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Abstract. We explore the concept of areal
speed concerning minimal length scales asso-
ciated with Planck units. In gravitational sys-
tems, the orbital radius measured in Planck
units becomes independent of the Newton’s
constant; it is just a multiple of the Compton
wavelength of M . Reversing the argument
leads to an emergent understanding of New-
tonian gravity.

We also note that the general relativity
correction is compensated by a Generalized
Uncertainty Principle and we highlight the
critical role of spatial dimensionality.

1 Areal speed and minimal length

The question of the existence of a minimal
scale of length associated with Planck units
was proposed initially in the mid-sixties by
[1], revisited by [2] in the eighties, and finally
approached as a topic of general interest in
the last thirty years (see [3–6] and review [7]).
It happens via gravitational effects in mea-
surement and usually it imposes extra terms
in the indeterminacy principle. The most
common example is the deformation into a
Generalized Uncertainty Principle [8]

Usually, a minimal scale of length deter-
mines a minimal distance, a minimal area or
a minimal time interval. We are intrigued by
the case of the areal speed, defined as usual,
the area per unit of time swept by an or-
biting particle. For any particle of mass m
we can build a natural areal speed Ȧm =
ℏ/m = cLm ∼ vλm, where Lm is the reduced
Compton length of the particle and λm its De
Broglie wavelength at tangential speed v.

Particularly we can build the Planck Areal
Speed AP from the Planck length LP and the
Planck time TP

ȦP =
L2
P

TP
= cLP =

ℏ
MP

(1)

And here an operational quantisation of
the area and time involved in an areal speed
does not quantise Ȧ itself. It becomes as
much a fraction k of quantum numbers,

Ȧ =
p

q
ȦP = kȦP , (2)

perhaps only of topological interest. Still,
let’s take some time to consider it.

In principle ȦP is always smaller than
most areal speeds happening in quantum me-
chanics. If an interaction has an orbit quan-
tised by J = nℏ, its areal speed is

Ȧ =
nℏ
2m

=
1

2
n
MP

m
ȦP (3)

and as long as the test mass m is well smaller
than Planck mass, we can guarantee that the
orbit areal speed is greater than Planck’s.
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2 Kepler length

For a circular orbit with an inverse square
force of coupling K, the radius of the orbit is

r =
4m

K
Ȧ2 =

n2

Km
M2

P Ȧ
2
P (1)

Now, something peculiar happens with grav-
ity, where K = GMm. The radius has no
dependency on the test mass, and Newton’s
constant cancels the Planck area:

r =
4

GM
Ȧ2 = 4LM

Ȧ2

Ȧ2
P

= 4LM
p2

q2
(2)

so we get explicitly LM = ℏ/cM , the reduced
Compton wavelength of the particle creating
the gravitational field. And when the areal
speed is one half of the Planck areal speed, the
radius of the gravitational orbit around M is
the reduced Compton length of the particle M .

Of course this is a re-statement of

Ȧ =
1

2

√
GMr (3)

And anyway this regime is outside of the
expected range of areal velocities. It can
be studied in the context of Compton-
Schwarzchild duality [9, 10]

3 Gravity from lengths

A more interesting note, to us, is that we can
reverse the argument to produce an emergent
definition of Newtonian Gravity:

A Newtonian gravity is a mu-
tual force law with a single universal
coupling constant between two arbi-
trary masses and such that for any
mass M , the circular orbit of any
test particle m at a distance equal
to the Compton length of M has the
same areal speed independent of M
and m.

Let’s try to prove the consistency of this
definition, i.e., that the analytical form of a
Newtonian gravity as defined above is

F (M,m, r) = G
Mm

r2
(1)

for some constant G
Let Ȧ0 be the universal areal speed at

Compton length radius. We also define the
constants L0 = Ȧ0/c and M0 = ℏ/Ȧ0. For
any test particle m, its angular momentum is

2mȦ0 = rMmv, (2)

where v is the tangential speed of the particle
and rM = ℏ/cM is the Compton length ra-
dius of the orbit. The force in this situation
is

F (M,m, rM ) =
m

rM
v2 =

c mM

ℏ
4A2

0

r2M

[
cMrM

ℏ

]n
(3)

For the force to be mutual, ie symmetrical
under the exchange m ↔ M , we need n = 0.
Now lets define

G0 ≡ 4
cȦ2

0

ℏ
= 4

ℏc
M2

0

(4)

and we see that, as expected, the functional
form of the force law is, for any m and M
-and thus for all radius rM -

F (M,m, rM ) = G0
Mm

r2M
(5)

To see that this is the final closed form of
the force equation, note that if a second force
K(M,m, r) meets the same conditions, the
difference ∆ ≡ F −K will be such that

0 = ∆(M,m, rM ) = ∆(m,M, rM ) = ∆(m,M, rm)
(6)

Thus it has two different zeros in the radius
coordinate for each arbitrary pair (M,m) of
masses, so any new solution needs another
extra coupling constant to fit the other zero.

This proves the assertion, but depending
in the condition of a single coupling constant.
Note for example the family of general solu-
tions

G0Mm

I
(2−n)
0

(
MM

mm

) 2−n
M−m

(
M

m

)− (2−n)Mm
I0(M−m)

r

r−n

(7)
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that have a secondary coupling I0, a multi-
ple of ℏ/c. A different attempt could be to
ask that ”for any I0 defining a length for M ,
the areal speed at such length is the same,
independent of M and m”. In any case, for
some applications, these postulates are surely
weaker than the requirement of Bertrand’s
theorem.

4 Gravity, the strongest classical
force

At Compton length from the center of force,
all the forces would generate stable orbits a
lot faster, in areal speed, than gravity. So
if we had an independent way to define the
minimal length, we would have another way
to define gravity:

Gravity is the strongest force
that allows stable orbits with an
areal speed as low as Planck’s areal
speed.

5 Extra dimensions

Which carries us to consider how the dimen-
sionality of space affects the cancellation.

In general, if we allow force to be any
power r−q of the radius, the areal speed will
be as

G
1
2
− 1

qm
1
2 r

3
2
− q

2 c
3
q
−1ℏ−

1
q (1)

and only for q = 2 Newton’s constant can-
cels out. Thus here we have a non-relativistic
variant of the arguments of [11, 12] that jus-
tified the dimensionality of space-time from
the properties of gravity.

In fact, our proof above fixes gravity to
be ∼ 1/r2, similarly to [12]. But it could be
objected that as we go to extra dimensions
we have new independent angular momentum
variables and they should be incorporated in
the definition.

6 GUP and relativity

Finally, let us consider a first approximation
to relativistic effects.

If we enable special relativity, the circular
orbits of a given M,m system have a mini-
mum possible angular momentum when the
radius goes to zero, namely GMm/c. So in
this regime the existence of closer circular or-
bits requires

GMm

c
< 2mȦ (1)

and 2Ȧ/c is bounded by the Schwarzschild
radius, rM = GM/c2.

If we consider general relativity, the
Schwarzschild effective potential amounts to
a correction to the orbit radius that, being
proportional to rM , reintroduces the gravita-
tional field. The perturbative modification of
the Newtonian solution is

r = 2k2LM

[
1±

√
1−

3L2
P

k2L2
M

]
(2)

and so

r± ≈ 2k2LM

[
1± (1−

3L2
P

2k2L2
M

)

]
(3)

which introduces our solution of interest,

r+ ≈ 4k2LM (1− 3

4k2
L2
P

L2
M

) (4)

as well as the branch of unstable solutions
r− ≈ +3

2rM
So we get an extra correction that seems

to reintroduce Planck lenght LP and thus
Newton’s constant. But we can also in-
voke the Generalised Uncertainty Principle.
Because under GUP, the reduced Compton
wavelength acquires an extra correction [13]:

L′
M = LM (1 + α

L2
P

L2
M

) (5)

We can combine multiplicatively both cor-
rections so that at first order they cancel, if
α = 3

4k2
, and thus we still recover a pure

radius, with the new ”generalised reduced
Compton length”, that does not explicitly
show a dependency of the Planck scale. In it-
self, this is an interesting result showing how
general relativity and the generalised uncer-
tainty relation interplay.
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