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Abstract 

Mathematics is known for its rigor. Owing to its rigor, mathematics is both loved and feared. 
Proof holds a pivotal position in the whole of mathematical rigor. Proof is required for something 
to be possible. Interestingly, proof is equally important and required for something to be declared 
impossible. In this paper, certain beautiful examples of impossibilities are mentioned, which 
include, among others, the impossibility of the denumerability of real numbers, squaring a circle, 
and doubling a cube. 

Main Text 

Mathematics is unreasonably effective. This unreasonable effectiveness of mathematics was 
discussed long back by Eugene Wigner [1], and recently by Ian Stewart [2]. While, on the one 
hand, mathematics has the power to unravel the unknown and the mysterious, on the other hand, 
it is capable of bringing to fore the fact that certain things or endeavors are simply impossible. 
Be that Euler’s famous ingenious solution to the Konigsberg bridge problem or the nonexistence 
of a rational number whose square is two, mathematics has a plethora of eye-openers to offer and 
astonish us. 

One must appreciate that for something to be impossible, it is not merely sufficient to say it or to 
demonstrate that it is not doable in a specific way or in a particular situation. There is the burden 
of proof. Mathematics is appreciated not just for its beauty but also for its rigor. In fact, it is this 
rigor that makes mathematics what it is. How can one prove or justify the impossibility of 
something? We require a proof of impossibility. And there are several ways of presenting such 
proofs. One is proof by contradiction. It is often convenient, if not necessary, to assume the truth 
of an otherwise false statement just to reach an inescapable unacceptable wrong conclusion 
thereby demonstrating the flaw in the assumption. This is what a mathematician does when he or 
she employs the method of contradiction. One famous example is that of the existence of 
irrational numbers. Assuming that a rational number exists the square of which is two leads to 
the apparent contradiction that prime factors can be cancelled from the numerator and the 
denominator a rational number even when the number is in its simplest form.  

Let us say that there exists a rational number the square of which is 2. In that case,  

∃𝑝, 𝑞 ≠ 0 ∈ ℤ,	 *!
"
+
#
= 2 ⇒ 𝑝# = 2𝑞# 

Since 2𝑞#is an even integer, so must 𝑝#be. However, the square of an integer can only be an 
even integer if that integer itself is even. Thus, 𝑝 must be an even integer. Let 𝑝 = 2𝑟, for some 
𝑟 ∈ ℤ. 
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∴ 𝑝# = 4𝑟# 

And consequently 4𝑟# = 2𝑞# ⇒ 2𝑟# = 𝑞#. Since 2𝑟#is even, so must 𝑞# and, hence, 𝑞 be. 

However, that means that 𝑝	and 𝑞 are both even and have a common factor other than 1. This is a 
contradiction and we must accept that there does not exist any rational number the square of 
which is 2.   

Another beautiful example is that of Cantor’s diagonal argument wherein assuming that the 
number of real numbers is the same as that of rational numbers leads to an unacceptable 
conclusion, a contradiction. Thus, there are more real numbers than rational numbers. Another 
proof of impossibility is the proof by descent. This works by assuming, for example, that a 
smallest solution to a problem must exist (by virtue of the well-ordering principle). We, then, can 
go on to demonstrate that a solution smaller than the smallest exists thereby exposing the flaw in 
the assumption, and establishing the impossibility of the thing. The non-solvability of 𝛼4 + 𝛽4 = 
𝛾2 in non-zero integers can be established by it, for example [3]. 

Then there is the method of disproof. Imagine we are required to establish that a statement is not 
universal. All that is required is to show the existence of a counter-example. Long back, Euler 
conjectured that at least 𝑛 different 𝑛th powers are necessary to sum to another 𝑛th power. This 
was disproved, in 1966, by the use of powerful mainframe computers, CDC 6600, which came 
up with the counterexample 27$ 	+ 	84$ +	110$ +	133$ =	144$ thereby showing that a proof 
of Euler’s conjecture in the affirmative is impossible [4]. 

And who could afford to give a wide berth to the impossible constructions sought by the Greeks? 
They sought a method for trisecting an angle using a straightedge and a compass, one for 
doubling a cube, and one for squaring the circle. Pierre Wantzel, in 1837, published a proof of 
the impossibility of trisecting an arbitrary angle using only a straightedge and a compass. 
However, the proof was based on field extensions and Galois theory the fruition of which the 
world witnessed in the early twentieth century. Doubling the cube, aka the Delian problem, that 
sought the construction of a cube having volume double 

the volume of a given cube, was also settled in the negative using field extensions. And so was 
the case with the problem of squaring the circle, that sought the construction of a square and a 
circle with equal area. The fact remains that the theory that proved these impossibilities seem 
very far-fetched and unreal thereby reminding us again of the unreasonable effectiveness of 
mathematics. 

Can a finite formal system be both complete and consistent? The impossibility of any such 
system to be both is one of the most celebrated and intriguing achievements of the modern logic, 
thanks to Kurt Gödel. 

We, thus, observe that the responsibility of mathematics and mathematicians has not just been to 
establish existence, but also non-existence. The role of mathematics is not merely to come up 
with algorithms, but also to show that sometimes none exists. 
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