accessing LPDDR5 for the second workload, runtime with 64KB page is

15.8ms, much slower than the 10.9ms under 4KB page.

qeios.com doi.org/10.32388/PBN15B 20

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Page Size Memory Type

CPU (72C) GPU

(dgemm) (cublasDgemm)

      Workload: M=2000, N=2000, K=2000; 96MB total

4KB

LPDDR5X 5.1 ms 9.0 ms

HBM3 5.3 ms 0.37 ms

64KB

LPDDR5X 5.1 ms N/A†

HBM3 10.0 ms 0.39 ms

      Workload: M=32, N=2400, K=93536; 1820MB total

4KB

LPDDR5X 10.9 ms 18.1 ms

HBM3 15.5 ms 0.95 ms

64KB

LPDDR5X 15.8 ms N/A†

HBM3 23.2 ms 0.94 ms

Table 6. DGEMM Runtime with Uni�ed Memory

† Part of the data gets migrated to HBM3 and can’t do full LPDDR5X run.

4.4.3. GPU kernel accessing system allocated HBM

As seen above in application tests, the BLAS runtime under Device First-Use policy is noticeably

slower than the BLAS running on the cudaMalloc memory created in the Mem-Copy policy. Further

investigation shows CUDA kernel is slow when running on system malloc allocated HBM, unless the

matrices are aligned to the page. Table 7 shows the di�erence with page size being 64 KB. All matrices

are allocated by malloc, and pinned to HBM by using numactl -m 1 ./exe. When the matrices are

aligned to page size, cublasDgemm speed can be up to nearly 50% faster than if data isn’t aligned. The

impact is more signi�cant memory bandwidth bound kernels. The aligned performance is identical to

the same CUDA kernel executing on cudaMalloc memory.

Application tests reveal that BLAS runtime performance under the Device First-Use policy is

noticeably slower compared to BLAS operating on cudaMalloc memory used in the Mem-Copy policy.

qeios.com doi.org/10.32388/PBN15B 21

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


Further investigation indicates that CUDA kernel performance is suboptimal when operating on

system-allocated HBM3 via malloc unless the matrices are aligned to the page. Table 7 highlights the

performance di�erences. The tests use 64KB page size. All matrices are allocated using malloc and

pinned to HBM3 with the command numactl -m 1 ./exe. When matrices are page-aligned, the

performance of cublasDgemm improves by nearly 50% compared to cases where the data is not

aligned. This improvement is particularly pronounced for memory bandwidth-bound kernels. In the

page-aligned case, the performance on HBM3 allocated by malloc matches that of the same CUDA

kernel executing on cudaMalloc memory. The reason of such behavior is unknown, and it partially

defeats the advantage of uni�ed memory architecture.

problem size unaligned aligned

M=2000, N=2000, K=2000 0.39 ms 0.29 ms

M=32, N=2400, K=93536 0.94 ms 0.64 ms

Table 7. Impact of Memory Alignment on cublasDgemm Performance†

† Tests were performed on 64KB page size, all memory allocations are by malloc.

5. Conclusion

In this paper, we report a new tool that can intercept Level 3 BLAS symbols in a CPU code, and

automatically perform GPU o�oad using GPU-enabled BLAS along with several choices of data

management strategies, especially a newly proposed �rst-touch type of matrix migration scheme.

The tool is �ne-tuned to achieve minimum overhead and take full advantage of the new uni�ed

memory architecture with cache coherent NVLink C2C. Performance tests on BLAS heavy codes show

signi�cant speedup comparing to CPU code, and the tool far outperforms NVBLAS auto-o�oad tool

provided by NVIDIA on not only Grace-Hopper but also on the conventional PCIe-based GPU. The tool

is useful for users and code developers to quickly explore the potential bene�ts of using GPU and have

a quick start on the new architecture.

In this paper, a previous proof-of-concept BLAS auto-o�oad prototype tool is further optimized and

extended to all level-3 BLAS operations. The limitations and advantages of the memory subsystem in

qeios.com doi.org/10.32388/PBN15B 22

https://www.qeios.com/
https://doi.org/10.32388/PBN15B


NVIDIA Grace-Hopper architecture are outlined. To overcome the data transfer bottleneck between

CPU and GPU, an OpenMP �rst-touch type of data management strategy (GPU �rst-use policy) is

introduced and discussed in detail, the new policy minimizes the data transfer between CPU and GPU

in practical scienti�c computing applications resulting in production level GPU performance for

several quantum chemistry codes. Such data management policy can be universally applied for any

GPU architecture allowing cache-coherent access to the GPU memory from CPU, eliminating the

necessity of integrating a single small piece of HBM in an APU.

Acknowledgements

The author J. Li thanks Robert Henschel for teaching him about the automatic o�oad capability in

Cray libsci library and OpenMP First-Touch about seven years ago when Li switched his career from

quantum chemistry to HPC. This work is supported by the National Science Foundation through

awards OAC-2402542, OAC-1854828, and OAC-2139536.

References

1. a, b, c, dLi J, Wang Y, Liang X, Liu H (2024). "Automatic BLAS O�oading on Uni�ed Memory Architectur

e: A Study on NVIDIA Grace-Hopper". In: Practice and Experience in Advanced Research Computing 202

4: Human Powered Computing (PEARC '24). New York, NY, USA: Association for Computing Machinery.

Article 47, 5 pages. doi:10.1145/3626203.3670561.

2. a, bLi J, Wang Y (2024). SCILIB-accel: automatic BLAS o�oad tool. Available from: https://github.com/n

icejunjie/scilib-accel.

3. ^NVIDIA (2023). NVIDIA GH200 Grace Hopper Superchip Architecture. Available from: https://resources.

nvidia.com/en-us-grace-cpu/nvidia-grace-hopper.

4. a, bPoxon H (2013). Introduction to the Cray Accelerated Scienti�c Libraries. https://www.olcf.ornl.gov/

wp-content/uploads/2013/01/Scienti�c_Libs.pdf.

5. a, bNVIDIA (2024). NVBLAS documentation. Available from: https://docs.nvidia.com/cuda/nvblas.

6. ^Wang Y, Li J (2023). "PEAK: a Light-Weight Pro�ler for HPC Systems" (SC-W '23). Association for Com

puting Machinery, New York, NY, USA, 677–680. doi:10.1145/3624062.3624143.

7. ^Frida. Frida Gum [Internet]. n.d. Available from: https://github.com/frida/frida-gum. Accessed: 2024-

12-27.

qeios.com doi.org/10.32388/PBN15B 23

https://doi.org/10.1145/3626203.3670561
https://github.com/nicejunjie/scilib-accel
https://github.com/nicejunjie/scilib-accel
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://www.olcf.ornl.gov/wp-content/uploads/2013/01/Scientific_Libs.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/01/Scientific_Libs.pdf
https://docs.nvidia.com/cuda/nvblas
https://doi.org/10.1145/3624062.3624143
https://github.com/frida/frida-gum
https://www.qeios.com/
https://doi.org/10.32388/PBN15B


8. ^National Science Foundation (2021). Characteristic Science Applications for the Leadership Class Comp

uting Facility. Available from: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2139536&Histo

ricalAwards=false.

9. ^Texas Advanced Computing Center (2024). VISTA System at TACC. Available from: https://tacc.utexas.e

du/systems/vista.

10. ^Wang Y, Stocks GM, Shelton WA, Nicholson DMC, Szotek Z, Temmerman WM (1995). "Order-N Multipl

e Scattering Approach to Electronic Structure Calculations". Phys. Rev. Lett.. 75 (15): 2867–2870. doi:10.

1103/PhysRevLett.75.2867.

11. ^Eisenbach M, Larkin J, Lutjens J, Rennich S, Rogers JH (2017). "GPU acceleration of the Locally Selfcons

istent Multiple Scattering code for �rst principles calculation of the ground state and statistical physics o

f materials". Computer Physics Communications. 211: 2–7. doi:10.1016/j.cpc.2016.07.013.

12. ^Eisenbach M, Zhou C-G, Nicholson DM, Brown G, Larkin J, Schulthess TC (2009). "A scalable method f

or ab initio computation of free energies in nanoscale systems". In: Proceedings of the Conference on Hi

gh Performance Computing Networking, Storage and Analysis (SC '09). New York, NY, USA: Association

for Computing Machinery. Article 64, 8 pages. doi:10.1145/1654059.1654125.

13. ^Kronik L, Makmal A, Tiago ML, Alemany MMG, Jain M, Huang X, Saad Y, Chelikowsky JR (2006). "PAR

SEC – the pseudopotential algorithm for real-space electronic structure calculations: recent advances a

nd novel applications to nano-structures". physica status solidi (b). 243 (5): 1063–1079. doi:10.1002/pss

b.200541463.

14. ^Chelikowsky JR, Troullier N, Saad Y (1994). "Finite-di�erence-pseudopotential method: Electronic str

ucture calculations without a basis". Phys. Rev. Lett.. 72 (8): 1240–1243. doi:10.1103/PhysRevLett.72.124

0.

Declarations

Funding: This work is supported by the National Science Foundation through awards OAC-2402542,

OAC-1854828, and OAC-2139536.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/PBN15B 24

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2139536&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2139536&HistoricalAwards=false
https://tacc.utexas.edu/systems/vista
https://tacc.utexas.edu/systems/vista
https://doi.org/10.1103/PhysRevLett.75.2867
https://doi.org/10.1103/PhysRevLett.75.2867
https://doi.org/10.1016/j.cpc.2016.07.013
https://doi.org/10.1145/1654059.1654125
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1103/PhysRevLett.72.1240
https://doi.org/10.1103/PhysRevLett.72.1240
https://www.qeios.com/
https://doi.org/10.32388/PBN15B

