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email:bcernam@unasam.edu.pe
email:dlujeriog@unasam.edu.pe
email:vpocoyy@unasam.edu.pe

email:vrodriguezs@unasam.edu.pe
email:rleivab@unasam.edu.pe

November 15, 2023

Abstract

In this work, the extreme points of real vector variable functions are obtained without the
use of the classical theory that involves the use of partial derivatives. We illustrate with several
theorems and examples a new method that consists of establishing an appropriate link between
the function to be optimized, its restrictions and the result, stating that: given n non-zero real
numbers a1, a2, � � � , an P R, then there exists a unique λ P R such that:

pa1 � a2 � � � � � anq � λ
�
a21 � a22 � � � � � a2n

�
.

This relation is obtained by decomposing the Hilbert space Rn as the direct sum of a closed
subspace and its orthogonal complement. Since the dimension of the space Rn is finite, this
guarantees that any linear functional defined on the space Rn is continuous, and this guarantees
that the kernel of said linear functional is closed in the space Rn, therefore we have that the space
Rn breaks down, as the direct sum of the kernel of the continuous linear functional f and its
orthogonal complement, that is: Rn � ker f ` rker f sK, where the dimension of ker f � n� 1 and
the dimension of rker f sK � 1.

Adding to the link found new definitions about the hierarchy of one variable in relation to
another and the fact that if x21 � x22 � ...� x2n � r2 then the maxtx1 � x2 � � � � � xnu � r

?
n and

the mintx1 � x2 � � � � � xnu � �r?n we solve the optimization problem without using classical
theory.

Key Words: Lagrange multipliers, extrema of real functions, functional analysis.
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1 Introduction

In this work, we will find the maxima or minima of real vector variable functions (conditional and
unconditional), these will be found without the need to use partial derivatives. To this end, we note
that by solving the problem of maxpminqfpx, y, zq subject to a condition, there is a hierarchy of one
variable over another, depending on how f is defined and its domain of each variable. For example, if
our problem is max fpx, y, zq � xy2z3 with x � y � z � 6 and 0   x, 0   y, 0   z , we would have to
have z ¡ y ¡ x, that is, the variable with the highest hierarchy is z, and y has a higher hierarchy than
x in the given domain. On the other hand, if we had the problem of max fpx, y, zq � xyz subject to
x� y � z � a where 0   x   a,0   y   a, 0   z   a, it would be clear that x � y � z, that is, these
variables have the same hierarchy in the given domain.

In addition, we establish an appropriate link between the optimization problem and the relations$&%
pa1 � a2 � � � � � anq � λ

�
a21 � a22 � � � � � a2n

�
maxtx1 � x2 � � � � � xnu � r

?
n

mintx1 � x2 � � � � � xnu � �r?n.
, (1)

where this allows us to obtain desired results. The first relation above was used in other areas of
mathematics, see [1], [2], [5] , [6]. The verification of these relationships is demonstrated with the
following theorems:

Theorem 1.1. Let f : Rn Ñ R, then the max fpx1, x2, ..., xnq �
ņ

i�1

xi subject to the condition

ņ

i�1

x2i � r2 is r
?
n.

Proof. Since
ņ

i�1

xi � xpx1, x2, ..., xnq, p1, 1, ..., 1qy � }x} �?n � cos θ � r
?
n, where θ is the angle formed

by the vectors x � px1, x2, ..., xnq and the vector p1, 1, ..., 1q. Here, the maximum and minimum are
obtained when θ � 0 and θ � π respectively.

Theorem 1.2. Let a1, . . . , an be any real numbers, then there exists λ P R, such that

ņ

i�1

ai � λ
ņ

i�1

a2i

Proof. Let f : Rn Ñ R be defined by f px1, ..., xnq �
°n
i�1 aixi, be defined by f is a linear and

continuous functional. Therefore
Rn � ker f ` pker fqK. (2)

Thus we have that:
dimRn � dim Im f � dim ker f

n � 1� dim ker f

Therefore dim ker f � n� 1
Thus, from (2) we have:

p1, 1, . . . , 1q �
n�1̧

i�1

λiui � λnun (3)

where tu1, . . . , un � 1u � ker f and un P pker fqK
From (3) and taking into account that f is a linear functional, we have

fp1, . . . , 1q � λf punq
ņ

i�1

ai � λ
ņ

i�1

a2i

since un � pa1, . . . , anq P pker fqK

Using this last relation, which must be linked with the function to be maximized and with the given
restrictions. Below we show several problems that illustrate the given theory.
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2 Results

Using the aforementioned technique we must standardize the resolution of various problems.

Theorem 2.1. Let H : ra, bs Ñ R, T : rc, ds Ñ R, G : ra, bs � rc, ds ÝÑ R and F px, yq � Hpxq �
Gpx, yq � T pyq be continuous functions . Then we have that MaxF px, yq � 3

λ
for some λ ¡ 0, where

Max Hpxq � Max T pyq � MaxGpx, yq � 1

λ
or

MaxF px, yq � 0, where MaxHpxq � MaxT pyq � Max Gpx, yq � 0

Proof. Let
A � Hpxq, B � Gpx, yq, C � T pyq (4)

using the relation
A�B � C � λ

�
A2 �B2 � C2

�
we obtain the following

Hpxq �Gpx, yq � T pyq � λ
�
H2pxq �G2px, yq � T 2pyq� , (5)

where λ � λpx, yq.
From the relationship (5) we obtain:�

Hpxq � 1

2λ


2

�
�
Gpx, yq � 1

2λ


2

�
�
T pyq � 1

2λ


2

� 3

4λ2
(6)

From Theorem (1.1) together with the relation (6) we obtain

Max

�
Hpxq �Gpx, yq � T pyq � 3

2λ



� 3

2|λ| (7)

From the relationship (6) we obtain$''''''&''''''%

Hpxq � 1

2λ
�

?
3

2|λ|b1

Gpx, yq � 1

2λ
�

?
3

2|λ|b2

T pyq � 1

2λ
�

?
3

2|λ|b3

(8)

where b1 � b1px, yq, b2 � b2px, yq, b3 � b3px, yq, and b21 � b22 � b23 � 1. The maximum reached in (7)

is when b1 � b2 � b3 � � 1?
3
. For b1 � b2 � b3 � 1?

3
and λ ¡ 0, we obtain from (8) the following

Hpxq � Gpx, yq � T pyq � 1

λ
(9)

For λ   0 we obtain
Hpxq � Gpx, yq � T pyq � 0 (10)

Similarly for b1 � � 1?
3
, b2 � b3 � 1?

3
we obtain from (8) the following:

For λ ¡ 0 : Hpxq � 0, Gpx, yq � 1
λ , T pyq � 1

λ .
For λ   0 : Hpxq � 1

λ , Gpx, yq � 0, T pyq � 0.
The other cases are similar and the only relation that satisfies the relation (7) are the relations (9)

and (10).

Theorem 2.2. Let V � f1pxqf2pyqf3pzq, where V is constant and fi ¡ 0, then the minimum of the
function

Spx, y, zq � f1pxqf2pyq � 2f1pxqf2pyq � 2f2pyqf3pzq
is given by

MinS � 3
3
?

4V 2
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Proof. Taking into account the expression of V ,

S � V

�
1

f3pzq �
2

f2pyq �
2

f1pxq
�
. (11)

Linking this equality with the relationship

a� b� c � λ
�
a2 � b2 � c2

�
(12)

where a � 1

f3pzq , b �
2

f2pyq , c �
2

f1pxq , the following is obtained from the relationship (12):

�
1

f3pzq �
1

2λ


2

�
�

2

f2pyq �
1

2λ


2

�
�

2

f1pxq �
1

2λ


2

� 3

4λ2
(13)

where λ ¡ 0, λ � λpx, y, zq.
Parameterizing the relationship (13) we obtain

1

f3pzq �
?

3b1 � 1

2λ
,

2

f2pyq �
?

3b2 � 1

2λ
,

2

f1pxq �
?

3b3 � 1

2λ
, (14)

where b21 � b22 � b23 � 1 y bi � bpx, y, zq.
According to the Theorem (1.1), applying to the relation (13) we obtain

Max

�
1

f3pzq �
1

2λ
� 2

f2pyq �
1

2λ
� 2

f1pxq �
1

2λ



� Max

�
1

f3pzq �
2

f2pyq �
2

f1pxq �
3

2λ



� 3

2λ
(15)

It can be deduced from the relation (14), that the maximum reached in (15) is when b1 � b2 �
b3 � 1?

3
. Therefore, we have in (14) the following:

f3pzq � λ, f2pyq � 2λ, f1pxq � 2λ (16)

Thus we have V � 4λ3, which implies that λ � 3

b
V
4 . Using this fact and using the relation (16) in

(11) we obtain:

Min S � V

�
1

λ
� 2

2λ
� 2

2λ

�
� 6V

2λ
� 3V

λ
� 3

3
?

4V 2

Theorem 2.3. Let g : ra, bs Ñ R and F : ra, bs�rc, ds Ñ R be continuous functions, there exists λ P R
such that the maximum of the function Hpx, yq � gpxqF px, yq occurs when

|F px, yq| � 1 and ln |gpxq| � � 1

λ
or

ln |F px, yq| � 1

λ
and |gpxq| � 1

Proof. Let A � ln |F px, yq|, B � � ln |gpxq|, using the relation:

A�B � λ
�
A2 �B2

�
we obtain

ln |F px, yq| � ln |gpxq| � λ
�
ln2 |F px, yq| � ln2 |gpxq|� (17)

where λ � λpx, yq; from the relation (17) we obtain�
ln | F px, yq � 1

2λ


2

�
�

ln |gpλq| � 1

2λ


2

� 1

2|λ|2 . (18)
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Using Theorem (1.1) in (18), we obtain:

Max

�
ln |F px, yq| � 1

2λ
� ln |gpxq| � 1

2λ



� Maxpln |F px, yq||gpxq|q � 1

|λ| . (19)

From the relationship (17) we obtain:

ln |F px, yq| � 1

2λ
�

?
2

2|λ|b1

ln |gpxq| � 1

2λ
�

?
2

2|λ|b2
(20)

where b21 � b22 � 1, b1 � b1px, yq, b2 � b2px, yq.
The maximum reached in (19) is obtained when

b1 � b2 � � 1?
2
. (21)

For b1 � b2 � � 1?
2

and λ ¡ 0 we obtain the following from (20)

ln |F px, yq| � 1

λ
and ln |gpxq| � 0 (22)

For b1 � b2 � 1?
2

and λ   0 we have from relation (15) that

ln |F px, yq| � 0 and ln |gpxq| � �1

λ
(23)

The relations (22) and (23) verify the relation.

For b1 � 1?
2
, b2 � � 1?

2
and λ   0 we obtain from (20) the following:

ln |F px, yq| � 1

λ
and ln |gpxq| � � 1

λ
(24)

For b1 � 1?
2
, b2 � � 1?

2
and λ   0 , we obtain from (20) the next:

ln |F px, yq| � 0 and ln |gpxq| � 0 (25)

Of the relations (24) and (25) none verify the relation (19). Similar analysis for the other cases

Theorem 2.4. Let F px, y, zq � fpxqg3pyqh2pzq be a continuous function, where f, g and h are real
functions of a real variable. If fpxq � gpyq � hpzq � a where a ¡ 0, fpxq ¡ 0, gpyq ¡ 0 and hpzq ¡ 0,

then the maximum of the function F px, y, zq is MaxF px, y, zq � a6

432
, and is reached when fpxq � a

6
,

gpyq � a

2
and hpzq � a

3
.

Proof. Let A � fpxq, B � gpyq, C � hpzq. Using the relationship A � B � C � λrA2 � B2 � C2s we
obtain

fpxq � gpyq � hpzq � λrf2pxq � g2pyq � h2pzqs, (26)

where λ ¡ 0, λ � λpx, y, zq and fpxq   hpzq   gpyq in order to obtain the desired maximum of F .
From the relationship (26) and the problem data we obtain:

a � λ
�
a2 � 2fpxqgpyq � 2pa� fpxq � gpyqqpfpxq � gpyqq� . (27)

Let

Upx, yq � fpxq � gpyq
2

, V px, yq � gpyq � fpxq
2

. (28)
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Replacing (28) into (27) we have

a

2λ
� a2

6
� V 2px; yq � 3

�
Upx; yq � a

3

	2
. (29)

From the relation (26) we obtain

Maxλ � 3

a
(30)

From the relation fpxq   hpzq   gpyq and the restriction fpxq � gpyq � hpzq � a we obtain

fpxq   a

3
and gpyq ¡ a

3
. (31)

On the other hand, from (29) we obtain MaxV 2px, yq when

Upx, yq � a

3
(32)

Replacing this last equality in (28) we have

fpxq � gpyq � 2a

3
, (33)

and from here together with the relationship fpxq � gpyq � hpzq � a we obtain that

hpzq � a

3
. (34)

From the relation (33) we obtain the following based on the relation (31)

gpyq � a

3
� a

3
� fpxq (35)

Using Theorem 2.3 we see that the maximum of the function fpxq
�
�1� a

3fpxq
�

is given by

|fpxq| � 1 or

�����1� a

3fpxq
���� � 1. (36)

De la relación (36) se obtiene �1� a
3fpxq � 1, de esta última relación se obtiene:

fpxq � a

6
. (37)

From the relation (35) and (37) we obtain

gpyq � a

2
. (38)

Therefore, from the relations (34), (37) and (38) we obtain

Max F px, y, zq � a

6
� a3

8
� a2

9
� a6

432

Remark 2.1. In (35), note that gpyq � a

3
� gpyq

3

�
3� a

gpyq



, then we can apply the Theorem 2.3

and thus, the

Max

"
gpyq

3

�
3� a

gpyq

*

occurs when

����gpyq3

���� � 1 or

����3� a

gpyq
���� � 1, obtaining gpyq � a

2
. The expression

a

4
is discarded, since

gpyq ¡ a

3
.
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Theorem 2.5. For x P R3, the extrema of function F pxq � f21 pxq � f22 pyq � f23 pzq where f1pxq, f2pyq
and f3pzq are continuous functions, subject to the condition$&% f21 pxq

A2
� f22 pyq

B2
� f23 pzq

C2
� 1, 0   A   B   C

f1pxq � f2pyq � f3pzq

are given by

MaxF px̄q � 2A2B2
�
3C2 � 1

�
4A2B2 �B2pC � 1q2 �A2pC � 1q2 , MinF px̄q � 26A2B2C2

16B2C2 � 9A2C2 �A2B2

Proof. Let

rf1pxq � f1pxq
A

, rf2pyq � f2pyq
B

, rf3pzq � f3pzq
C

. (39)

From the expression (39) in the conditions of the problem we have

F pxq � A2 rf21 pxq �B2 rf22 pxq � C2 rf23 pzq (40)

and the constraints are written as

rf21 pxq � rf22 pxq � rf23 pzq � 1 y A rf1pxq �B rf2pyq � C rf3pzq. (41)

Let’s assume that f1pxq, f2pyq, f3pzq are positive, from the relation (41) suppose that

A rf1pxq   B rf2pyq (42)

From the relation (41) and (42) we obtain

B rf2pyq � c

2
rf3pzq � c

2
rf3pzq �A rf1pxq. (43)

From the relation (43) and using the Theorem 2.3 we have

2A rf1pxq � pC � 1q rf3pzq, C � 1. (44)

From the relation (44) and (41) obtenemos

rf2pyq � rf3pzq rC � 1s
2B

(45)

From the relation (44) and (45) in (41) we obtain

rf2pzq � 4A2B2

B2pC � 1q2 �A2pC � 1q2 �A2B2
(46)

From the relations (44), (45) and (46) in (40) we obtain

Max F pxq � 2A2B2
�
3C2 � 1

�
4A2B2 �B2pC � 1q2 �A2pC � 1q2 (47)

Of all the possible variants on the sign of the functions rf1pxq, rf2pyq, rf3pzq the following is deduced;

for rf1pxq ¡ 0, rf2pyq   0 and rf3pzq ¡ 0 we have the relation (41)

A rf1pxq � C rf3pzq �B rf2pyq (48)

From the relation (48) assuming that C rf3pzq   �B rf2pyq we obtain from (48) the next

A

2
rf1pxq ¡ C rf3pzq (49)

7



From the relation (48) and (49) we have

A

2
rf1pxq � C rf3pzq � �A

2
rf1pxq �B rf2pyq, (50)

on the other hand the relation (50) can also be written as follows

C rf3pzq
�
�1� A rf1pxq

2C

�
� �A

2
rf1pxq �B rf2pyq (51)

Applying Theorem 2.3 to the product C rf3pzq
�
�1� A rf1pxq

2C

�
we get

rf1pxq � 4C

A
rf3pzq (52)

From the relation (52) and (48) we obtain

rf2pyq � �3C

B
rf3pzq (53)

Replacing the relations (52), (53) into (41) we obtain

rf3pzq � A2B2

16B2C2 � 9A2C2 �A2B2
(54)

Finally, using the relations (52), (53) and (54) in (40) gives us

MinF px̄q � 26A2B2C2

A2B2 � 9A2C2 � 16B2C2
.

The other assumption Cf3pzq ¥ �Bf2pyq, does not lead to optimal values of F pxq.

Various examples are illustrated below, which are applications of these Theorems. Other problems
not related to these Theorems are solved following the ideas described in these theorems presented.

Remark 2.2. To find the extremes of a function that is not continuous, it is still possible to use the
technique shown in the various theorems and examples. Below we present an example that could be a
starting point for such a study.

Example 2.1. [3] Find the maximum of the function fpx, yq � vxw � vy2w � vxwvy2w subject to the
condition

2x� y � 6, 1 ¤ x, 0   y. (55)

Solutión.
It is clear that 1 ¤ x   y. Suppose that 2x   y, from here, together the relation (55) we obtain

y � 3 � 3� 2x (56)

We use the Theorem in 2.3 in the relation (56)

Max py � 3q � Max p3� 2xq (57)

From the relation (57) we obtain y� 3 � �1, which implies that y � 4 or y � 2. Replacing in (56) we
have the following points P1 � p1, 4q, P2 � p2, 2q. We discard P2, since 2 � 2 ¢ 2.

Another way to write y � 3 in (56) is y � 3 � 3
��1� y

3

�
, and so on

Max 3
�
�1� y

3

	
� Maxp3� 2xq (58)

From (58) together with Theorem 2.3, we obtain �1 � y
3 � �1, which implies y � 6, which is false,

since x � 0 is not possible due to the relation (55).
Of all the possible variants we have y � 4 and x � 1. The other assumption is y   2x, which does

not lead to optimal values of y. Therefore Max fpx, yq � 33.

8



Example 2.2. [3] Find the extrema of the function Max
�x
a
� y

b

	
subject to the constraint: x2�y2 �

1.
Solutión.
By Theorem 1.2, we have

x� y � λ
�
x2 � y2

�
(59)

Using the condition of the problem, we have

x� y � λ (60)

Completing squares in (59) we have

x� 1

2λ
� b1?

2|λ| (61)

y � 1

2λ
� b2?

2|λ| (62)

where b21 � b22 � 1.
From the relation (61) and (62), for λ ¡ 0 we obtain

x

a
� y

b
� 1

2λ

�?
2b1 � 1

a
�
?

2b2 � 1

b

�
. (63)

The relation (63) can be written as

x

a
� y

b
� 1

2λ

��?
2b1 � 1,

?
2b2 � 1

	
�
�

1

a
,

1

b




(64)

x

a
� y

b
� 1

2λ

b
4� 2

?
2 pb1 � b2q �

c
1

a2
� 1

b2
cos θ (65)

Also from the relation (61) and (62) we obtain:

λ2 � 1 � b1 � b2?
2

(66)

From the relations (65) and (66) we obtain:

Max
�x
a
� y

b

	
�
c

1

a2
� 1

b2
(67)

Example 2.3. [7] Find the Maxima and Minima of hpx; yq � x2� y2� z2, subject to the conditions:

x2

4
� y2

5
� z2

25
� 1 and x� y � z

Solutión.
We use Theorem 2.5 with f1pxq � x, f2pyq � y, f3pzq � z, A � 2, B � ?

5, C � 5 with which we have

MaxF pxq � 10

MinF pxq � 4.4520547945

According to Lagrange’s method the max
�
x2 � y2 � z2

� � 10 and the min
�
x2 � y2 � z2

� � 75

17
.

Example 2.4. [7] A rectangular box without a lid must have a volume of 32 cubic units, what must
be the dimensions so that the total surface area is minimal?.
Solutión.
To solve this problem we follow what is described in Theorem 2.2.

If x, y, z are the edges, we have
(i) Box volume V � xyz � 32

9



(ii) Box surface S � xy � 2xz � 2yz

Of these relations, we have:

S � V

�
1

z
� 2

y
� 2

x

�
(68)

In the relation (68) we use the technique

a� b� c � λ
�
a2 � b2 � c2

�
In this case take a � 1

z
, b � 2

y
, c � 2

x
, therefore we have

1

z
� 2

y
� 2

x
� λ

�
1

z2
� 4

y2
� 4

x2

�
Completing squares we have�

1

z
� 1

2λ


2

�
�

2

y
� 1

2λ


2

�
�

2

x
� 1

2λ


2

� 3

4λ2

For this last relation we have that λ ¡ 0 and,

1

z
� 1

2λ
�
?

3

2λ
b1

2

y
� 1

2λ
�
?

3

2λ
b2

2

x
� 1

2λ
�
?

3

2λ
b3

(69)

where
b21 � b22 � b23 � 1

From the relation (69) we have that z, y, x must be minimum, therefore, b1, b2, b3 and must have
maximum values simultaneously. This happens when b1 � b2 � b3 � 1?

3
. Then in (69) we have

z � λ, y � 2λ, x � 2λ

Substituting these last relations in (i) we have 4λ3 � 32, that is, λ � 2.
Then the Minimum surface in (ii) is:

S � 32

�
1

2
� 2

4
� 2

4

�

S � 32� 3

2
� 48

Example 2.5. [7] What is the maximum volume of the rectangular parallelepiped that can be inscribed

in the ellipsoid
x2

9
� y2

16
� z2

36
� 1?

Solutión.
The volume of the parallelepiped is:

V � 8xyz (70)

where px, y, zq belongs to the ellipsoid.
Let

x � 3x̃, y � 4ỹ, z � 6z̃ (71)

After (70) and (71) we obtain:
V � 72� 8x̃ỹz̃ (72)

where x̃2 � ỹ2 � z̃2 � 1.
Now, using the relationship

x̃� ỹ � z̃ � λ
�
x̃2 � ỹ2 � z̃2

�
10



is obtained �
x̃� 1

2λ


2

�
�
ỹ � 1

2λ


2

�
�
z̃ � 1

2λ


2

� 3

4λ2

So, you have to

x̃� 1

2λ
�
?

3b1
2λ

ỹ � 1

2λ
�
?

3

2λ
b2

z̃ � 1

2λ
�
?

3

2λ
b3

where
b21 � b22 � b23 � 1 (73)

, and also

x̃ �
?

3b1 � 1

2λ
, ỹ �

?
3b2 � 1

2λ
, z �

?
3b3 � 1

2λ
, (74)

It is observed that x̃, ỹ and z̃ sare maximum real values if b1, b2 and b3 are maximum and that happens
when b1 � b2 � b3 � 1?

3
. Therefore

x̃ � 1

λ
, ỹ � 1

λ
, z̃ � 1

λ
(75)

From the relation (73) and (75) we have that

3

λ2
� 1

and replacing this in (72) we have that the maximum volume is

Vmax � 72� 8.
1

λ3
� 72� 8v

3
?

3
� 24� 8

?
3

3
� 64

?
3u3

Example 2.6. [7] Find the distance from point P0pa, b, cq to the plane of equation P : Ax�By�Cz �
D
Solutión.
We have to

dpP0, Qq �
a
px� aq2 � py � bq2 � pz � cq2, where Q � px, y, zq P P. (76)

Defining f : R3 Ñ R as

f px1, x2, x3q � px� aqx1 � py � bqx2 � pz � cqx3 (77)

we have that f Defining f : R3 Ñ R as

f px1, x2, x3q � px� aqx1 � py � bqx2 � pz � cqx3 (78)

we have that f is continuous and also

R3 � ker f ` rker f sK. (79)

Since p1, 1, 1q P R3 we have from (77) and (79)

p1, 1, 1q � λ1f � λ2 � u� v, u P ker f, v P rker f sK

fp1, 1, 1q � fpuq � fpvq � λ
�px� aq2 � py � bq2 � pz � cq2� . (80)

That is
px� aq � py � bq � pz � cq � λ

�px� aq2 � py � bq2 � pz � cq2� . (81)

11



From the relation (81) we obtain

x� a� 1

2λ
�

?
3

2|λ|b1

y � b� 1

2λ
�

?
3

2|λ|b2

z � c� 1

2λ
�

?
3

2u1
b3

(82)

where b21 � b22 � b23 � 1, from the relation (64) is obtained

Ax� aA� A

2λ
�

?
3

2|λ|b1A

By � bB � B

2λ
�

?
3

2|λ|b2B

Cz � cC � C

2λ
�

?
3

2|λ|b3C

(83)

From the relation (83) we have

Ax�By � Cz � aA� bB � cC �
?

3b1A�?
3b2B �?

3b3C �A�B � C

2λ
(84)

This is if λ ¡ 0. Since Q P P , we have

Ax�By � Cz � D (85)

From (84) and (85) we obtain:

λ � A
�?

3b1 � 1
��B

�?
3b2 � 1

�� C
�?

3b3 � 1
�

2pD � aA� bB � cCq (86)

From the relations given in (82) we have

px� aq2 � py � bq2 � pz � cq2 �
�?

3b1 � 1
�2 � �?3b2 � 1

�2 � �?3b3 � 1
�2

4λ2
(87)

Therefore of (87) and (76) we obtain

d pP0, Qq �

�
p?3b1 � 1q2 � �?3b2 � 1

�2 � �?3b3 � 1
�2�1{2

2|λ| (88)

From the relation (88) and (86) we have

d pP0, Qq �

��?
3b1 � 1

�2 � �?3b2 � 1
�2 � �?3b3 � 1

�2�1{2 |D � aA� bB � cC|��A �?3b3 � 1
��B

�?
3b2 � 1

�� C
�?

3b3 � 1
��� . (89)

Where

cos θ �
@pA,B,Cq, �?3b1 � 1,

?
3b2 � 1,

?
3b3 � 1

�D
?
A2 �B2 � C2 �

b�?
3b1 � 1

�2 � �?3b2 � 1
�2 � �?3b3 � 1

�2 (90)

from the relation (89) and (90) we obtain

d pP0, Qq � |D � aA� bB � cC|?
A2 �B2 � C2| cos θ| (91)

12



Example 2.7. [7] Find the maximum of xy2z3, si x� y � z � 6, 0   x, 0   y, 0   z.
Solutión.
Using the Theorem 2.4 with fpxq � x, gpyq � y, hpzq � z, a � 6 we obtain

MaxF px, y, zq � 66

432
� 108.

Example 2.8. [3] Find the extremes of the function fpx, y, zq � xyz ubject to the conditions x2 �
y2 � z2 � 1 and x� y � 2z.
Solutión.
Using the technique a� b � λ

�
a2 � b2

�
we get a � x, b � y

x� y � λ
�
x2 � y2

�
(92)

From the data and from (92) we obtain

2z � λ
�
1� z2

�
(93)

From the relation (93) we obtain �
z � 1

λ


2

� 1

λ2
� 1 (94)

From the relation (94) it is easy to see that

Min z � 1� 1

λ
y Max z � � 1

λ
� 1, λ � 0.

This relation leads to nothing since λ � 8 is an absurdity in (92). Using the relation

x� y � z � λ
�
x2 � y2 � z2

�
(95)

we get from the data 3z � λ, which implies that z � 1
3 . Then we have

x2 � y2 � 1� λ2

9

x� y � 2λ

3
.

(96)

From the relation (96) we obtain:

Max px� yq �
c

1� λ2

9
�
?

2 � 2λ

3
(97)

Solving we get λ � �?3.

� If λ � �?3 we get z � 1?
3
, x � 1?

3
, y � 1?

3
. Therefore maxtxyzu � 1

3
?

3
.

� If λ � �?3, we get x � � 1?
3
, y � � 1?

3
, z � � 1?

3
. Therefore mintxyzu � �4

3
?

3
.

Example 2.9. [3] Find the highest point on the surface

z � 8

3
x3 � 4y3 � x4 � y4.

Solutión.
To solve this problem we use Theorem 2.3.

It is observed that

z � x3
�

8

3
� x



� y3p4� yq (98)
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Since x and y are independent variables we have from (98)

0   x ¤ 8

3
y 0 ¤ y ¤ 4. (99)

Applying the technique, we have

ln y3 � lnp4� yq � λ
��

ln y3
�2 � lnp4� yq

�
(100)

From the relation (100) we obtain�
ln y � 1

2λ


2

�
�

lnp4� yq � 1

2λ


2

� 1

2λ2
. (101)

From the relation (101) for λ ¡ 0 we obtain

ln y3 � 1

2λ
�
?

2b1
2λ

(102)

and so

lnp4� yq � 1

2λ
�
?

2b2
2λ

, where b21 � b22 � 1, λ � λpyq (103)

The maximum value of ln y3 � lnp4 � yq � lnp4 � yqy3 is obtained when b1 � b2 � � 1?
2

. Of the four

possibilities we obtain b2 � � 1?
2
, b1 � 1?

2
. This is true, since y3 and y must have different hierarchies

in y P x0, 4s.
Therefore, lnp4� yq � 0 ô 4� y � 1 ô y � 3. For the variable x we have

lnx3 � ln

�
8

3
� x



� τ

��
lnx3

�2 � ln2

�
8

3
� x


�
. (104)

From the relation (104) we have for τ ¡ 0

lnx3 � 1

2τ
�
?

2rb1
2τ

ln

�
8

3
� x



� 1

2τ
�
?

2rb2
2τ

(105)

The maximum value of lnx3 � ln
�
8
3 � x

�
is obtained when

rb1 � rb2 � � 1?
2

For rb1 � 1?
2
, rb2 � � 1?

2
we get 8

3 � x � 1, which implies that x � 5
3 . Therefore, in (98) we get

max z � 12.5

27

�
8

3
� 5

3



� 27p4� 3q � 27� 4.62962 � 31.629 (106)

The maximum applying the superior calculus theory, we obtain:

Max z � 32.333

The error that is made is 0.7

Remark 2.3. If instead of the equation (104) we put the following expression:

ln
2

3
x3 � ln

�
4� 3

2
x



� τ

�
ln2 2

3
x3 � ln2

�
4� 3

2
x


�
.

From this relationship, similar to what was done in (104) is obtained x � 2. So we have

maxtzu � 16

3
� 27 � 32.333
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Example 2.10. [3] Determine the absolute maximum and minimum of the function

z � sinx� sin y � sinpx� yq

where 0 ¤ x ¤ π{2, 0 ¤ y ¤ π{2.
Solutión.
Following what is described in Theorem 2.1 we have:

Using the relationship
A�B � C � λ

�
A2 �B2 � C2

�
(107)

where A � senx,B � sen y, C � senpx � yq, λ � λpx, yq. After replacing these values in the
relation (107) we have

sinx� sen y � senpx� yq � λ
�
sin2 x� sin2 y � sen2px� yq� (108)

From the relation (108) we have

sinx� 1

2λ
�
?

3b1
2λ

sin y � 1

2λ
�
?

3b1
2λ

sinpx� yq � 1

2λ
�
?

3b3
2λ

(109)

where λ ¡ 0 y b21 � b22 � b23 � 1.
Then

Max pSenx� Sen y � Senpx� yqq � Max
Cos θ � 3

2λ
� 3

λ
(110)

and this value is reached when b1 � b2 � b3 � 1?
3

, therefore from the relation (109) we have

Senx � 1

λ
, Sen y � 1

λ
, Cos y � Cosx � 1 (111)

From the relation(111) we obtain ?
λ2 � 1

λ
�
?
λ2 � 1

λ
� 1. (112)

Solving the relation obtained in (112) we have

λ � � 2?
3

(113)

From the relation (110) y (113) we have that maxz � 3
?
3

2 .
Since x P r0, π{2s, y P r0, π{2s, for λ ¤ 0, we have that maxz � 0, since senx ¥ 0, sen y ¥ 0, senpx�yq ¥
0.
Note: The maximum given in (110) is correct, since x and y have the same hierarchy in the interval
r0, π{2s
Example 2.11. [3] Find the Maxima and Minima of the function z � x3 � y3 � 3xy, 0 ¤ x ¤
2, �1 ¤ y ¤ 2.
Solutión.
We use Theorem 2.3 as indicated below. It is had that z � x3 � y

�
y2 � 3x

�
Then we will use the following

ln |y| � ln
��y2 � 3x

�� � λ
�
ln2 |y| � ln2

��y2 � 3x
���

�
ln |y| � 1

2λ


2

�
�

ln
��y2 � 3x

��� 1

2λ


2

� 1

2λ2
(114)
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From the relation (114) obtain me for λ ¡ 0

ln |y| � 1

2y
�
?

2b1
2λ

ln
��y2 � 3x

��� 1

2λ
�
?

2b2
2λ

(115)

where b21 � b22 � 1. Of the relation (115) ln |y| ��y2 � 3x
�� � ln y

�
y2 � 3x

� � ln |y| � ln
��y2 � 3x

��, and so
we have

Max ln y
�
y2 � 3x

� � 1

λ
(116)

The maximums or minimums reached are at the points b1 � b2 � � 1?
2

, then we have ln |y| � 0,

therefore y � �1. In the relation (115) we have:

ln2
��y2 � 3x

�� � 1

λ
� ln |1� 3x| (117)

From this last equality

Max
1

λ
� ln 5 (118)

So we have (118) and (116)
Max ln y

�
y2 � 3x

� � ln 5 (119)

In addition Min ln |y| �y2 � 3x
� |� 0 occurs when y � �1 ,

��y2 � 3x
�� � 1, x � 0.

Therefore, Min z � �1.

Example 2.12. [3] At what point of the ellipse
x2

a2
� y2

b2
� 1, the line tangent to this line forms the

triangle of minor area?
Solutión.
We know that the tangent line to a circle of equation x2 � y2 � 1 at the point P � px0, y0q is given by

LT : sin y � �x0
y0
x�B; where the slope is �x0

y0
. As px0, y0q P LT we obtain B, that is to say

LT : y � �x0
y0
x� y20 � x20

y0
(120)

Por lo tanto, la recta tangente a la elipse en el punto Q � px0, y0q puede ser hallado usando la
transformación

x � ax̃, y � bỹ (121)

Therefore, using the transformation (121) we obtain the circumference:

x̃2 � ỹ2 � 1

From the relation (120) and (121) we obtain that the equation of the tangent line to the ellipse is given
by

ỹ � �x̃0
ỹ0

x̃� x̃20 � ỹ20
y0

(122)

As x0 � ax̃0, y0 � bỹ0, we obtain from (122) the following

y

b
� �x0b

ay0

x

a
�

y20
b2 � x2

0

a2
y0
b

(123)

and from the equation (123)

y � � b
2

a2
x0
y0
x� b2

y0
(124)

So from the equation (124) we have that the area limited by the tangent line and the coordinate axes is

S px0, y0q � a2b2

2x0y0
(125)
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Using the described technique, we obtain that

A�B � λ
�
A2 �B2

�
. (126)

Let’s put

A � x0
a
,B � y0

b
. (127)

From the relation (126) and (127) we have

x0
a
� y0

b
� λ. (128)

From (128) we obtain squaring 1� 2x0y0
2b � λ2, which implies that

x0y0 � ab

2

�
λ2 � 1

�
(129)

From the relation (126) and (127) we obtain

x0
2
� 1

2λ
�
?

2b

2λ
, λ ¡ 0

y0
b
� 1

2λ
�
?

2

2λ
b2

(130)

where b21 � b22 � 1.
From the relation (130) and (128) we have

λ� 1

λ
�
?

2

2λ
pb2 � b1q (131)

From the relation (131) we obtain
Max

�
λ2 � 1

� � 1 (132)

From the relation (132) and (129) we obtain

Max x0y0 � ab

2

Example 2.13. [3] The courses of two Rivers (within the limits of a determined region) represent
approximately a parabola, y � x2, and a straight line, x � y � 2 � 0. It is necessary to unite these
rivers by means of a rectilinear channel that has the shortest possible length. For what points will it be
necessary to draw them?
Solutión.
Let P � px, yq be a point on the parabola and Q � pZ,wq be a point on the line. The distance from P
to Q is given by

dpP,Qq �
a
px� zq2 � py � wq2. (133)

Therefore, the function to Mainimize is the one given by the equation (133) subject to the condition

y � x2 1 z � w � 2 � 0 (134)

Let a � z � x, b � y � w, using the relation

a� b � λ
�
a2 � b2

�
(135)

we obtain
2� x2 � x � λ

�pz � xq2 � py � ωq2� . (136)

Also

min
a
pz � xq2 � py � ωq2 � min

c
pz � x2 � xq � 2

2λ
(137)
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From the relation (134) we have�
z � x� 1

2λ


2

�
�
y � w � 1

2λ



� 1

2λ2
(138)

From the relation (138) we have that

z � x � 1�?
2b1

2λ

y � w � 1�?
2b2

2λ

(139)

where b21 � b22 � 1. From the relations in (139) we obtain

2� x2 � x � 2�?
2 pb1 � b2q
2λ

(140)

After the relations (138) and (140) we obtain

Min
a
py � xq2 � py � wq2 � Min

�
2� x2 � x

�?
2b

2�?
2 pb1 � b2q

(141)

The minimum in (141) is given when b1 � 1?
2
, b2 � 1?

2
. Therefore

Min
a
pz � xq2 � py � wq2 � Min

��
2� x2 � x

2

�?
2

� Min

��
x� 1

2

�2 � 7
4

	
2

?
2

� 7

8

?
2

(142)

and this happens when x � 1
2 ; therefore y � 1

4 . To calculate pz, wq in (142) we obtaind�
z � 1

2


2

�
�

1

4
� pz � 2q


2

� 7

8

?
2 (143)

Solving this equation we get z.

3 Conclusions

The different theorems obtained and illustrated examples show that the relationship pa1 � a2 � � � � � anq �
λ
�
a21 � a22 � � � � � a2n

�
. where a1, a2, � � � , an P R and is valid for some λ P R. Linking this relationship

with the problem under study and using the Theorem 1.1, it is possible to obtain the desired results,
taking into account the hierarchy of a variable over the other variables. It should be noted that the
hierarchy of a variable depends on the correspondence rule of the function and its given domain.

We believe that the Theorems and examples shown are a starting point to create a general theory
that allows us to find the conditional maxima and minima of real functions of a vector variable without
said functions being differentiable and without placing emphasis on the given domain.
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