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Abstract

The surge in electric vehicle (EV) adoption prompts companies to prioritize dependable charging station designs,

despite hurdles in maintaining consistency. A newly proposed design, featuring 36 ports, employs both uniform and

non-uniform arrangements, subjected to rigorous testing with systems ranging from 50 to 350 kW. Failure rates are

projected through meticulous assessments based on MILHDBK217F and MILHBK-338B standards, employing binomial

distribution and cost analysis to gauge port reliability and overall station success rates. This innovative design not only

bolsters voltage stability but also curtails maintenance expenses by bolstering port reliability.In the realm of robotics

and autonomous systems (RAS), Deep Reinforcement Learning (DRL) demonstrates exceptional prowess but grapples

with the risk of unsafe policies, potentially resulting in perilous decisions. To address this concern, a novel study

introduces a reliability evaluation framework tailored for DRL-driven systems, leveraging formal neural network

analysis. This framework adopts a two-tiered verification strategy: firstly, by assessing safety locally using reachability

tools, and secondly, by aggregating local safety metrics across various tasks to evaluate global safety. Empirical

validation validates the efficacy of this framework in fortifying the safety of RAS.

Introduction

Increasing awareness of global warming has sparked a heightened interest in electric vehicles (EVs) as environmentally

friendly substitutes for traditional automobiles. This shift is primarily motivated by concerns regarding pollution and the

depletion of fossil fuel reserves. Governments are actively encouraging the installation of EV charging stations through

incentives, presenting a challenge for power system engineers to fulfill demand while upholding grid stability and voltage

control. Complicating factors such as land costs and the unpredictability of EV usage further add complexity to the

placement of these charging stations. A study [1] evaluates the impact of increasing PEV adoption on distribution network

investments and energy losses, indicating potential investment increases up to 15% and energy losses up to 40% during

off-peak hours with high PEV usage. Probabilistic power flow (PPF) analysis is suggested for managing the uncertainty in

Plug-in Hybrid Electric Vehicles (PHEVs) charging demands, incorporating a unique charging model and queuing

theory [2][3].

A multi-objective approach [4][5] is proposed for optimizing vehicle-to-grid (V2G) parking lots as distributed generation
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(DG), considering infrastructure reliability, power losses, and costs. A static EV load model is developed to aid stability

analysis, showing that rapid charging impacts grid voltage stability [6][7]. Security and reliability concerns arise from

unregulated EV charging, necessitating intelligent scheduling systems [8][9]. Various probabilistic methods [10][11] and

optimization approaches [12] are explored to address these challenges, including genetic algorithms and particle swarm

optimization. Research [12][13] suggests integrating PEV parking lots to minimize system costs and optimize profits for

distribution firms, accounting for EV growth projections [14]. Optimization models [15][16] prioritize charging station cost-

efficiency and reliability, analyzing EV owner behaviors.

A scheduling approach [17] for EV charging intervals is introduced to optimize power exchange between parking lots,

distribution networks, and EVs. The research emphasizes the importance of strategic decision-making for charging station

installations, utilizing genetic algorithms [18] and optimized staging plans [19][20][21]. Despite EVs' environmental and

economic benefits, their integration strains distribution systems with voltage instability, maintenance costs, and reliability

issues. Unregulated charging and the stochastic nature of EV charging processes pose additional challenges, requiring

careful consideration of location, user concentration, and financial viability for charging station setups. Deep

Reinforcement Learning (DRL) has shown promise in various applications but faces safety concerns in real-world, safety-

critical contexts like autonomous vehicles and power systems. This work addresses the reliability and robustness issues

of DRL and Deep Neural Networks (DNN) in such applications, proposing a two-level verification framework. This

framework leverages local reachability analysis and global software reliability engineering principles to ensure the safety

and reliability of DRL algorithms.

Deep Reinforcement Learning (DRL) has shown remarkable progress across various sectors, particularly in robotics and

autonomous systems. As these technologies permeate our daily lives and critical infrastructures, ensuring their safety and

reliability becomes increasingly crucial. While DRL algorithms excel at training decision-making agents to optimize long-

term performance, real-world scenarios demand more than just optimal performance; they require robustness, stability,

and safety. Consequently, the field of DRL verification and testing has evolved to guarantee system properties across an

infinite input space. [22] introduced adversarial attacks tailored for DRL algorithms, enhancing performance and

robustness when trained with these engineered attacks [5]. However, relying solely on adversarial training methods falls

short in ensuring safety during the training phase. Addressing this gap, we developed a safety layer that computes action

corrections per state to maintain safety throughout the training process. Lyapunov functions are applied to define regions

of attraction for specific policies and applied statistical models to optimize high-performance DRL policies. Despite

advancements in safety during training, discrepancies between training and testing environments persist. To mitigate this

risk, run-time monitors, such as the shield structure, were introduced to prohibit agents from executing unsafe actions for

each state, thereby ensuring safety during operations.

DRL verification presents multifaceted challenges distinct from traditional Deep Learning (DL) verification. The sequential

decision-making inherent to DRL, where a Deep Neural Network (DNN) is invoked repeatedly for each action decision,

coupled with the often stochastic environments, poses significant scalability challenges. For applications like autonomous

vehicles, ensuring consistent actions across both perturbed and unperturbed states at each decision point is essential. To

address these challenges, various DRL verification methodologies have emerged, including abstraction, constraint-based
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verification, reachability analysis, and model checking [12]. Our research primarily focuses on "Reachability Analysis,"

encompassing notable algorithms.

Despite these advancements, a knowledge gap persists regarding DRL safety. Current methods can detect safety

violations under extreme conditions but often fall short in providing a comprehensive understanding of DRL policy safety,

especially when violations occur locally. In the context of charging station installations, the capacity is determined by

available parking spaces, but this alone isn't sufficient for configuring and installing ports to serve customers effectively.

The installation depends on capital investment and expenditure for achieving maximum charging port capacity in a given

area. Therefore, before installing a charging station, reliability tests should be conducted on the selected port configuration

to allocate budgets for procuring the required ports. Based on this understanding, reliability estimation methodologies are

developed to ensure the robustness and effectiveness of the charging infrastructure, aligning with the broader objective of

enhancing DRL safety and reliability.

Methodology

To assess the reliability of the charging port arrangement, we initially focus on the uncertain plug-in conditions. Both

uniform and non-uniform port designs are examined to accommodate varying plug-in scenarios. Intermediate operating

conditions in electric vehicles (EVs) present challenges, with potential higher failure rates in charging stations due to

fluctuating loads on charging ports. The occurrence of failures depends on customer demand, which varies by power

ratings. Persistent port failures can disrupt services, making port replacement essential to maintain consistent charging.

The quality of the replacement port is crucial and is determined based on material standards aligned with capital

investment benchmarks for port maintenance. Therefore, cost estimation is essential to allocate a maintenance budget for

procuring quality replacements, enhancing charging facility reliability. Product lifespan is evaluated to verify quality

compliance, adhering to MIL-HDBK217F standards. Using this methodology, reliability is estimated in terms of failure rates

for each port within the charging arrangement. The charging station's capacity and capabilities hinge on the port

configuration and arrangement. While uniform port layouts are popular for EV charging stations, they require more

installation space.

Ensuring equal parking space for vehicles presents challenges for charging stations. Despite this, uniform ports typically

have simpler and lower maintenance costs compared to non-uniform ports. Non-uniform ports operate across a range of

power ratings, making them suitable for compact installations, whereas uniform ports offer longevity, reliability, and easier

maintenance. Considering these factors, we evaluate installation efficiency, failure rates, reliability, and maintenance

costs for both uniform and non-uniform port configurations. Based on these considerations, we propose a 36-ported

charging station structure that combines both uniform and non-uniform port arrangements. To assess the combined

configuration of uniform and non-uniform charging ports in the proposed 36-port charging station, we introduce a stepwise

evaluation approach. The goal is to design a reliable charging station by selecting the appropriate distribution system for

installation area, system configuration, and probability method. We opt for the binomial distribution to determine the

necessary charging station capacity for 36 ports.
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The proposed 36-port station combines both uniform and non-uniform configurations, accommodating various port

populations to optimize charging facilities based on parking lot capacities. Reliable charging largely hinges on port

reliability in terms of failure rates, which can be influenced by EVs' intermediate charging patterns. Understanding these

failure probabilities requires a methodology that can address both real and hypothetical scenarios through statistical

validation. To evaluate these hypothetical failure probabilities, we employ probability statistical methods to assess the

reliability of each port in the charging station. Our approach uses binomial distribution due to its applicability to both

uniform and non-uniform configurations. Binomial distribution allows for simultaneous comparisons of two distinct

probability evaluations, offering accurate insights into the probability and reliability of the proposed 36-port configurations.

A charging station with a power range of 50-350 kW serves as our model for this analysis. We follow the prescribed

workflow for uniform and non-uniform systems, starting with the selection of 36 ports and incorporating reliability methods.

The reliability evaluation considers random EV charging processes across various repetitive combinations.

The charging station features a dual-batch system for parking lot convenience. The uniform system comprises 20 ports,

with 2 being susceptible to vulnerabilities. Meanwhile, the non-uniform system offers 16 ports, and we employ a

repeatability method to assess product reliability. Repeatability occurs when a random configuration is selected,

culminating in a comprehensive assessment of the charging station's failure rates. Ultimately, the system's failure rate is

evaluated based on MILHBK-338B standards, incorporating both uniform and non-uniform configurations to ensure a

thorough and reliable analysis.

Review of Results

Evaluating the reliability and economics of Electric Vehicle (EV) charging configurations is crucial as the adoption of EVs

continues to grow globally. Reliable charging infrastructure is essential to support the widespread use of EVs and to

address concerns about range anxiety among consumers. Various factors contribute to the reliability of EV charging

systems, including the design of charging ports, the distribution of charging stations, and the maintenance protocols in

place. Economic considerations are equally important, as the cost-effectiveness of charging configurations impacts both

consumers and service providers. Evaluating these aspects helps to optimize the design and operation of EV charging

infrastructure, ensuring its long-term sustainability and affordability.

Deep Reinforcement Learning (DRL) has emerged as a powerful tool in the fields of robotics and autonomous systems,

offering promising advancements in decision-making and control algorithms. DRL algorithms enable agents to learn

optimal strategies through trial and error, improving performance over time. In robotics and autonomy, the reliability of

DRL algorithms is paramount, as incorrect decisions can lead to system failures or safety hazards. Evaluating the

reliability of DRL algorithms involves rigorous testing and validation processes to ensure their robustness across various

scenarios and environments. Additionally, understanding the economic implications of implementing DRL in robotics and

autonomy is crucial for cost-effective system development and deployment.Integrating DRL into EV charging

configurations presents new opportunities and challenges. DRL algorithms can optimize charging schedules, manage
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energy storage, and enhance grid integration, leading to more efficient and reliable charging systems. However,

implementing DRL in this context requires careful evaluation of its reliability and economic feasibility. Ensuring that DRL

algorithms operate safely and efficiently within the complex and dynamic environment of EV charging infrastructure is

essential. Moreover, understanding the economic costs and benefits of integrating DRL into EV charging systems helps

stakeholders make informed decisions about investment, development, and deployment strategies.

Significance of Results

Evaluating the reliability and economics of EV charging configurations and DRL in robotics and autonomy is essential for

advancing these technologies and ensuring their successful integration into modern transportation and energy systems.

Comprehensive assessments that consider both technical and economic factors enable stakeholders to make informed

decisions, optimize system designs, and address challenges effectively. As EV adoption and automation continue to

accelerate, ongoing research and evaluation efforts will play a critical role in driving innovation, enhancing reliability, and

achieving sustainable and cost-effective solutions for future mobility and energy infrastructure.

Conclusion

This study underscores the importance of reliable charging station designs in meeting the growing demand for Electric

Vehicles (EVs). The proposed 36-ported design, integrating both uniform and non-uniform port arrangements, offers a

promising solution to enhance port reliability and reduce maintenance costs, particularly for systems ranging from 50-350

kW. By leveraging established standards like MILHDBK217F and MILHBK-338B, along with binomial distribution and cost

analysis, the design demonstrates improved voltage stability and a more sustainable charging infrastructure. Furthermore,

in the realm of robotics and autonomous systems (RAS), the study addresses critical challenges associated with the

deployment of Deep Reinforcement Learning (DRL) algorithms. While DRL has shown significant promise in enhancing

RAS performance, concerns about safety and reliability persist due to potential hazardous decisions stemming from

unsafe policies. This research introduces a comprehensive reliability assessment framework for DRL-controlled systems,

leveraging formal neural network analysis and a two-level verification approach. By assessing safety both locally and

globally, the framework offers a robust methodology to evaluate and enhance the safety of DRL-driven RAS.

Overall, the findings from this study provide valuable insights and methodologies for advancing both EV charging

infrastructure and DRL-controlled RAS. By focusing on reliability, safety, and cost-effectiveness, the research contributes

to the development of more resilient and efficient systems, addressing key challenges and paving the way for broader

adoption of EVs and autonomous technologies in the future.

References

1. ^B. R. Kiran et al., "Deep reinforcement learning for autonomous driving: A survey", IEEE Trans. Intell. Transp. Syst.,

Qeios, CC-BY 4.0   ·   Article, May 6, 2024

Qeios ID: PQUJEL.2   ·   https://doi.org/10.32388/PQUJEL.2 5/7



vol. 23, no. 6, pp. 4909-4926, Jun. 2022.

2. ^Y. Dong, X. Zhao, S. Wang and X. Huang, "Reachability Verification Based Reliability Assessment for Deep

Reinforcement Learning Controlled Robotics and Autonomous Systems," in IEEE Robotics and Automation Letters,

vol. 9, no. 4, pp. 3299-3306, April 2024, doi: 10.1109/LRA.2024.3364471

3. ^L. P. Fernandez, T. G. S. Roman, R. Cossent, C. M. Domingo and P. Frias, "Assessment of the impact of plug-in

electric vehicles on distribution networks", IEEE Trans. Power Syst., vol. 26, no. 1, pp. 206-213, Feb. 2011.

4. ^Lindsay N. Mahiban, Emimal M. (2023). Longevity of Electric Vehicle Operations. Qeios. doi:10.32388/ZAPC23.2.

5. a, bM. Moradijoz, M. P. Moghaddam, M. R. Haghifam and E. Alishahi, "A multi-objective optimization problem for

allocating parking lots in a distribution network", Int. J. Electr. Power Energy Syst., vol. 46, pp. 115-122, Mar. 2013

6. ^X. Zhu, H. Han, S. Gao, Q. Shi, H. Cui and G. Zu, "A multi-stage optimization approach for active distribution network

scheduling considering coordinated electrical vehicle charging strategy", IEEE Access, vol. 6, pp. 50117-50130, 2018.

7. ^M. H. Amini, M. P. Moghaddam and O. Karabasoglu, "Simultaneous allocation of electric vehicles’ parking lots and

distributed renewable resources in smart power distribution networks", Sustain. Cities Soc., vol. 28, pp. 332-342, Jan.

2017.

8. ^K. Vaishali and D. R. Prabha, "The Reliability and Economic Evaluation Approach for Various Configurations of EV

Charging Stations," in IEEE Access, vol. 12, pp. 26267-26280, 2024, doi: 10.1109/ACCESS.2024.3367133

9. ^Mahiban Lindsay, M. Emimal, "Fuzzy logic-based approach for optimal allocation of distributed generation in a

restructured power system", International Journal of Applied Power Engineering (IJAPE) Vol. 13, No. 1, March 2024,

pp. 123~129, ISSN: 2252-8792, DOI: 10.11591/ijape.v13.i1.pp123-129

10. ^N.K. Rayaguru, N. Mahiban Lindsay, Rubén González Crespo, S.P. Raja, “Hybrid bat–grasshopper and bat–modified

multiverse optimization for solar photovoltaics maximum power generation”, Computers and Electrical Engineering,

Volume 106, 2023, 108596, ISSN 0045-7906, doi: 10.1016/j.compeleceng.2023.108596.

11. ^F. Ramoliya et al., "ML-Based Energy Consumption and Distribution Framework Analysis for EVs and Charging

Stations in Smart Grid Environment," in IEEE Access, vol. 12, pp. 23319-23337, 2024, doi:

10.1109/ACCESS.2024.3365080.

12. a, b, cEmimal M, Karthik Nathan, Lindsay N. Mahiban. (2023). Enhancing Electric Vehicle Reliability and Integration with

Renewable Energy: A Multi-Faceted Review. Qeios. doi:10.32388/G7VHLA.

13. ^H. Sarnago and O. Lucía, "High Power Density On-Board Charger Featuring Power Pulsating Buffer," in IEEE Open

Journal of Power Electronics, vol. 5, pp. 162-170, 2024, doi: 10.1109/OJPEL.2024.3359271

14. ^Mahiban Lindsay, N. and Parvathy, A.K. (2019). Power System Reliability Assessment in a Complex Restructured

Power System. International Journal of Electrical and Computer Engineering., 9(4):2296-2302.

15. ^H. Wang et al., "A Thermal Network Model for Multichip Power Modules Enabling to Characterize the Thermal

Coupling Effects," in IEEE Transactions on Power Electronics, vol. 39, no. 5, pp. 6225-6245, May 2024, doi:

10.1109/TPEL.2024.3355207.

16. ^Hemendra Kumar, Mohit Kumar, Pratik kumar, Mahiban Lindsay, “Smart Helmet For Two Wheeler Drivers”, in

International Journal of Engineering Research And Advanced Technology, ISSN: 2454-6135, Volume. 02 Issue.05,

2016.

Qeios, CC-BY 4.0   ·   Article, May 6, 2024

Qeios ID: PQUJEL.2   ·   https://doi.org/10.32388/PQUJEL.2 6/7



17. ^D. V. K. Sarma and N. M. Lindsay, "Structural Design and Harnessing for Electric vehicle Review," 2023 9th

International Conference on Electrical Energy Systems (ICEES), Chennai, India, 2023, pp. 107-111, doi:

10.1109/ICEES57979.2023.10110190.

18. ^Lindsay N. Mahiban; K. Nandakumar; Adarsh Vijayan Pillai, “Power system reliability index assessment by

chronological model with FACTS devices” AIP Conference Proceedings 2452, 040003, 2022.

19. ^M. L. N, A. E. Rao and M. P. Kalyan, "Real-Time Object Detection with Tensorflow Model Using Edge Computing

Architecture," 2022 8th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 2022, pp.

01-04, doi: 10.1109/ICSSS54381.2022.9782169.

20. ^S. S. Rachakonda, G. Jaya Prakash and N. M. Lindsay, "Modeling and Simulation of Hybrid Energy Generation for

Stand Alone Application," 2022 8th International Conference on Smart Structures and Systems (ICSSS), Chennai,

India, 2022, pp. 1-6, doi: 10.1109/ICSSS54381.2022.9782301.

21. ^A. T. Jacob and N. Mahiban Lindsay, "Designing EV Harness Using Autocad Electrical," 2022 8th International

Conference on Smart Structures and Systems (ICSSS), Chennai, India, 2022, pp. 1-4, doi:

10.1109/ICSSS54381.2022.9782226.

22. ^Y. Dai, L. Zhang, D. Xu, Q. Chen and J. Li, "Development of Deep Learning-Based Cooperative Fault Diagnosis

Method for Multi-PMSM Drive System in 4WID-EVs," in IEEE Transactions on Instrumentation and Measurement, vol.

73, pp. 1-13, 2024, Art no. 3506513, doi: 10.1109/TIM.2023.3342858.

Qeios, CC-BY 4.0   ·   Article, May 6, 2024

Qeios ID: PQUJEL.2   ·   https://doi.org/10.32388/PQUJEL.2 7/7


	Enhancing EV Charging Station Reliability and RAS Safety
	Abstract
	Introduction
	Methodology
	Review of Results
	Significance of Results
	Conclusion
	References


