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Abstract

In this work, the extreme points of real vector variable functions are obtained without the
use of the classical theory that involves the use of partial derivatives. We illustrate with several
theorems and examples a new method that consists of establishing an appropriate link between
the function to be optimized, its restrictions and the result, stating that: given n non-zero real
numbers ai,az, - ,a, € R, then there exists a unique A € R such that:

(a1 +az+--+an)=X(al +a3+- +al).

This relation is obtained by decomposing the Hilbert space R™ as the direct sum of a closed
subspace and its orthogonal complement. Since the dimension of the space R"™ is finite, this
guarantees that any linear functional defined on the space R" is continuous, and this guarantees
that the kernel of said linear functional is closed in the space R™, therefore we have that the space
R"™ breaks down, as the direct sum of the kernel of the continuous linear functional f and its
orthogonal complement, that is: R™ = ker f @ [ker f]*, where the dimension of ker f = n — 1 and
the dimension of [ker f]* = 1.

Adding to the link found new definitions about the hierarchy of one variable in relation to
another and the fact that if 23 4+ 23 + ... + 22 = r? then the max{z; + 22 +--- + z,} = r/n and
the min{x1 + 2 + - - + n} = —r4/n we solve the optimization problem without using classical
theory.
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1 Introduction

In this work, we will find the maxima or minima of real vector variable functions (conditional and
unconditional), these will be found without the need to use partial derivatives. To this end, we note
that by solving the problem of max(min)f(x,y, z) subject to a condition, there is a hierarchy of one
variable over another, depending on how f is defined and its domain of each variable. For example, if
our problem is max f(z,y, z) = zy?2® withx + y + 2 =6 and 0 < 2,0 < y,0 < z , we would have to
have z > y > =z, that is, the variable with the highest hierarchy is z, and y has a higher hierarchy than
z in the given domain. On the other hand, if we had the problem of max f(x,y, z) = zyz subject to
r+y+z=awhere0<z<al<y<a,0<z<a,it would be clear that x = y = z, that is, these
variables have the same hierarchy in the given domain.
In addition, we establish an appropriate link between the optimization problem and the relations

(a1 +ag+---+ay) =A(af+a}+ - +ad2)
max{zi + o+ -+ zn} =110 ) (1)
min{z; + z2 + - + x5} = —ryn.

where this allows us to obtain desired results. The first relation above was used in other areas of

mathematics, see [1], [2], [5] , [6]. The verification of these relationships is demonstrated with the
following theorems:

n
Theorem 1.1. Let f : R® — R, then the max f(x1,22,...,Tn) = sz subject to the condition
i=1

n

2 _ .2,
Z:Ei =7 is ryn.
i-1

n

Proof. Since Z z; = (@1, T2, ey Tn), (1,1, ..., 1)) = |z|| - \/n - cos @ = r/n, where 6 is the angle formed
i=1

by the vectors © = (x1, 2, ...,2,) and the vector (1,1,...,1). Here, the maximum and minimum are

obtained when 6 = 0 and 6 = 7 respectively. O
Theorem 1.2. Let ay,...,a, be any real numbers, then there exists A € R, such that

n n

Z a; = A Z a?

i=1 i=1

Proof. Let f : R* — R be defined by f(z1,...,z,) = >, a;z;, be defined by f is a linear and
continuous functional. Therefore

R"™ = ker f @ (ker f). (2)
Thus we have that:

dimR" = dimIm f + dimker f
n =1+ dimker f

Therefore dimker f =n —1
Thus, from we have:

n—1

(1,1,...,1) = D0 Mg + Aptuy, (3)

i=1
where {u1,...,u, — 1} < ker f and u,, € (ker f)*
From and taking into account that f is a linear functional, we have

f(]-va]-):Af(un)

n n
Se=a 3
=1 =1

since u,, = (ay,...,a,) € (ker f)1

Using this last relation, which must be linked with the function to be maximized and with the given
restrictions. Below we show several problems that illustrate the given theory. O



2 Results

Using the aforementioned technique we must standardize the resolution of various problems.

Theorem 2.1. Let H : [a,b] > R, T : [¢,d] - R, G : [a,b] X [¢,d] — R and F(x,y) = H(x) +
3

G(z,y) + T(y) be continuous functions . Then we have that Max F(x,y) = X for some A > 0, where

Max H(z) = Max T(y) = Max G(z,y) = % or
Mazx F(x,y) = 0, where Max H(x) = MaxT(y) = Max G(x,y) =0

Proof. Let
A=H(z), B=G(zy), C=T(y) (4)

using the relation
A+ B+C =\[A*+B*+(C?]
we obtain the following
H(z) + Ga,y) + T(y) = A (H*(z) + G*(x,y) + T*(y)], (5)

where A = A(z,y).
From the relationship we obtain:

(10~ ) + (ctwn ) + (10— 5) =12 6

From Theorem (T.I)) together with the relation (6) we obtain

3 3
M H Tly) — —= | = ——
ox (H) + Glo) +T0) - 53 ) = 53¢ ©
From the relationship @ we obtain
13
——=——=b
@ =5 = o
1B
Gla,y)— = = Y3y 8
1B
Ty) — —===>
() 22 2\ 3
where by = by(z,y), ba = ba(x,9y), b3 = b3(x,y), and b7 + b3 + b3 = 1. The maximum reached in
. 1 1 . .
is when by = by = by = i%. For by = by = b3 = % and A > 0, we obtain from the following
1
H() = Ge,y) = Ty) = )
For A < 0 we obtain
H(z) = G(z,y) =T(y) = 0 (10)
1 1
Similarly for b; = —%7 by = b3 = NG we obtain from the following:
For A>0: H(z) =0,G(z,y) = +,T(y) = 1.
For A\<0: H(z)=7%, G(z,y)=0, T(y)=0.
The other cases are similar and the only relation that satisfies the relation are the relations @
and . O

Theorem 2.2. Let V = fi(x)f2(y)f3(2), where V is constant and f; > 0, then the minimum of the
function

S(z,y,2) = fi(z) f2(y) + 2f1(2) f2(y) + 2f2(y) f3(2)

is given by

Min S = 33/4V2



Proof. Taking into account the expression of V,

1 2 2
LG R R@] (11)

S=V[

Linking this equality with the relationship

a+b+c=\[a®+b+ 7 (12)
here L b 2 2 the following is obtained from the relationshi
where a = b= ,C = , wing i ined from relationship :
f3(2) f2(y) fi()
1 1)° 2 1)° 2 1\ 3
- =) + - =) + - =5 (13)
f3(2)  2A f2(y)  2A filz)  2A 4\

where A > 0, A = A(z,y, 2).
Parameterizing the relationship we obtain

1 Bh+1 2 Bh+1 2 Bbs+1

f3(2) 227 fa(y) 22 7 fi(z)  o2x 7

where b2 + b3 + b2 =1y b; = b(z,y, 2).
According to the Theorem (1.1]), applying to the relation we obtain

M ( 1 1 N 2 1 n 2 1 ) M < 1 n 2 + 2 3 ) 3 (15)
ax | —— — — - — — — | = Max - | ==
f3(z) 23 fay) 23 fi(w) 27 f3(z)  foly)  filz) 23] 2A

It can be deduced from the relation (14)), that the maximum reached in (15 is when b, = by =

1
bs = % Therefore, we have in the following;:

fg(Z) = >‘a fQ(y) = 2>‘7 fl(‘r) =2\ (16)

Thus we have V = 4\3, which implies that \ = ﬁ . Using this fact and using the relation in
we obtain:

3

42

MinSzV[i\+ 2 2]—6V—3V

PN I S W

O
Theorem 2.3. Let g: [a,b] = R and F : [a,b] x [¢,d] — R be continuous functions, there exists A € R
such that the maximum of the function H(x,y) = g(x)F(x,y) occurs when

1
|F(z,y)]=1 and In|g(x)| = - o

1
n|F(e,y)| = 5 and |g(x)] = 1

Proof. Let A =In|F(z,y)|, B = —In|g(z)|, using the relation:

A+ B = \|[A? + B?]

we obtain
In|F(z,y)| = In|g(2)] = A[In |F (2, y)| + In* g ()] (17)
where A = A(z,y); from the relation we obtain
| P - )+ (mlal+ ) - 5 (15)
n - — n — ] =—=.
SY TN g 22 22



Using Theorem ([1.1]) in , we obtain:

1 1 1
Max (a7, )] = g + )] + 5 ) = Max(n | FGo. ) la(o)) = 13 (19)
From the relationship we obtain:
1 W2
In |F — =Y
n[F(a)| = 55 = 5 "
Inlg(o)] + o = 22
n|g(z — = ——
g o2x 2N 2
where b2 + b3 =1, by =bi(z,y), ba = ba(z,y).
The maximum reached in is obtained when
1
by =by = +—. 21
1= =2 (21)
For by = by = +% and A > 0 we obtain the following from
1
n|F(,y) = 5 and Inlg(@)| =0 (22)
For by = by = \% and X < 0 we have from relation that
-1
In|F(z,y)]=0 and Inlg(z)| = 5y (23)
The relations and verify the relation.
1
For b; = E, by = _ﬁ and A < 0 we obtain from the following:
1 1
[Py =y and Iolg)] = —5 (24
For by = %, by = —%@ and A <0, we obtain from the next:
In|F(z,y)]=0 and In|g(z)]=0 (25)

Of the relations and none verify the relation . Similar analysis for the other cases O

Theorem 2.4. Let F(x,y,2) = f(x)g*(y)h*(2) be a continuous function, where f,g and h are real
functions of a real variable. If f(x) + g(y) + h(z) = a where a >0, f(x) > 0, g(y) > 0 and h(z) > 0,
6
a

then the mazimum of the function F(x,y,z) is Max F(z,y,z) = a4 5

a a 432
g(y) = 3 and h(z) = 3"

Proof. Let A = f(z), B = g(y), C = h(z). Using the relationship A + B + C = \[A? + B? + C?] we
obtain

, and is reached when f(x) =

F@) +g(y) +h(z) = ALf2 (@) + g*(y) + h*(2)], (26)

where A > 0, A = AM(z,y,2) and f(x) < h(z) < g(y) in order to obtain the desired maximum of F'.
From the relationship and the problem data we obtain:

@ = Aa = 2f(@)gl) = 2a = /(@) = gu) (/) + 9] en)
Let
Uay) = LE90) vy, 60— 1) (28)



Replacing into we have

2 2
2 Y 2. ( cy) — E) 92
o~ g =V (@wy) +3(Ulzy) —5) - (29)
From the relation (26)) we obtain
3
Max \ = = (30)
a

From the relation f(z) < h(z) < g(y) and the restriction f(x) + g(y) + h(z) = a we obtain

a a
flx) < 3 and g(y) > 3 (31)
On the other hand, from (29)) we obtain Max V?(z,y) when
a
UGry) =2 (32)
Replacing this last equality in we have
2a
f@) +9(y) =3, (33)
and from here together with the relationship f(z) + g(y) + h(z) = a we obtain that
h(z) = 2. (34)
3
From the relation we obtain the following based on the relation
a a
2 =__ 35
9y) — 3 =3~ f() (35)
Using Theorem we see that the maximum of the function f(z) [—1 + %(m)] is given by
@) =1or |1+ ——|= (36)
3f(x)
De la relacién se obtiene —1 + z7¢ = 1, de esta dltima relacién se obtiene:
a
)= 5. (37)
From the relation and we obtain
a
o= (39)
Therefore, from the relations , and we obtain
a a® a®> df
Max F =2 @
ax Fo,y,2) =5 x5 x5 =15
[

Remark 2.1. In , note that g(y) — % = ) <

)
and thus, the
{5 (3= 5) )
9(y)
@
2

a
3— ——| =1, obtaining g(y
g(y)‘ W=

then we can apply the Theorem

g . a | . .
occurs when . The expression — is discarded, since

a

9(y) > 3



Theorem 2.5. For T € R3, the extrema of function F(T) = fi(z) + f3(y) + f3(2) where fi(z), f2(y)

and f3(z) are continuous functions, subject to the condition

{ fiw)  fiw) BG4 p<c

A2 B2 cr
fi(z) + f2(y) = f3(2)

are given by

24282 (3C? +1) 26A%B2C?

Max F(z) = Min F(z) =
P = ey po-zrarc sz M = Gmer roarcr s are

Proof. Let

From the expression in the conditions of the problem we have

F(@) = A’ JH (@) + B*J3(2) + C* [3(2)
and the constraints are written as

Fi@) + f5(2) + [3(2) = 1y Afi(2) + Bfa(y) = Cfs(2),
Let’s assume that f1(x), f2(y), f3(2) are positive, from the relation suppose that
Afi(x) < Bfa(y)

From the relation and we obtain

Bia(y) - 5F5(2) = 553(2) - Afi(@).
From the relation and using the Theorem we have

2Af1(x) = (C —1)f3(2), C # 1.

From the relation and obtenemos

[C+1]
2B

Foly) = fa(2)

From the relation and in we obtain

- 1422
T B2C 12+ A2(C + 1) + A2B2

F(2)

From the relations , and in we obtain

Max F(z) = 24282 (3C* +1)
I T B L B2(C — 1)2 + A%(C + 1)2

(46)

(47)

Of all the possible variants on the sign of the functions fl(z , fg(y), fg(z) the following is deduced;

for fi(z) >0, f2(y) <0 and f3(z) > 0 we have the relation (41)
Afi(x) = Cfs(z) - Bfa(y)

From the relation assuming that C f3(z) < —Bf2(y) we obtain from (48) the next

SR > CRie)

(48)

(49)



From the relation and we have

A~ ~ A~ ~
5]01(33) —Cf3(2) = —§f1(f€) — Bf2(y), (50)
on the other hand the relation can also be written as follows
~ Afi(x A -
Oy | -1+ A0 AR ) B (51)
2C 2
- AT
Applying Theorem to the product C f3(z) l—l + J;C(fB)] we get
- 4C ~
fite) = L Rs() (52)
From the relation and we obtain
~ 30 ~
Folw) = =5 Fo2) (5)
Replacing the relations , into we obtain
~ A2B?
= 4
1s:) = gpce romece + 4252 (54
Finally, using the relations (52)), and in gives us
26A42B2C?
Min F'(z) = .
mF@) = Bprrosc 1 65207
The other assumption C'f4(z) = —Bf5(y), does not lead to optimal values of F(Z).
O

Various examples are illustrated below, which are applications of these Theorems. Other problems
not related to these Theorems are solved following the ideas described in these theorems presented.

Remark 2.2. To find the extremes of a function that is not continuous, it is still possible to use the
technique shown in the various theorems and examples. Below we present an example that could be a
starting point for such a study.

Example 2.1. [3] Find the mazimum of the function f(z,y) = [x] + [v?] + [=][y?] subject to the
condition

2r+y=6, 1<z, 0<y. (55)
Solution.
It is clear that 1 < x < y. Suppose that 2x < y, from here, together the relation @ we obtain
y—3=3—-2z (56)
We use the Theorem in in the relation @)
Max (y — 3) = Max (3 — 2z) (57)

From the relation we obtain y — 3 = +1, which implies that y = 4 or y = 2. Replacing in @ we
have the following points Py = (1,%/]’2 = (2,2). We discard P, since 2-2 & 2.

Another way to write y — 3 in sy—3=3 (—1 + %), and so on

Max 3 (—1 + %) — Max(3 — 2z) (58)
From @) together with Theorem we obtain —1 + % = 1, which implies y = 6, which is false,
since x = 0 is not possible due to the relation @/
Of all the possible variants we have y = 4 and x = 1. The other assumption is y < 2x, which does
not lead to optimal values of y. Therefore Max f(x,y) = 33.



Example 2.2. [3] Find the extrema of the function Max (E + %) subject to the constraint: x> +y? =
1. ¢
Solution.
By Theorem[I.3, we have
oy A[a? + 7] (59)

Using the condition of the problem, we have

rT+y=A (60)
Completing squares in (59) we have
1 b1
- = 61
20 V2N (61
1 ba
= 62
YT T 2 (62)

where b3 + b3 = 1.
From the relation and , for A > 0 we obtain

Ly \/§b1+1+\/§b2+1
b 2A a b '

The relation can be written as
Tz oy 11
= 2>\<(\fb1+1\fb2+1) ( b)) (64)

/ 1
g + < \/4 +2v2 (by + by) - + 75 cosf (65)

Also from the relation ) and ( we obtain:

SIS

b1 + bo
A —1= 66
7 (66)
From the relations and we obtain:
A AN i 1
Max (5 + g) = 0,2 + b2 (67)

Example 2.3. [7] Find the Mazima and Minima of h(z;y) = 2% + y? + 22, subject to the conditions:

22

x2 P _

4+5+25 1 and z+y==z
Solution.

We use Theorem with f1(z) =z, fo(y) =y, f3(2) = 2, A=2, B=+/5, C =5 with which we have

Max F(z) = 10
Min F(z) = 4.4520547945

According to Lagrange’s method the max (£C2 +y% + 22) = 10 and the min (m2 + 9% + 22) =17
Example 2.4. [7] A rectangular box without a lid must have a volume of 32 cubic units, what must
be the dimensions so that the total surface area is minimal?.
Solution.
To solve this problem we follow what is described in Theorem [2.3

If x,y,z are the edges, we have
(i) Boz volume V = xyz = 32



(i) Boz surface S = xy + 2xz + 2yz

Of these relations, we have:

szv[1+2+2]
z Yy =z

In the relation we use the technique

a+b+c=)\[a2+b2+02]

In this case take a =

IS

2 2
,b=—,c= —, therefore we have
Y x

1 2 2 1 4 4
St =N S5+ 5
z Yy x

Completing squares we have

For this last relation we have that X\ > 0 and,

S

MESEVIES]
)
>

|
o
[\

BIN0 |Io v |-
Il
S
w

where
b7 + b3+ b3 =1
From the relation we have that z,y,x must be minimum, therefore, by, ba, by and must have

mazimum values simultaneously. This happens when by = by = bg = % Then in we have

z=X y=2\ x=2\

Substituting these last relations in (i) we have 4\3 = 32, that is, A\ = 2.
Then the Minimum surface in (i) is:

1 2 2
=32|=4+242
S 3[2+4+J
3
=32x=-=4
S =32x 5 8
Example 2.5. [7] What is the mazimum volume of the rectangular parallelepiped that can be inscribed
2?2 2
' ipsoid — + = + — =17
in the 'ellzpsozd 9 + 671 3%
Solution.
The volume of the parallelepiped is:
V = 8xyz (70)
where (x,y, z) belongs to the ellipsoid.
Let
x=3T,y=4y, z=06Z (71)
After and we obtain:
V =72 x 8%yZ (72)
where T2 + 42 + 22 = 1.
Now, using the relationship
i+ g+z=N32+9%+ 27



is obtained

So, you have to

~ 1 _\/gbl

T T Taa

-1 _ V3,

y_ﬁ_ﬁz

so L oY,

20~ 2)°

where

b+ b3 +03 =1 (73)
, and also

_ABbi+1 B+l ABbz+1
T YT T T T
It is observed that T,y and Z sare mazximum real values if by, by and by are mazimum and that happens

when by = by =bg = % Therefore

(74)

.1 . 1 _ 1
From the relation and we have that
3
F = 1

and replacing this in we have that the mazimum volume s

1 72x80 24 x 83
Vs = T2 x 8. — = 1220 _ 22X V3 _ 4n/au?

A3 33 3

Example 2.6. [7] Find the distance from point Py(a,b,c) to the plane of equation P : Ax+ By+Cz =
D

Solution.

We have to

d(Py, Q) =/(z —a)? + (y — b)2 + (2 — ¢)2, where Q = (x,y,2) € P. (76)
Defining f : R3 - R as

f(z1,20,23) = (x —a)xy + (y — b)zo + (2 — ¢)x3 (77)
we have that f Defining f : R?> - R as
f(z1,22,23) = (x —a)z1 + (y — D)z2 + (2 — ¢)x3 (78)
we have that f is continuous and also
R? = ker f @ [ker f]*. (79)
Since (1,1,1) € R we have from and
(1,1,1) = A\ f + Ay = u + v, u € ker f,v € [ker f]*

FLL1) = f(u) + f(0) = A[(z —a)® + (y = b)* + (z — )] (80)
That is
(m—a)+(y—b)+(z—c)=)\[(x—a)2+(y—b)2+(z—c)2]. (81)

11



From the relation we obtain

x—a—i—ﬁb
22 2\
1 V3
y—b—ﬁ—mbz
R SNC
TN T 2l
where b? + b3 + b3 = 1, from the relation is obtained
A _ B
Ar —aA— — = ——bA
i T IV
B _ 3
By —bB — — = ——bB
Y ox 2\
C _\3
CZ—CC—ﬁ—mbgc

From the relation we have

\/3b1A 4+ \/3bsB +/3b5C + A+ B+ C
2\

Ax+ By+Cz—aA—bB —cC =
This is if A > 0. Since Q € P, we have
Arx+By+Cz=D
From and we obtain:

_ A(VBbi +1) + B (V3o + 1) + C (V3bs +1)

A 2(D —aA - bB—cC)

From the relations given in we have

(V31 +1)7 + (V3by + 1) + (v/3bs +1)°
4N?

(z—a) + =02+ (2—¢) =
Therefore of and we obtain

[(\/561 +1)2 + (V3ba + 1) + (V3bs + 1)2]1/2
2\

d (P07 Q) =
From the relation and we have

(V361 +1)° + (/362 +1)° + (V3bs + 1)2]1/2 ID —aA—bB — cC|

d(Po,Q) = |A (V3bs + 1) + B (V3b2 + 1) + C (V/3bs + 1))

Where
{(A,B,C), (V3b1 + 1,\/3b2 + 1,/3b3 + 1) )

VAZE BT 507y (V3b + 1)+ (V3bs +1) + (V3bg +1)°
from the relation and we obtain

cosf =

|D —aA—bB — cC|

d (P =
(Po, Q) VA2 + B2 + C?| cos )

12



Solution.

Example 2.7. [7] Find the maximum of xy?z>, siz+y+2=6, 0 <x,0<y,0 < 2.
Using the Theorem [2.4] with f(z) = =, g(y)

=y, h(z) = 2z, a = 6 we obtain
6

& _ 108.

Max F(z,y, 2) = 152

Example 2.8. [3] Find the extremes of the function f(x,y,z) = xyz ubject to the conditions x> +
v¥+22=1andx +y = 2z.
Solution.

Using the technique a + b = A [a2 + b2] we get a =x,b=1y

z+y=\[2"+y?

(92)
From the data and from we obtain
2z=A(1-2°) (93)
From the relation we obtain

RPN
A A2

(94)
From the relation it 18 easy to see that
Min z =1 1 M - 1, A#0
nz= N Y wwz=—xy , .
This relation leads to nothing since A = o0 is an absurdity in . Using the relation
T4y+z=A2? -y’ + 7% (95)
we get from the data 3z = X\, which implies that z = :13 Then we have
2
2y =1- %
96
L2 (96)
x = —.
V=3
From the relation we obtain:
A2 2\
Maz (z +y) = 1—3-\/523 (97)
Solving we get A\ = ++/3.
o If A= +/3 we etz—L x—i _ L Therefore max{x z}—L
o If A\ =—+/3, we eL‘J:——L __1 z——i Therefore min{x Z}_i
7 g \/g, y \/g’ \/g' y 3\/3 *
Example 2.9. [5] Find the highest point on the surface

8
z=§x3+4y3—x4—y4.

Solution.

To solve this problem we use Theorem[2.3,
It is observed that .
z =23 (3—1) +y3(4—vy)
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Since x and y are independent variables we have from

O<x<§ y 0<y<4 (99)
Applying the technique, we have
Iny® + In(4 —y) = A [(m v*)® +In(4 — y)] (100)
From the relation (100) we obtain
2 2
1 1 1
Iny — — n(d—y)——) = —. 101
(mr-55) + (ma=0-55) =53 (101)
From the relation (101) for A > 0 we obtain
1 2
Inyd — — = 102
BTN T T (102)
and so N
1 2b, s
n(4d-—y)— —~=—— =1A= 1
n(4 —y) o TN where by + b3 A= A(y) (103)
The mazimum value of Iny3 + In(4 — y) = In(4 — y)y> is obtained when by = by = iﬁ. Of the four
possibilities we obtain by = —%, b1 = % This is true, since y> and y must have different hierarchies
iny € 0,4].

Therefore, In(4 —y) =0 4 —y =1<y = 3. For the variable x we have

Ina® + In <§—x) =T[(ln$3)2+ln2 (§—$>] (104)

From the relation (104) we have for 7 >0

1 2b
Inz3 — o = 3 !
T T (105)
8 1 20y
Inf-—2)—-——=
3 2T 2T
The mazimum value of In23 + In (% — x) is obtained when
~ 1
by =by=+—
1 2 NG
For 31 = %, gg = —\% we get % —x =1, which implies that v = g Therefore, in we get
125 /8 b5
maxz = —— (3 — 3) +27(4 —3) = 27 + 4.62962 = 31.629 (106)

The mazimum applying the superior calculus theory, we obtain:
Max z = 32.333

The error that is made is 0.7

Remark 2.3. If instead of the equation (104) we put the following expression:

2 4 3 B 22 4 9 3
1n3:17 +ln<4 29:)—7'[111 31” +In" (4 233 .

From this relationship, similar to what was done in (104]) is obtained x = 2. So we have

16
mazx{z} = 3 + 27 = 32.333
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Example 2.10. [§] Determine the absolute mazimum and minimum of the function
z =sinz + siny + sin(z + y)

where 0 < x < w/2, 0<y<n/2
Solution.
Following what is described in Theorem [2_1) we have:

Using the relationship
A+ B+C =\[A*+B*+(C?] (107)

where A = senx, B = seny,C = sen(x + ), X = Xux,y). After replacing these values in the
relation (107) we have

sinz + seny + sen(z + y) = A [sin® z + sin® y + sen®(z + y)| (108)

From the relation (108]) we have
1 /3b

sine — —

2\ 2
. 1 \/3by
- - = 109
siny — 5y o (109)
. 1 +/3bs
sin(x + y) — X" o
where X > 0 y b + b3 + b3 = 1.
Then Cosd+3 3
Max (Senz + Seny + Sen(z + y)) = Max % =3 (110)
and this value is reached when by = by = by = %, therefore from the relation (109) we have
1 1
Senxzx, Senyzx, Cosy + Cosz =1 (111)
From the relation(111) we obtain
VAZ—1 A2 -1
= 1. 112
Tt (112)
Solving the relation obtained in (112|) we have
A2 (113)
RG]

From the relation (110) y (113)) we have that mazxz = #

Since x € [0,7/2],y € [0,7/2], for A < 0, we have that mazz = 0, sincesenx > 0,seny = 0,sen(z+y) =
0.

Note: The mazimum given in (L10) is correct, since x and y have the same hierarchy in the interval

[0,7/2]

Example 2.11. /9] Find the Mazima and Minima of the function z = 2% + 3> — 3wy, 0 < x <
2, —-1l<y<2

Solution.

We use Theorem as indicated below. It is had that z = z3 + y (y2 — 333)

Then we will use the following

Infy| +Infy? — 32| = A [In® [y| +In* [y* — 3]

1?2 1\* 1
In ol — - mly? — 32— — ) = - 114
(b= 55) + (wl? =30 - 55) = 550 (114)
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From the relation (114]) obtain me for A > 0
1 2

Infyl—— =
y  2) (115)
ln| 2—3:U|—i = V2b,
y 22 2\

where b + b3 = 1. Of the relation (115) In|y||y* — 3z| = Iny (y* — 3z) = In|y| + In|y* — 3z|, and so
we have

1
Maz Iny (y2 —3z) = " (116)
The mazimums or minimums reached are at the points by = by = i%, then we have lnly| = 0,
therefore y = +1. In the relation (115) we have:
1
In? |y? — 32| = 1=l — 3] (117)
From this last equality
1
Maz 3= Inb (118)
So we have (118) and (116)
Maz Iny (y* — 3z) =In5 (119)
In addition Min 1n|y| (y2 — 3:17) |= 0 occurs when y = —1 |y2 — 3z| =1, z=0.
Therefore, Min z = —1.
2 2
Example 2.12. [5] At what point of the ellipse — + i 1, the line tangent to this line forms the
a

triangle of minor area?
Solution.
We know that the tangent line to a circle of equation x*> +y* = 1 at the point P = (z0,yo) is given by

Ly :siny = —z—ox + B; where the slope is —?. As (xo,y0) € LT we obtain B, that is to say
0 0
2 2
Ly: y=-0gp10F% (120)
Yo Yo
Por lo tanto, la recta tangente a la elipse en el punto Q = (xo,y0) puede ser hallado usando la
transformacion
x=aZ, y=>by (121)

Therefore, using the transformation (121]) we obtain the circumference:
i‘Q + gQ — 1

From the relation (120)) and (121) we obtain that the equation of the tangent line to the ellipse is given

by
~ ~2 | ~2
- xH +
0 + %o Yo

jo T (122)
Yo Yo
As g = aZo, yo = bjo, we obtain from (122)) the following
b yg x%
y —xobxr o+ o
A Z 123
b ayo a + g (123)
and from the equation (123))
b? b2
Y=y (124)
a= Yo Yo

So from the equation (124) we have that the area limited by the tangent line and the coordinate azxes is
a’b?

2T0Yo

S (2o0,90) = (125)
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Using the described technique, we obtain that

A+ B=\[A%+ B?]. (126)
Let’s put
Lo Yo
A=2B=2, 12
2B =4 (127)

From the relation and (| we have

Zo Yo
== 128
Pl (128)

From we obtain squaring 1 + 23”‘”"’ = A2, which implies that

Toyo = %b (A —1) (129)

From the relation ) and . we obtain

— - — 0
2 "o 2>\ A> (130)
o 1 _N?2,
b 2% 2\ °
where b3 + b3 = 1.
From the relation ) and . we have
V2
A——=—(by+b 131
o (b2 +b1) (131)
From the relation (131) we obtain
Max (A\* — 1) =1 (132)
From the relation ) and . we obtain
Maz xoyo = %

Example 2.13. [5/ The courses of two Rivers (within the limits of a determined region) represent
approzimately a parabola, y = 2, and a straight line, x —y — 2 = 0. It is necessary to unite these
rivers by means of a rectilinear channel that has the shortest possible length. For what points will it be
necessary to draw them?

Solution.

Let P = (x,y) be a point on the parabola and Q = (Z,w) be a point on the line. The distance from P

to Q is given by
d(P,Q) = /(& —2)? + (y —w)*. (133)
Therefore, the function to Mainimize is the one given by the equation (133) subject to the condition

y=2> 1 z2—w—-2=0 (134)
Leta=z—x, b=y—w, using the relation
a+b=\[a®+?] (135)

we obtain
2427 —z=A[(z—2)*+ (y —w)?]. (136)

Also

(z4+22—x)-2

min+/(z — )2 + (y — w)2 = min )

(137)
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From the relation (134]) we have

1)y LA (138)
FTETON ITUTON) T o

From the relation (138) we have that

2) (139)

T 2a
where b3 + b3 = 1. From the relations in (139) we obtain

2+x2_x:w (140)

2
After the relations (138)) and (140) we obtain
(2+2%—z)V2

Min+/(y — x)2 + (y — w)? = Min (141)
24+ \/§(b1 + by)
The minimum in (141) is given when by = \%, by = % Therefore
V2
2+ 22—
Min+/(z — )2 + (y — w)? = Min <(+327$>
(z — ;)2 + 7 (142)
= Min ( 5 4) V2

7
= 2
8\[
and this happens when r = %; therefore y = %. To calculate (z,w) in (142) we obtain

\/(z—;)2+(i—(z—2))2=;\/§ (143)

Solving this equation we get z.

3 Conclusions

The different theorems obtained and illustrated examples show that the relationship (a; + as + -+ - + a,)
A (a% +ad+- -+ a%) . where a1, a9, - ,a, € R and is valid for some A € R. Linking this relationship
with the problem under study and using the Theorem [1.1] it is possible to obtain the desired results,
taking into account the hierarchy of a variable over the other variables. It should be noted that the
hierarchy of a variable depends on the correspondence rule of the function and its given domain.

We believe that the Theorems and examples shown are a starting point to create a general theory
that allows us to find the conditional maxima and minima of real functions of a vector variable without
said functions being differentiable and without placing emphasis on the given domain.
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