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Reconstructing continuous surfaces from unoriented and unordered 3D points is a fundamental challenge in computer vision and graphics. Recent

advancements address this problem by training neural signed distance functions to pull 3D location queries to their closest points on a surface, following

the predicted signed distances and the analytical gradients computed by the network. In this paper, we introduce NumGrad-Pull, leveraging the

representation capability of tri-plane structures to accelerate the learning of signed distance functions and enhance the �delity of local details in surface

reconstruction. To further improve the training stability of grid-based tri-planes, we propose to exploit numerical gradients, replacing conventional

analytical computations. Additionally, we present a progressive plane expansion strategy to facilitate faster signed distance function convergence and

design a data sampling strategy to mitigate reconstruction artifacts. Our extensive experiments across a variety of benchmarks demonstrate the

e�ectiveness and robustness of our approach. Code is available at https://github.com/CuiRuikai/NumGrad-Pull.

Corresponding author: Ruikai Cui, ruikai.cui@anu.edu.au

1. Introduction

Figure 1. We present NumGrad-Pull, a tri-plane-based framework that enables e�cient and

robust surface reconstruction from unoriented point sets.

The signed distance function (SDF) has become a fundamental 3D representation in computer vision and graphics, widely adopted for its utility in various

applications. Recent advances[1][2][3][4][5] have increasingly focused on leveraging SDFs to reconstruct continuous surfaces from 3D point clouds[6][7][8][9].

By mapping each 3D coordinate to a corresponding signed distance from the shape surface, SDFs implicitly de�ne surfaces as zero-level sets, providing a

powerful surface representation framework that o�ers distinct advantages in capturing high-�delity 3D shapes with complex, arbitrary topologies.
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Recent e�orts[1][4][10][2][11][12]  in learning SDFs from point clouds tend to directly train neural networks on point sets, relying on extensive distance

computations between query and surface points to guide the network towards accurate distance �eld convergence. A pioneering approach in this direction

is Neural-Pull[1], which trains a neural network to iteratively project query points onto surfaces, using the learned signed distances and gradients to guide

each time of adjustment. Subsequent works have extended this method by incorporating additional constraints for improved pulling target estimation[2]

[10][4]  or enhanced scalability of the approach[3]. In general, existing methods often utilize deeper neural architectures and complex loss constraints to

model signed distance �elds, yet they still produce overly smoothed surfaces lacking �ne-grained details and su�er from slow query speeds.

In this paper, we introduce NumGrad-Pull, a novel method for fast and high-�delity surface reconstruction from point clouds. NumGrad-Pull models SDFs

using a hybrid explicit–implicit representation, which combines a tri-plane structure that stores spatial information, with a shallow multi-layer

perceptron (MLP) that maps feature embeddings on the tri-plane to a real signed distance value. Particularly, this design enables faster distance

queries[13] compared to previous implicit methods[1][2][10], while maintaining strong geometric and shape expressive capabilities. Although the tri-plane

structure improves reconstruction speed and �delity, it poses challenges for stable training, since its grid-based format lacks feature interaction between

adjacent grids, con�icting with the continuous nature of 3D surfaces. To improve the training stability of our approach, we innovate by using numerical

gradients instead of analytical ones, allowing queries to back-propagate more e�ectively to relevant grid entities. Moreover, we introduce a progressive

tri-plane expansion scheme, starting the training with a low-resolution tri-plane and gradually increasing the resolution. This approach accelerates

convergence and helps prevent the network from getting into local minima.

To assess the e�ectiveness of our proposed method, we evaluate it on widely used benchmarks that consist of both synthetic and real-world objects. Our

main contributions are as follows:

We introduce a hybrid explicit–implicit tri-plane representation that signi�cantly improves both speed and �delity in learning signed distance

functions from unoriented point clouds.

We propose to utilize numerical gradients in place of traditional analytical gradients for back-propagating supervision on each query, signi�cantly

improving the stability and convergence of the signed distance function.

We design a progressive tri-plane expansion scheme that further accelerates the convergence of tri-plane learning, enhancing both computational

e�ciency and reconstruction quality.

Figure 2. Illustration of our method. (a) The NumGrad-Pull framework parameterizes a neural signed distance function using a hybrid explicit-implicit

representation. We employ a tri-plane structure to store explicit spatial information and a shallow MLP to decode features extracted from the tri-plane

implicitly, enabling e�cient and robust surface reconstruction from unoriented point sets. (b) For a given query point, our method extracts features from each

of the three orthogonal planes via bilinear interpolation. (c) To address locality issues and stabilize the training process, we introduce a numerical gradient

computation strategy, which involves adjacent grid entities in back-propagation, ensuring smoother feature propagation across the tri-plane. (d) Using the

signed distance and numerical gradients obtained from the tri-plane-based SDF, our method trains the network by pulling the query point toward its nearest

neighbor on the surface.
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2. Related Work

Recent advancements in deep learning have highlighted the signi�cant potential of neural networks for surface reconstruction from 3D point clouds.

Below, we provide a brief review of methods relevant to point cloud-based surface reconstruction and surface representation.

2.1. Traditional Surface Reconstruction

Pioneering surface reconstruction methods like Delaunay triangulation[14] introduce tetrahedral meshes to connect points, producing accurate surfaces for

dense data but struggling with sparse or noisy inputs due to their computational intensity. Building on this, Poisson surface reconstruction[15] formulates

surface inference as a volumetric problem by solving the Poisson equation. This approach e�ectively produces smooth, watertight surfaces and handles

noise well, but it often smooths out �ne details. Moving least squares[16]  is often used as pre-processing that smooths noisy data by �tting local planes;

however, it also oversmooths high-frequency details. The interpolation-based approaches, such as Radial Basis Functions[17], employ continuous

functions to interpolate across sparse points, providing robust surfaces for smooth geometries, though computationally demanding for large datasets. By

leveraging graph connectivity, graph-based methods address surface reconstruction by organizing point clouds through denoising, outlier removal, and

robust normal estimation steps[18][17][19]. These methods e�ectively handle sparse or non-uniform data, but can be computationally expensive, especially

for high-resolution point clouds.

2.2. Neural Surface Reconstruction

More recently, neural networks have enabled learning-based approaches to surface reconstruction, where implicit functions trained on large datasets

facilitate detailed surface modeling even with sparse inputs[20][21]. However, estimating surfaces from unoriented point sets remains challenging without

ground truth signed distance values. Point2Surf[22] addresses this issue by learning a prior over local patches with detailed structures and coarse global

information. Moreover,[1]  introduce the �rst pulling operation-based surface reconstruction scheme, observing that the gradient of a neural SDF

represents the normal direction of a query point. By using this gradient and the estimated distance from the SDF, any query point can be pulled to the

surface, considering the neural SDF as a close approximation of the ground truth. Building on this scheme, Grid-Pull[3]  presents a discrete grid-based

representation to improve the scalability of pull-based methods. Subsequent work by[10] applies guiding points for incrementally changing optimizations

toward the true surfaces. More recently,[2] propose a bilateral �lter to smooth the implicit �eld, retaining high-frequency geometric details. Di�erent from

existing studies, we are pioneering the exploration of hybrid explicit–implicit representations[13] for fundamental surface reconstruction problems, where

our approach shows promise in accelerating query speeds and preserving geometric details across various reconstruction tasks[23][24].

2.3. Neural Surface Representation

Implicit representations have become widely used for surface reconstruction from point clouds, e.g., Neural-Pull[1] devises a deep fully-connected network

to represent the distance �eld as a continuous function. However, this approach results in slow query speeds, as each distance query requires a complete

pass through the network. In contrast, explicit representations, such as discrete voxel grids[3], o�er faster query times but face memory limitations, with

memory consumption scaling as    as the discretization resolution increases. Given complementary advantages provided by explicit and implicit

representations, motivated to develop a hybrid approach for surface reconstruction that combines the strengths of both paradigms. In this work, we

present the �rst hybrid explicit–implicit method for neural surface reconstruction from point clouds, leveraging the tri-plane structure[13][25][26][27][24]

[28][29] to integrate the e�ciency of explicit storage with the �exibility of implicit decoding. Particularly, our proposed tri-plane method stores features on

axis-aligned planes and exploys a lightweight implicit decoder to aggregate these features for e�cient querying, achieving computational and memory

e�ciency.

3. Method

NumGrad-Pull reconstructs continuous surfaces from unoriented point sets by parameterizing a signed distance function (SDF) with a hybrid explicit-

implicit tri-plane structure (Sec. 3.2). The network is trained with numerical gradients (Sec. 3.3), which help stabilize the training process. Additionally, we

introduce a progressive tri-plane expansion strategy (Sec. 3.4) and a novel query location sampling method (Sec. 3.5) to enhance both convergence speed

and reconstruction quality. The overall pipeline of our proposed method is illustrated in Fig. 2.
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3.1. Preliminaries

A signed distance function is a function   that maps a spatial position to a real value representing the signed distance to the shape surface. Using

this function, the shape surface can be de�ned as the zero-level set of  , allowing for surface extraction through methods such as marching cubes[30]. To

learn a neural SDF   from a given point cloud   without normal information,[1] propose to query the function at various positions, and train a network to

“pull” each query position   toward the shape surface, approximated by the nearest point on   to  . Speci�cally, this pulling operation is de�ned as:

where   denotes the normalized gradient of   and   is its distance from the shape surface, both predicted by the SDF. In practice, neural SDFs are

often implemented as deep fully-connected networks, which can be slow to query due to the need for a full forward pass regarding each time of a distance

query. This limitation highlights the critical need for a faster SDF parameterization that achieves high reconstruction quality without compromising query

e�ciency.

3.2. Tri-plane Formulation

Unlike prior methods[1][2]  that rely solely on deep fully-connected networks to learn a neural SDF, we leverage tri-plane embeddings to e�ciently

incorporate explicit 3D spatial information. Basically, our method estimates the signed distance of a query position by interpolating within the tri-plane

structure and decoding through a shallow MLP to produce a real-valued signed distance output. By combining tri-plane structures with �nite

di�erentiation for gradient computation, our end-to-end trainable neural SDF model captures a high-�delity 3D shape representation of a given point

cloud.

To formulate our hybrid explicit-implicit representation for a neural SDF, we integrate a tri-plane structure for capturing geometric features, with an MLP

parameterized by   for signed distance decoding. Speci�cally, the tri-plane structure consists of three orthogonal planes (XY, YZ, and XZ) that collectively

factorize a dense 3D volume grid. For any query point  , the signed distance function   is computed as follows:

where    denotes the three feature planes with    spatial resolution and    feature channels,    represents an

orthogonal projection of the query point onto each respective plane,   denotes bilinear interpolation that extracts feature vectors from each plane,

and   indicates element-wise addition.

3.3. Numerical Gradient

While tri-plane representations enhance geometric feature learning and accelerate training, they introduce a locality issue because spatial features are

stored in a grid-based structure. Accordingly, each forward pass only considers neighboring features within a small spatial region, limiting the

optimization of tri-plane features to adjacent grids. Following previous works[1][3][2][10], we initially compute the gradient term    in Eq.  1 using

analytical gradients. However, this attempted approach proves unstable as it only propagates guidance to limited features in one forward pass, preventing

proper convergence of the tri-plane-based neural SDF. The detailed reasons are explained as below:

Given a query point   and a plane resolution  , the feature extraction for the tri-plane encoding from the   plane can be achieved via bilinear

interpolation. First, we scale the query point by the plane resolution:  , and de�ne the coe�cients for bilinear interpolation at the four

corners of the grid as:

where   and   are the interpolation coe�cients along the  - and  -axes, respectively. The resulting feature vector   from the   plane is then

given by:

After performing bilinear interpolation on each of the three planes ( ,  , and  ), the �nal feature vector is obtained by aggregating the features from

each plane:
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However, the feature extraction in the forward pass involves non-di�erentiable rounding operations, such as   and  . As a result, the gradient of the

tri-plane encoding is inherently local: when the query point    crosses grid boundaries, the corresponding grid corner entities change discontinuously.

Consequently, the supervision loss is only back-propagated to the grid entities involved in the current forward pass, i.e., the four corner points involved in

the interpolation. This local gradient propagation becomes problematic when learning neural SDFs from sparse point clouds. In such cases, the sparsity of

the points can confuse the network about surface connectivity as the discrete grid features do not imply continuous gradient changes, leading to corrupted

learning.

To address the locality issue of the analytical gradient in tri-plane encoding and enable joint optimization across neighboring grids, we employ �nite

di�erentiation for gradient computation. Speci�cally, for each query point  , we estimate the gradient by sampling additional points around   at

a small o�set   along each axis of the canonical coordinate system. For instance, the  -component of the gradient is computed as:

where    is the perturbation along the  -axis;    and    represent two sample points along the  -axis. Using the same approach for 

 and  , we sample a total of six points around   to construct the complete gradient  .

This �nite di�erentiation approach enables gradient computation to incorporate information from adjacent grids when a query point is near a grid

boundary. By involving multiple tri-plane entries in the gradient calculation, the subsequent back-propagation updates multiple grid regions

simultaneously, thereby enhancing the stability of the learning process.

3.4. Progressive Tri-Plane Expansion

We further propose a coarse-to-�ne optimization scheme for surface reconstruction, which progressively expands tri-plane resolution over   stages to

prevent the neural SDF’s convergence to local minima. Starting with a low-resolution tri-plane facilitates e�cient learning of the global shape context and

provides a good initialization for subsequent higher-resolution re�nements of surface details.

Let the �nest tri-plane resolution be  . We begin the optimization with a tri-plane of resolution  , where    denotes the current tri-plane

resolution, and increase the resolution by a factor of 2 at each stage. We achieve the resolution upsampling via bilinear interpolation. Furthermore, to

ensure that the queries for numerical gradients remain within a valid vicinity, we dynamically adjust the perturbation value   to be inversely correlated with

the current resolution:  . This progressive re�nement of the tri-plane resolution helps stabilize training, allowing the network to capture both global

and �ne-grained surface details while avoiding local minima.

3.5. Query Locations Sampling

To learn a neural SDF from point clouds, we need to sample query-target point pairs[1]. For an extensive sampling of random query positions around each

point    in  , we follow an isotropic Gaussian distribution    to sample query locations. We randomly sample 25 query points based on this

distribution, where   controls the sampling range around the surface. The value of    is adaptively set as the squared distance between   and its 50th

nearest neighbor, indicating the local point density around  .

However, this data sampling strategy is insu�cient for the learning of our tri-plane-based hybrid SDF representations. The abovementioned procedure

guides the object’s surface, while neglecting distant regions. Since our method encodes spatial information on a tri-plane structure, this lack of su�cient

guidance can lead to inaccurate or random predictions for the signed distances in distant areas. To address this issue, we introduce another complementary

sampling strategy of randomly sampling points in a unit cube  , aligning with the scale of training data. Accordingly, we not only ensure that every

tri-plane entity is trained, but also prevent untrained regions of the tri-plane grid from negatively a�ecting the learning process.

3.6. Optimization

Our proposed method trains a neural SDF by learning to pull a query location   towards its nearest neighbor, i.e., the target surface point   in the point

cloud  . Following the computations in Eq.  1, after each training iteration, a query point   will be moved to a new position   closer to the point cloud

surface, guided by the learned distance value and numerical gradients. Particularly, we train the neural layers of NumGrad-Pull in an end-to-end manner

by minimizing the squared Euclidean distances (  norm) between the pulled query locations and their corresponding nearest neighbor targets. The overall

loss is formulated as follows:

where   is the number of sampled query points.
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4. Experiments

We conduct experiments to evaluate the performance of our NumGrad-Pull for surface reconstruction from raw point clouds, presenting results on both

synthetic point clouds and real scanned data. We also perform ablation studies to validate the main components of NumGrad-Pull and analyze the impact

of various design choices.

4.1. Implementation Details

We initialize the tri-plane with a resolution of   and a feature dimension of 32. The tri-planes are then expanded over three stages at the 3k, 8k, and 12k

iterations, ultimately reaching a resolution of  . To decode the tri-plane features, we use a three-layer fully connected network with a hidden dimension

of 128. Additionally, we initialize the network parameters using the geometric network initialization scheme proposed in[31], which approximates the

signed distance function of a sphere. For optimization, we use the Adam optimizer[32], with an initial learning rate of 0.001 for the MLP and 0.05 for the tri-

plane parameters. All the experiments are conducted on an Nvidia GeForce RTX 3090 GPU.

Dataset NP[1] PCP[12] SIREN[33] DIGS[4] IF[2] Ours

ABC 0.95 2.52 0.22 0.21 0.11 0.09

FAMOUS 1.00 0.37 0.25 0.15 0.08 0.04

Mean 0.98 1.45 0.24 0.18 0.10 0.07

Table 1. Comparisons on ABC[34] and FAMOUS[22] datasets. The metric is chamfer distance ( ) scaled by  .

Method Venue Display Lamp Plane Cabinet Vessel Table Chair Sofa Avg.

SPSR[15] SGP 2006 2.730 2.270 2.170 3.630 2.540 3.830 2.930 2.760 2.860

NP[1] ICML 2021 0.390 0.800 0.080 0.260 0.220 0.600 0.540 0.120 0.380

LPI[35] ECCV 2022 0.080 0.172 0.060 0.179 0.092 0.436 0.187 0.164 0.171

PCP[12] CVPR 2022 0.887 0.380 0.065 0.153 0.079 0.131 0.110 0.086 0.136

GP[3] ICCV 2023 0.082 0.347 0.007 0.112 0.033 0.052 0.043 0.015 0.086

IF[2] ECCV 2024 0.009 0.019 0.045 0.055 0.005 0.025 0.070 0.027 0.032

Ours N/A 0.024 0.013 0.012 0.032 0.012 0.022 0.024 0.020 0.020

Table 2. Comparisons on the ShapeNet dataset[36]. The metric is chamfer distance ( ) scaled by  .
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Method
Anchor Daratech DC Gargoyle Lord Quas

SPSR[15] 0.60 14.89 0.60 14.89 0.44 7.24 0.44 7.24 0.27 3.10 0.27 3.10 0.26 6.80 0.26 6.80 0.20 4.61 0.20 4.61

IGR[31] 0.22 4.71 0.12 1.32 0.25 4.01 0.08 1.59 0.17 2.22 0.09 2.61 0.16 3.52 0.06 0.81 0.12 1.17 0.07 0.98

SIREN[33] 0.32 8.19 0.10 2.43 0.21 4.30 0.09 1.77 0.15 2.18 0.06 2.76 0.17 4.64 0.08 0.91 0.17 0.82 0.12 0.76

VisCo[37] 0.21 3.00 0.15 1.07 0.21 4.06 0.14 1.76 0.15 2.22 0.09 2.76 0.17 4.40 0.11 0.96 0.12 1.06 0.07 0.64

SAP[38] 0.12 2.38 0.08 0.83 0.26 0.87 0.04 0.41 0.07 1.17 0.04 0.53 0.07 1.49 0.05 0.78 0.05 0.98 0.04 0.51

NP[1] 0.122 3.243 0.061 3.208 0.375 3.127 0.746 3.267 0.157 3.541 0.242 3.523 0.080 1.376 0.063 0.475 0.064 0.822 0.053 0.508

GP[3] 0.093 1.804 0.066 0.460 0.062 0.648 0.039 0.293 0.066 1.103 0.036 0.539 0.063 1.129 0.045 0.700 0.047 0.569 0.031 0.370

DIGS[4] 0.063 1.447 0.030 0.270 0.049 0.858 0.025 0.441 0.042 0.667 0.022 0.729 0.047 0.971 0.028 0.271 0.031 0.496 0.017 0.181

IF[2] 0.052 1.232 0.025 0.265 0.051 0.751 0.028 0.423 0.041 0.815 0.019 0.724 0.044 1.089 0.022 0.246 0.030 0.554 0.014 0.230

Ours 0.051 1.194 0.041 0.113 0.050 0.730 0.036 0.236 0.026 0.215 0.032 0.286 0.033 0.416 0.040 0.127 0.036 0.293 0.039 0.127

Table 3. Comparison on the Surface Reconstruction Benchmark[39].

Metric 8 16 32 64 NP[1] IF[2]

  9.31 0.45 0.39 0.35 1.00 0.80

Speed (iter/s)  219 231 227 225 122 42

Table 4. E�ect of di�erent tri-plane con�gurations on surface reconstruction for the FAMOUS dataset[22] compared with recent methods, measured by 

 and scaled by  .
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Figure 3. Visual comparisons of surface reconstruction quality on the synthetic datasets (ABC[34], FAMOUS[22], ShapeNet[36]) and the real-world scan dataset

(SBR[39]).

4.2. Surface Reconstruction for Shapes

4.2.1. Datasets and Metrics

For surface reconstruction of general shapes from raw point clouds, we follow the evaluation protocol used in prior work[1][2] and assess our method on

three widely used datasets: ShapeNet[36], ABC[34], and FAMOUS[22]. For ShapeNet, we use the test split de�ned in[40] and the pre-processed data provided

in[20]. Following the footsteps of[22], we employ the same train/test split and pre-processed data for the ABC and FAMOUS datasets.

For performance evaluation, we follow the approach of previous works[1][2], sampling   points from both the reconstructed surfaces and the ground

truth meshes for the ShapeNet dataset and    points for the ABC and FAMOUS datasets. We use Chamfer distance (CD), measured by    norm to

quantify the distance between our reconstructions and the ground truth surfaces.

4.2.2. Comparison

We compare the performance of our proposed NumGrad-Pull with several state-of-the-art methods, including SPSR[15], PCP[12], LPI[35], SIREN[33],

Neural-Pull[1], DIGS[4], Grid-Pull[3], and the recent IF[2]. Results on the ABC and FAMOUS datasets are presented in Tab. 1, highlighting the superiority of

our method: NumGrad-Pull outperforms the latest state-of-the-art by margins of 0.02 and 0.04 on the ABC and FAMOUS datasets, respectively.

Furthermore, our method shows strong performance in Tab. 2 on the ShapeNet dataset, which is a challenging and comprehensive benchmark comprising

over 3,000 testing objects. Our NumGrad-Pull achieves the best average surface reconstruction quality across all methods, outperforming the state-of-

the-art IF[2] method by 0.012 and achieving the best results in six out of eight categories. These quantitative results demonstrate the e�ectiveness of our

approach in improving surface reconstruction quality.

1 × 105

1 × 104 ℓ2
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In Fig.  3, we present qualitative comparisons with other approaches[15][1][2], showcasing that our method e�ectively reconstructs object surfaces from

unoriented point clouds across varying levels of sparsity and noise. Notably, our method reliably captures detailed structures, as seen in the chair sample

from the ShapeNet dataset. Similarly, our approach produces intact surfaces without the breaks observed in other methods, as illustrated in the second

example from the ABC dataset. These results further highlight the e�ectiveness and robustness of our approach.

4.3. Surface Reconstruction for Real Scans

4.3.1. Datasets and Metrics

For surface reconstruction from real point cloud scans, we follow the evaluation protocol of VisCo[37] on the Surface Reconstruction Benchmark (SRB)[39],

which includes �ve challenging real-world scans. We adopt Chamfer and Hausdor� distances (  and  ) between the reconstruction meshes and the

ground truth as the quality metrics. Following the state-of-the-art method[2], we also report the corresponding uni-directional distances (   and  )

between the reconstructed meshes and the input noisy point clouds to evaluate the performance in preserving scanned geometries.

4.3.2. Comparison

We compare our method with various prior methods using the speci�ed evaluation metrics, with per-object results presented in Tab.  3. Our method

performs well across multiple metrics and objects, particularly achieving superior reconstruction quality on the Anchor and the Gargoyle object. To further

substantiate the results, we provide visualizations of the Gargoyle (7th column) and DC (8th column) samples in Fig. 3. Our method captures �ner details,

such as the rings on the Gargoyle’s wings, and preserves accurate geometry even in areas with corruptions in the original scan, demonstrating robust detail

retention and reconstruction �delity.

4.4. Ablation Studies

Figure 4. Visual results of surface reconstruction using di�erent tri-plane resolutions.

4.4.1. E�ect of Tri-plane Resolution

Considering that tri-plane resolution impacts surface reconstruction quality, we empirically evaluate the performance of NumGrad-Pull using various

resolutions, 8, 16, 32, and 64, on the FAMOUS dataset. Visual results are shown in Fig.  4, and quantitative results are provided in Tab.  4. Our �ndings

indicate that as tri-plane resolution increases, surface reconstruction quality (measured by  ) improves. The most substantial gain is observed when

increasing the resolution from 8 to 16, while increasing to 32 and 64 resolution yields marginal improvements. The signi�cant quality boost from 8 to 16

suggests that an    tri-plane lacks su�cient capacity to store the necessary information for accurate surface reconstruction, as shown in Fig.  4(b).

Higher resolutions enhance the network’s ability to capture �ne structures; however, with a   tri-plane, while the metric show slight improvements,

the visual results reveal unwanted surface unevenness, indicating that excessive high-frequency noise is being captured. Overall, to balance reconstruction

quality with robustness against noise, we apply a   tri-plane for our main experiments.

We also present e�ciency comparisons between recent methods with our NumGrad-Pull using di�erent tri-plane resolutions in Tab. 4. Since our proposed

tri-plane-based neural SDF can signi�cantly improve query speed, we achieve a 1.8× speedup over Neural-Pull[1]  and a 5.4× speedup over IF[2], while

retaining superior surface reconstruction quality. Furthermore, the tri-plane representation exhibits excellent scalability with respect to resolution: as the

tri-plane resolution increases, the query speed remains stable. This stability is attributed to the feature interpolation process being an    operation,

ensuring that query speed is una�ected by resolution changes.

CDℓ1
HD

d
C

⃗  d
H

⃗ 

CDℓ2

8 × 8

64 × 64

32 × 32

O(1)
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4.4.2. E�ect of Each Module

We conduct a detailed ablation study to validate the e�ectiveness of each proposed module, including the following model variants: A) full model without

our data sampling strategy; B) full model without the tri-plane structure; C) full model without numerical gradients; and D) full model without progressive

tri-plane expansion. These variants are compared with a baseline model Neural-Pull[1] and our complete model incorporating all proposed modules. We

evaluate the performances on the FAMOUS dataset, provide quantitative results in Tab. 5, and present a visualization of the hand sample in Fig. 5.

Our full model achieves the best visual and quantitative results, capturing all essential details without artifacts. In contrast, each variant shows varying

degrees of performance degradation. Model A lacks a comprehensive data sampling strategy, sampling query points only near the object surface, similar to

Neural-Pull. This model su�ers from insu�cient supervision for regions far from the surface, leading to poorly trained tri-plane features at distant

positions and causing random predictions and artifacts. Model B replaces the tri-plane with an 8-layer fully connected network, achieving results close to

our full model but with reduced reconstruction detail and training stability. While it retains more structural detail than the baseline by employing

numerical gradients, it is approximately 3.2 times slower due to the slower query speed of the fully connected network compared to the tri-plane structure.

Model  C fails to train e�ectively due to the adoption of analytical gradients, which only propagate supervision to local grids and causes instability and

corrupted outputs. Model D struggles without using our proposed progressive expansion strategy, which is crucial for preventing the network from getting

stuck in local optima. This experimental comparison highlights the necessity of our strategy for the e�ective training of the tri-plane structure. Overall,

these results demonstrate that each of the proposed modules is essential, contributing to the superior performance of the full model.

Figure 5. Visual results of using di�erent model variants.

Model w/o Data w/o Tri-plane w/o NumGrad w/o Progressive

baseline ✗ ✗ ✗ ✗ 11.35

A ✗ ✓ ✓ ✓ 50.21

B ✓ ✗ ✓ ✓ 0.41

C ✓ ✓ ✗ ✓ 331.84

D ✓ ✓ ✓ ✗ 0.45

Full ✓ ✓ ✓ ✓ 0.39

Table 5. E�ect of each proposed module of our method on sur- face reconstruction for the FAMOUS dataset, measured by   , scaled by  .

5. Future Work

While our proposed NumGrad-Pull shows promising results, there are limitations to address in future work. In our ablation study on tri-plane resolution,

our method captures high-frequency noise at higher resolutions, limiting its e�ectiveness in �ner-grained modeling and highlighting a potential

improvement area. Additionally, we plan to explore various regularization techniques to improve the robustness of surface reconstruction against noisy

and sparse point clouds. Moreover, although our method is primarily introduced for object-level surface reconstruction, the tri-plane structure holds

CDL2

CDl2 104
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strong potential for scene-level modeling. We intend to conduct a more comprehensive evaluation using scene-level reconstruction data to further validate

and extend the applicability of our approach.

6. Conclusion

In this paper, we introduce NumGrad-Pull, a novel approach for high-�delity surface reconstruction from unoriented point clouds. Our method employs a

hybrid explicit–implicit tri-plane representation to improve query speed and enhance reconstruction �delity. Furthermore, we propose a numerical

gradients-based technique to stabilize the training process and a progressive expansion strategy to fully leverage the capabilities of the tri-plane structure.

Extensive experiments demonstrate that our NumGrad-Pull consistently outperforms state-of-the-art methods across various challenging scenarios,

showcasing signi�cant e�ectiveness in surface reconstruction problems.

Broader Impact: We believe NumGrad-Pull has strong potential to improve 3D content creation and streamline the conversion of raw 3D data into

production-ready formats. While we do not foresee any immediate harmful uses, we emphasize the importance of users exercising caution to minimize

potential risks, given that surface reconstruction tools could also be leveraged for malicious purposes.
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