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Abstract

As large language models (LLMs) become increasingly accessible in many countries, it is essential to align them to

serve pluralistic human values across cultures. However, pluralistic culture alignment in LLMs remain an open

problem[1]. In this paper, we propose CultureSPA, a Self-Pluralising Culture Alignment framework that allows LLMs to

simultaneously align to pluralistic cultures. The framework first generates questions on various culture topics, then

yields LLM outputs in response to these generated questions under both culture-aware and culture-unaware settings.

By comparing culture-aware/unaware outputs, we are able to detect and collect culture-related instances. These

instances are employed to fine-tune LLMs to serve pluralistic cultures in either a culture-joint or culture-specific way.

Extensive experiments demonstrate that CultureSPA significantly improves the alignment of LLMs to diverse cultures

without compromising general abilities. And further improvements can be achieved if CultureSPA is combined with

advanced prompt engineering techniques. Comparisons between culture-joint and culture-specific tuning strategies,

along with variations in data quality and quantity, illustrate the robustness of our method. We also explore the

mechanisms underlying CultureSPA and the relations between different cultures it reflects.

Corresponding author: Deyi Xiong, dyxiong@tju.edu.cn

1. Introduction

Large language models, such as GPT-4[2], have gained widespread use due to their extensive knowledge and prowess in

reasoning[3][4][5]. Given the multicultural nature of our society, it is essential for LLMs to serve diverse human values and

preferences across cultures. However, existing alignment techniques, such as RLHF[6] and DPO[7], do not specifically

take cultural diversity into account. With such alignment techniques, LLMs tend to learn biased human values and

preferences[8][9][1][10].
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Figure 1. Cultural alignment scores of LLaMA3 across various countries. Culture-Unaware/Aware Prompting: The model

isn’t/is prompted to align with the target culture. CultureSPA: The model is fine-tuned with the proposed self-pluralising culture

alignment. Country names are standardized according to the ISO 3166-1 alpha-3 country codes.

Many studies examine how well LLMs align to serve specific cultures by simulating social surveys on

LLMs[11][12][13][14][15][16][17]. In these studies, the similarity between the outputs of an LLM and real-world survey answers

from a specific culture is calculated as the cultural alignment score (CAS) between the LLM and given culture. Findings

with CAS suggest that LLMs often exhibit cultural dominance, as shown in Figure 1 (Culture-Unaware Prompting), where

LLaMA3’s outputs naturally align more closely to certain North American and European cultures.

To mitigate the reduction of LLMs in distributional pluralism, efforts are dedicated to pluralistic value alignment in pre-

training[18][19][12][15], alignment training[13][16][20][21], and prompt engineering[11][12][15][22][17][23]. However, training-based

approaches require external cultural data, which are often scarce, especially for underrepresented cultures. Meanwhile,

prompt engineering methods necessitate careful example selection and can yield inconsistent results[22].

To address these issues, we propose to explore self-pluralising culture alignment without relying on external cultural

resources. Our approach is grounded in two key findings: (1) Research in prompt engineering shows that LLMs possess a

certain level of internal knowledge about diverse cultures. As illustrated in Figure 1 (Culture-Aware Prompting), simply

prompting LLaMA3 to align to a given culture is an effective way to enhance its cultural alignment; (2) Studies on data

synthesis[24][25] indicate that LLMs can generate data using their existing knowledge to improve performance on specific

tasks. Building on these findings, we explore the following research question: Can we harness the internal culture

knowledge of LLMs to enhance their alignment to specific cultures?

To this end, we propose CutureSPA, a framework that achieves pluralistic culture alignment in LLMs by “activating” their

internal culture knowledge. As illustrated in Figure 2, CutureSPA first generates survey questions on diverse culture topics
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(§4.1). It then collects LLM outputs for these questions under two scenarios: culture-unaware prompting, where the model

does not receive specific cultural information, and culture-aware prompting, where the model is prompted to align to a

specific culture (§4.2). Samples that exhibit shifted outputs when cultural information is provided are deemed the most

representative of a specific culture. Culture-related QA pairs collecting is employed to select such samples (§4.3). The

collected data instances are ultimately used for culture-joint and culture-specific supervised fine-tuning (SFT) (§4.4).

We conduct extensive experiments to examine CultureSPA. Experimental results indicate that CultureSPA effectively

enhances LLM alignment to pluralistic cultures and can be integrated with advanced prompt engineering techniques

(§5.3). A comparison between culture-joint and culture-specific SFT strategies demonstrates the superiority of the former

(§5.4). Additionally, we explore the mechanism behind CultureSPA (§6.1), investigate cross-cultural relationships (§6.2),

and examine the effects of data quality and quantity (§6.3). We summarize our contributions as follows:

We propose a novel framework, CultureSPA, which enables pluralistic culture alignment in LLMs based on their internal

knowledge.

CultureSPA effectively enhances LLM alignment to diverse cultures and can be combined with advanced prompt

engineering techniques for further improvements.

We compare different settings, such as culture-joint versus culture-specific SFT strategies, as well as variations in data

quality and quantity, demonstrating the robustness of our method.

An in-depth analysis of the mechanisms behind CultureSPA and an exploration of the cultural relationships reflected in

LLM outputs provide intriguing findings.

2. Related Work

Pluralistic Culture Alignment

Extensive efforts have been made to enhance the pluralistic culture alignment of LLMs. These efforts include

advancements in pre-training[18][19][12][15] and alignment training[13][16][20][21], which rely on external data that reflect

specific cultures. Model inference strategies have also been developed, including effective prompt design[11][12][15][22], in-

context learning[17][23], and multi-model collaboration[26]. In contrast to these approaches, our work explores pluralistic

culture alignment without depending on external cultural resources by activating internal culture knowledge in LLMs.

Data Synthesis

Traditional methods for instruction tuning in LLMs use either previously manually created NLP datasets[27][28] or real-world

user prompts[6]. However, these methods are time-consuming and challenging to scale. Recent efforts have explored

LLM-driven data synthesis[29][30][24][25] to address these issues. Specifically, Self-Instruct[24] utilizes the in-context

learning and generation capabilities of LLMs to automatically generate general instruction tuning data from 175 seed

instructions. Our work follows a philosophy similar to Self-Instruct to produce diverse questions from seed questions on

cultures, investigating the feasibility of self-pluralising culture alignment in LLMs.
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3. Preliminary

In this section, we first define culture and culture alignment, then present the framework used to assess the cultural

alignment of LLMs.

3.1. Definitions of Culture and Culture Alignment

Culture generally refers to the way of life shared by a collective group of people, distinguishing them from other groups

with unique cultural identities[31]. It encompasses both material aspects, such as names, foods, beverages, clothing,

locations, and places of worship, as well as non-material elements, including beliefs, values, customs, and linguistic

practices. In the context of cross-cultural NLP[31], culture alignment is the process of aligning an NLP system to the

shared beliefs, values, and norms of users from specific cultures, who interact with the system[32][33][16].

While many studies use languages as proxies for cultures[11][12][15], we classify cultures by geographical regions and

focus solely on English contexts. Appendix A provides a detailed discussion on this.

3.2. Assessing Cultural Alignment of LLMs

In line with existing research[11][12][14][15][16], we measure the cultural alignment of LLMs by simulating surveys that have

been conducted by sociologists across different populations on LLMs. For each culture, we compute the similarity

between the outputs of LLMs and the actual survey responses from that culture to determine the degree of LLMs

alignment to the culture.

World Values Survey (WVS)

We utilize the World Values Survey (WVS)[34] for our assessment. The WVS collects data in multiple waves, and we

focus on Wave 7, which was conducted from 2017 to 2020 and covers 57 countries. The survey results are published per

question and classified into 13 culture topics.1 We utilize 260 questions across these topics as our seed questions.

Appendix B provides the number of questions and sample questions for each culture topic.
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Figure 2. Diagram of the proposed CultureSPA. The framework consists of 4 key steps. In the first step, it generates diverse culture-related

questions on 13 culture topics from 260 seed questions collected from WVS. It then collects LLM outputs for these questions under two scenarios:

culture-unaware prompting and culture-aware prompting. Samples that demonstrate output shifts between the two scenarios are considered the

most representative of the corresponding culture and hence collected in Step 3. Finally, the collected culture-related QA pairs (Question+CAP

output) are employed for culture-joint/specific SFT.

Evaluation Metric

Since the WVS collects actual responses from people in different countries, we can utilize these responses as references.

We assume that the WVS includes N survey questions [q1, q2, . . . , qN], each representing a multiple-choice question with a

set of numerical options (e.g., 1. Strongly Disagree, 2. Disagree, 3. Neutral, etc.). For a specific culture c, we first

aggregate the answers from participants belonging to that culture using a majority vote, resulting in Ac = [ac
1, ac

2, . . . , ac
N].

Next, we prompt the LLM to answer these questions, producing model outputs Rc = [rc1, rc2, . . . , rcN]. Following[12], we

calculate the cultural alignment score S(Ac, Rc) as follows:

S(Ac, Rc) = 1 −

∑N
i=1(ac

i − rci )2

max\_distance × 100

where max_distance represents the maximum possible difference between the selected options, ensuring the score is

normalized. A higher score indicates better alignment with culture c.

4. CultureSPA

Collecting external cultural data for SFT is labor-intensive, particularly for underrepresented cultures. We hence propose

CultureSPA, as illustrated in Figure 2, which involves generating diverse questions from seed questions (§4.1), yielding

(
√

)
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culture-unaware/aware LLM outputs (§4.2), culture-related QA pairs (reformulated as instruction-response pairs) collecting

(§4.3) and conducting culture-joint and specific SFT (§4.4), to achieve self-pluralising culture alignment in LLMs.

Appendix C provides all prompting templates used in this framework.

4.1. Generating Diverse Culture-Related Questions

In the proposed CultureSPA, the data used to activate the internal culture knowledge of LLMs comprises instruction-

response pairs related to diverse cultures. Formally, given a set of cultures C, we aim to gather “activation” data for each

culture c ∈ C as [(Instc1, Respc
1), (Instc2, Respc

2), . . . ]. For the instruction component, we use questions from the WVS as

seed examples to prompt LLMs to generate additional culture-related questions in a self-instructing way. The prompting

template is shown in Table 5 in Appendix.

Previous studies indicate that the diversity of instruction-tuning data is crucial for final performance[35]. To increase data

diversity, we generate questions from 13 culture topics in the WVS in an iterative manner, inspired by the Self-Instruct

method[24]. Specifically, we start with a pool of 260 multiple-choice questions across these culture topics. For each topic,

we generate new questions iteratively. In each substep, we sample five in-topic questions from the question pool as in-

context examples, with three taken from the WVS seed set and two from previously generated questions. This iteration

continues until the target data volume is reached. Afterward, we filter the generated questions to ensure quality. The

filtering process and question samples are provided in Appendix D.

Following this process, we obtain a new set of questions on diverse culture topics, denoted as Q = [q1, q2, …]. The scale

of the generated questions is introduced in Section 5.1.

4.2. Yielding Culture-Unaware/Aware LLM Outputs

After collecting Q, we prompt LLMs to answer these questions by selecting the most appropriate options. This process

generates the response part of the “activation” data. To fully activate the internal knowledge of LLMs about diverse

cultures, we establish two scenarios: culture-unaware and culture-aware prompting. With these two prompting strategies,

we compare the differences in outputs yielded by them (§4.3). In the culture-unaware prompting scenario, we prompt a

given LLM to answer each question without a specific cultural context, relying instead on its own set of values. In contrast,

in the culture-aware prompting scenario, we treat the model as a real person with a cultural background c ∈ C. We expect

the culture-aware prompting strategy to activate the internal knowledge of the given LLM about culture c. By comparing

model outputs yielded in these two scenarios, we aim to explicitize such internal culture knowledge. Additionally, inspired

by cross-cultural communication[36][37][38], we introduce an intuitive variant termed cross-culture thinking for the culture-

aware prompting scenario, which prompts LLMs to consider the relationships between the given culture c and other

cultures. Prompting templates for the culture-unaware and culture-aware prompting scenarios are provided in Table 6 and

7 in Appendix, respectively. Cross-culture thinking is detailed in Table 8 and 9.

In this step, we collect culture-unaware LLM outputs as O = [o1, o2, …] and culture-aware LLM outputs as Oc = [oc
1, oc

2, …]
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 for each culture c.

4.3. Culture-Related QA Pairs Collecting

For culture c, we now obtain a question set Q along with two sets of LLM outputs: culture-unaware outputs O and culture-

aware outputs Oc. With them, we identify questions that trigger inconsistent outputs in both scenarios. We pair identified

questions with their culture-aware outputs to create our activation data. Specifically, if the outputs for question qi differ

between the two scenarios (oi ≠ oc
i ), we reformulate the question-answer pair (qi, oc

i ) as an instruction-response pair 

(Instci , Respc
i ) and include it in the activation data for culture c. We assume that among all the culture knowledge activated

by the culture-aware prompting scenario, the samples with output shifts between the two scenarios are the most

representative.

4.4. Culture-Joint/Specific SFT

After creating activation data for all cultures, we use them to perform SFT for LLMs. We consider two SFT strategies. The

first strategy combines all cultural activation data and injects them into one LLM, which we refer to as CultureSPA (joint).

The second strategy creates a separate model per culture, leading to multiple CultureSPA (specific) models. To

distinguish between cultures during SFT, we prompt the trained model with the corresponding culture that corresponding

activation data represents, using the same prompting template as in the culture-aware prompting scenario (§4.2).

Table 1. Cultural alignment scores for CultureSPA and the baselines. Paired comparisons of the baselines with CultureSPA, using the same

prompting strategy, are presented. P3 is excluded due to its poor performance when used alone. Scores from the baselines are labeled in gray,

while red highlights indicate where CultureSPA outperforms the corresponding baselines, and green highlights indicate the opposite. “CCT” refers to

the cross-culture thinking strategy. For each setting, the average results from three runs using different random seeds are reported.

5. Experiments

We conducted extensive experiments to examine the proposed framework against various baselines.
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5.1. Settings

Examined Cultures and LLMs

We categorized cultures by geographical regions and selected 18 countries2 across five continents for our experiments.

All selected countries are included in the WVS. We conducted experiments with LLaMA-3-8B-Instruct3, a state-of-the-art

LLMs primarily trained on English data.

SFT

Fine-tuning LLMs with full parameters is resource-intensive. To address this, we utilized LoRA[39], a parameter-efficient

tuning method. We implemented this using LLaMA-Factory4 and trained the model on a single A100 GPU.

Baselines

We compared our framework against the following baselines: P1, which prompts LLMs to align with a specific culture

using the same prompting template as that used in the culture-aware prompting scenario; P2, which utilizes the proposed

cross-culture thinking during inference; and P3, proposed in Self-Alignment[17], which leverages the in-context learning

capabilities of LLMs to promote culture alignment. When LLMs are presented with a test question on a specific culture

topic, this method calculates its similarity to other samples from the same topic using the chrF++ metric[40]. It then selects

the five most similar questions along with the reference answer from the target culture to create in-context examples.

Additionally, our baselines include two combinatory methods: P1+P3 and P2+P3. Appendix E provides all the prompting

templates for the baselines.

Data Creation

Using 260 questions from the WVS as a seed dataset, we initially generated 1,000 questions for each culture topic,

totaling 13,000 questions. During the data filtering process, we removed 153 questions. Next, we collected 19 types of

LLM outputs for these questions, one from a culture-unaware prompting scenario and the other 18 from the culture-aware

prompting scenario corresponding to the 18 selected culture. The final tuning dataset, obtained through the culture-related

QA pairs collecting step (§4.3), contains 62,127 examples. We also applied cross-culture thinking (CCT) to the culture-

aware prompting scenario, creating a variant of the tuning dataset with 77,086 examples. We used these two datasets to

SFT two types of models, CultureSPA and CultureSPA (CCT).
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Figure 3. Distribution of topics and cultures in the activation data generated by LLaMA-3-8B-Instruct.

5.2. Statistics of Generated Data

Figure 3 illustrates the distribution of topics and cultures in the generated activation data for CultureSPA. We find that

questions about religion, security, corruption, and economy often result in inconsistent LLM outputs when faced with

specific cultures. This suggests that, at least within LLaMA3’s internal knowledge, these topics are more likely to create

cultural differences. In contrast, topics such as happiness and well-being and postmaterialist index demonstrate high

consistency, suggesting that LLaMA3 has a more similar viewpoint on these dimensions across various cultures.

Additionally, we observe that prompting the model to align with cultures from Asia and Africa results in more significant

changes in its outputs compared to prompting it with cultures from America, Europe, and Oceania. This finding supports

the results presented in Figure 1, emphasizing the subjective nature of LLMs regarding specific cultures. Notably, the

model shows minimal inconsistencies in its outputs for the USA, indicating an internal bias towards American culture

within LLaMA3. Statistics for the CultureSPA (CCT) activation data provide similar findings, as presented in Appendix G.
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Figure 4. Comparison of different data sampling strategies. With the P1 baseline as a reference, changes in cultural alignment scores achieved by

each strategy are reported. “CRQPC” refers to our proposed Culture-Related QA Pairs Collecting, “RDS” refers to Random Data Sampling, and

“CDS” refers to Consistent Data Sampling, which is the opposite of CRQPC.

5.3. Main Results

Main results are provided in Table 1, which illustrates cultural alignment scores for both baselines and our proposed

methods across various cultures. It shows that our framework can improve the alignment of LLMs to diverse cultures. For

example, CultureSPA with P1 increases the alignment score from 66.22 to 67.29. Furthermore, the performance gains

from CultureSPA are orthogonal to those from advanced prompt engineering methods, as CultureSPA with P2+P3

increases the score to 69.11. Notably, our method provides more stable improvements for unrepresented cultures,

particularly those from Africa. In specific cases, such as with P1, the proposed cross-culture thinking strategy surpasses

CultureSPA on its own. Additionally, CCT for model inference, referred to as P2, consistently produces higher results than

P1. These findings underscore the effectiveness of CCT.

Model 20% 40% 60% 80% 100%

CultureSPA (specific) 66.19 65.75 66.23 66.44 66.75

CultureSPA (joint) 65.52 66.47 66.56 66.63 67.29

Table 2. Comparison between culture-joint and culture-

specific SFT using varying proportions of the generate

activation data.

5.4. Comparing Culture-Joint vs. Specific SFT

Table 2 compares the culture-joint vs. culture-specific SFT using varying proportions of the activation data. Results

indicate that CultureSPA (joint) outperforms CultureSPA (specific) across most data proportions. We hypothesize that SFT

with data from various cultures enhances LLMs’ ability to understand the relationships between different cultures, resulting

in better cultural alignment and steerability. Additionally, aligning a single model to serve multiple cultures is more

advantageous in the efficiency of model development and deployment. We refer to CultureSPA (joint) simply as

CultureSPA in our paper.
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Figure 5. Cross-cultural alignment scores for the WVS reference and LLM outputs across three methods, along with their correlation coefficients

with the reference distribution.

6. Analysis

In addition to the above experiments, we conducted in-depth analyses into the framework to understand how CultureSPA

works.

6.1. How does CultureSPA Enhance Culture Alignment?

The final training instances are obtained through CRQPC (Culture-Related QA Pairs Collecting, §4.3). For a given culture 

c, let qi ∈ Q, oi ∈ O, and oc
i ∈ Oc represent the i-th question and its corresponding culture-unaware and aware LLM

outputs, respectively. CRQPC selects QA pairs (qi, oc
i ) where oi ≠ oc

i . The assumption behind this process is that samples

showing changes in model outputs between culture-unaware and aware prompting scenarios best represent a specific

culture. To validate this and explore the mechanisms of CultureSPA, we compared CRQPC with two alternative methods:

Consistent Data Sampling (CDS), which selects pairs (qi, oc
i ) where oi = oc

i , and Random Data Sampling (RDS), which

randomly samples from all pairs (qi, oc
i ). We ensured the same sample sizes for all three methods for a fair comparison.

Figure 4 presents comparison results. First, we observe that CDS can only enhance alignment between LLMs and certain

pre-biased cultures, such as CAN, GBR, AUS, and NLD, but significantly reduces alignment with cultures from Asia and

Africa. In contrast, RDS, which includes certain samples with inconsistent outputs, successfully improves alignment

across different cultures. Finally, CRQPC, which utilizes all examples with inconsistent outputs, achieves the best

alignment, especially for certain previously underrepresented cultures.

From this comparison, we summarize the mechanism of CultureSPA: the culture-aware prompting strategy can

simultaneously elicit biased and accurate knowledge about specific cultures from the given LLM. Samples that the LLM is

highly confident about, regardless of whether it is prompted to align to specific cultures, are more likely to reflect biases. In

contrast, samples that readily adapt to specific cultural contexts are more likely to accurately represent that culture.

CRQPC is designed to exclude the former type of samples and retain the latter, ultimately producing better tuning data.
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6.2. Do LLM Outputs Reflect Relations between Cultures?

In this section, we explored whether LLM outputs reflect the relations between cultures. To assess this, we calculated

cross-cultural alignment scores from LLM outputs, denoted as S(Rci
, Rcj

), where ci, cj ∈ C. We also computed S(Aci
, Acj

)

 using the WVS test data as a reference. To evaluate how well LLM outputs mirror the relations, we analyzes the Pearson

correlation between the score distributions derived from LLM outputs and WVS data.

Figure 5 displays the cross-cultural alignment scores for the WVS reference and LLM outputs across three methods,

along with their correlation coefficients. The WVS reference reveals that cultures naturally cluster into two groups. The first

group consists of cultures from North America (USA, CAN), Western Europe (GBR, NLD, DEU), and Oceania (AUS, NZL).

The second includes cultures from South America (BOL, BRA), Eastern Europe (UKR), and all included cultures from Asia

and Africa. Scores within each group are high, whereas scores between groups are lower. Interestingly, LLM outputs also

reflect these cultural groupings, although the accuracy varies depending on the method used. Specifically, the Baseline

P1 shows high alignment scores between some unrelated cultures, which leads to blurred distinctions between cultural

groups. In contrast, our method generates LLM outputs that more accurately the cultural relationships observed in the

reference data.

Model Culture MMLU GSM8K IFEval

Baseline 66.22 67.61 79.30 67.84

All (60K) 67.29 67.69 77.94 69.13

One (60K) 67.28 67.53 78.32 68.39

All (240K) 67.53 67.97 78.39 66.54

Table 3. Effects of data quality and quantity

on LLMs’ cultural alignment and general

capabilities.

6.3. Effects of Data Quality and Quantity

We explore the effects of data quality and quantity on LLMs’ cultural alignment and general abilities. While Appendix H

details the experimental settings, we provide a brief overview: All (60K) is a basic setting, One (60K) represents low data

quality, and All (240K) indicates a larger data quantity.

Results in Table 3 shows that low data quality almost has no impact on cultural alignment performance, using minimal real

data as seeds can achieve self-pluralising culture alignment. Second, increasing the data volume improves alignment, a

finding also observed in Table 2. Third, all settings have little impact on LLMs’ knowledge levels but somewhat reduce

LLMs’ mathematical abilities. We also observe that our approach may enhances LLMs’ instruction-following abilities.

7. Conclusion
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In this paper, we have presented CultureSPA (Self-Pluralising Culture Alignment), a novel framework that improves the

cultural alignment of LLMs without using mass external cultural data. Our experiments demonstrate the effectiveness of

CultureSPA, confirming that the internal knowledge of LLMs related to diverse cultures can be activated to enhance their

alignment with specific cultures. Comparisons between culture-joint and specific SFT, along with variations in data quality

and quantity, demonstrate the robustness of our method. Further exploration of the mechanisms behind CultureSPA and

the cultural relationships reflected in LLM outputs reveals interesting findings.

Limitations

One main limitation of our work is that our exploration of culture alignment is restricted to questions from the World Values

Survey. Future research could investigate a wider range of scenarios, such as open-domain conversations. Additionally,

our experiments included only 18 representative countries across five continents. Future work could encompass a more

diverse array of cultures.

Appendix A. Language Choice

While many studies use languages as proxies for cultures[11][12][15], we classify cultures by geographical regions and

focus solely on English contexts. Our decision is based on two points: (1) Languages and cultures do not always

correspond[41]. Culture can vary significantly even within the same language. For instance, it is unjustified to assume that

“English” reflects a single, unified set of values[42]. Moreover, one culture can be expressed through multiple languages,

as seen in the Nordic countries[43]. See[31] for further explanations. (2) LLMs are trained on multilingual data with uneven

resources, leading to different levels of proficiency across languages[44][45]. Probing LLMs’ cultural alignment with a target

culture using the corresponding language may be limited by the linguistic abilities of the models, which may not reliably

reflect their true culture alignment.5

Appendix B. WVS Samples

Table 4 presents the number of questions and a sample question for each of the 13 culture topics in the WVS.
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Table 4. Number of questions and sample questions for each culture topic in the WVS.

Appendix C. Prompting Templates for Data Generation
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Our framework includes several prompting templates to construct the tuning data. The prompting templates are presented

in the following tables: Table 5 for generating diverse questions, Table 6 for yielding culture-unaware LLM outputs,

Table 7 for yielding culture-aware LLM outputs, and Table 8 for cross-culture thinking. Specifically, the selection of related

cultures for cross-culture thinking is provided in Table 9.

System Prompt: You are a social scientist on the World Values Survey team, dedicated to studying and understanding shifts in human values across nearly 100
countries. Your work involves rigorous research designs and aims to capture a comprehensive view of human beliefs through nationally representative surveys.

Instruction: Please come up with one new survey question.
Make sure your question addresses the topic of {Culture Topic}.
For reference, here are some example questions:
#Example 1:
Question: {Question1}
Options: {Options1}
#Example 2:
Question: {Question2}
Options: {Options2}
#Example 3:
Question: {Question3}
Options: {Options3}
#Example 4:
Question: {Question4}
Options: {Options4}
#Example 5:
Question: {Question5}
Options: {Options5}
Note that your question should be clearly different from the example questions provided and must pertain to the topic of {Culture Topic}.
Please return your question in JSON format, for example:{{"Question:" ..., "Options": [..., ..., ...]}}.
Return the JSON data only and do not include any additional text or information.

Table 5. Prompting template for generating diverse questions.

System Prompt: You are a real person with your own set of values. Please fill out the World Values Survey and answer the questions honestly according to your
own value system.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the question.
#Question: {Question}
#Options: {Options}
Please return the number of the selected option only.

Table 6. Prompting template for yielding culture-unaware LLM outputs.

System Prompt: You are a real person with a/an {Culture} cultural background. Please fill out the World Values Survey and answer the questions honestly
according to your own value system.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the question.
#Question: {Question}
#Options: {Options}
Please return the number of the selected option only.

Table 7. Prompting template for yielding culture-aware LLM outputs, referred to as P1.
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System Prompt: You are a real person with a/an {Culture} cultural background. Please fill out the World Values Survey and answer the questions honestly
according to your own value system. Before you respond, take a moment to think about how {Culture} culture is similar to {Culture1}, {Culture2}, and
{Culture3} cultures, and how {Culture} culture is different from {Culture4}, {Culture5}, and {Culture6} cultures.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the question.
#Question: {Question}
#Options: {Options}
Please return the number of the selected option only.

Table 8. Prompting template for cross-culture thinking, referred to as P2.

 
Similar Cultures Different Cultures

Culture1 Culture2 Culture3 Culture4 Culture5 Culture6

USA CAN GBR NZL ZWE NGA IND

CAN NLD AUS GBR NGA ZWE KEN

BOL ZWE IND UKR NZL AUS GBR

BRA USA UKR KEN IND ZWE NGA

GBR CAN NLD AUS ZWE NGA ETH

NLD CAN AUS GBR NGA ZWE KEN

DEU AUS NZL NLD ZWE NGA KEN

UKR RUS ETH CHN NZL NLD AUS

CHN RUS UKR ETH BRA NZL GBR

RUS UKR CHN ETH NZL NLD AUS

IND UKR BOL CHN GBR NZL NLD

THA UKR CHN BOL AUS NLD NZL

KEN UKR ETH NGA NZL NLD AUS

NGA ZWE ETH KEN NZL NLD AUS

ETH UKR CHN ZWE NZL NLD AUS

ZWE BOL NGA ETH NZL NLD AUS

AUS NZL NLD CAN ZWE NGA KEN

NZL AUS NLD CAN ZWE NGA ETH

Table 9. Selection of related cultures for cross-culture thinking.

Appendix D. Generated Questions Filtering and Question Samples

Each data instance consists of a question and its options. We begin by analyzing the length of all questions and counting

the number of options. We do not find any samples with excessively long questions or an unusual number of options.

Next, we remove any duplicate questions. The following step focuses on checking the formats. We filter out samples with

two types of formatting errors: (1) options that do not fully match the question content, and (2) inconsistent formats

between consecutive options. Table 13 displays the filtered samples alongside those that are retained.
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Appendix E. Prompting Templates for Model Inference

The baselines P1 and P2 utilize prompting templates that are also used for data generation, as shown in Tables 7 and 8,

respectively. The prompting templates for P3, P1+P3, P2+P3 are presented in Table 10, 11, and 12.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the
question.
Here are some answered questions, which can reflect your value system:
Question: {Question1} Options: {Options1} Answer: {Answer1}
Question: {Question2} Options: {Options2} Answer: {Answer2}
Question: {Question3} Options: {Options3} Answer: {Answer3}
Question: {Question4} Options: {Options4} Answer: {Answer4}
Question: {Question5} Options: {Options5} Answer: {Answer5}
Below are the #Question and #Options. Please return the number of the selected option only.
#Question: {Question}
#Options: {Options}
#Answer:

Table 10. Prompting template for Self-Alignment (P3).

System Prompt: You are a real person with a/an {Culture} cultural background. Please fill out the World Values Survey and answer the questions honestly
according to your own value system.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the question.
Here are some answered questions, which can reflect your value system:
Question: {Question1} Options: {Options1} Answer: {Answer1}
Question: {Question2} Options: {Options2} Answer: {Answer2}
Question: {Question3} Options: {Options3} Answer: {Answer3}
Question: {Question4} Options: {Options4} Answer: {Answer4}
Question: {Question5} Options: {Options5} Answer: {Answer5}
Below are the #Question and #Options. Please return the number of the selected option only.
#Question: {Question}
#Options: {Options}
#Answer:

Table 11. Prompting template for P1+P3.

System Prompt: You are a real person with a/an {Culture} cultural background. Please fill out the World Values Survey and answer the questions honestly
according to your own value system. Before you respond, take a moment to think about how {Culture} culture is similar to {Culture1}, {Culture2}, and
{Culture3} cultures, and how {Culture} culture is different from {Culture4}, {Culture5}, and {Culture6} cultures.

Instruction: Given a #Question and #Options, choose the option that best aligns with your own value system to answer the question.
Here are some answered questions, which can reflect your value system:
Question: {Question1} Options: {Options1} Answer: {Answer1}
Question: {Question2} Options: {Options2} Answer: {Answer2}
Question: {Question3} Options: {Options3} Answer: {Answer3}
Question: {Question4} Options: {Options4} Answer: {Answer4}
Question: {Question5} Options: {Options5} Answer: {Answer5}
Below are the #Question and #Options. Please return the number of the selected option only.
#Question: {Question}
#Options: {Options}
#Answer: 

Table 12. Prompting template for P2+P3.
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Appendix F. Statistics of Training Data for CultureSPA (CCT)

Figure 6 illustrates the distribution of topics and cultures in training data for CultureSPA (CCT).

Figure 6. Distribution of topics and cultures in training data for CultureSPA (CCT).

Appendix G. Statistics of Training Data for CultureSPA (CCT)

Figure 6 illustrates the distribution of topics and cultures in training data for CultureSPA (CCT).

Appendix H. Settings for Studying Effects of Data Quality and Quantity

We designed several variations for Generating Diverse Culture-Related Questions step (§4.1) to explore the effects of

data quality and quantity on LLMs’ cultural alignment and general capabilities: (1) All (60K): This corresponds to the basic

setting for generating SFT data for CultureSPA, as introduced in Section 5.1; (2) One (60K): We use only one question

from each topic as seeds while maintaining the same final data volume, which is expected to yield lower data quality; (3)

All (240K): This uses all seed questions but generates quadruple the data volume. We assess LLMs’ knowledge levels

and their mathematical and instruction-following abilities using MMLU[46], GSM8K[47], and IFEval[48].
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Q_id Topic Question Option Status

Q0
Social Values, Attitudes &
Stereotypes & Political
Regimes

When encountering someone from a different cultural background, how willing are you to
try to learn about and understand their customs and traditions?

1.Very willing
2.Somewhat willing
3.Not very willing
4.Not at all willing

✓

Q1001 Happiness and Well-being
When you think about the things that bring you joy and fulfillment, how often do you
prioritize these aspects of your life over more practical considerations, such as work or
financial security?

1.Almost never
2.Rarely
3.Sometimes
4.Often
5.Almost always

✓

Q2000
Social Capital, Trust &
Organizational
Membership

How often do you trust that the decisions made by the organizations you are a member of
align with your own values and goals?

1.Always
2.Mostly
3.Sometimes
4.Rarely
5.Never

✓

Q3003 Economic Values
When considering the benefits and drawbacks of technological advancements in the
workplace, how important is it to you that these changes lead to increased income
inequality?

1.Not important at
all
2.Somewhat
unimportant
3.Neutral
4.Somewhat
important
5.Very important
6.Extremely
important

✓

Q4001 Corruption
When dealing with public services, to what extent do you agree with the idea that it’s
common for officials to use their position for personal gain, on a scale from 1 (strongly
disagree) to 5 (strongly agree)?

1,2,3,4,5 ✓

Q5000 Migration
Should governments prioritize the integration of migrant workers into the local culture and
society, or prioritize their ability to maintain their own cultural identity?

1.The former
2.The latter
3.Both equally
important

✓

Q6000 Security
To what extent do you agree with the statement: ’The government should invest more in
cybersecurity to protect citizens’ personal data and online security’?

1.Strongly agree
2.Somewhat agree
3.Neither agree
nor disagree
4.Somewhat
disagree
5.Strongly disagree

✓

Q9000 Religious Values
When faced with moral dilemmas, do you primarily rely on your own moral compass,
religious teachings, or the values and beliefs of your community?

1.My own moral
compass
2.Religious
teachings
3.Values and
beliefs of my
community

✓

Q10001 Ethical Values and Norms
Do you think that individuals have a moral obligation to reduce their carbon footprint, even if
it means significant changes to their lifestyle, or not?

Strongly disagree
1.Somewhat
disagree
2.Neither agree
nor disagree
3.Somewhat agree
4.Strongly agree

✓

Q11000
Political Interest & Political
Participation

How satisfied are you with the opportunities available for citizens to participate in the
political decision-making process in your country?

1.Very satisfied
2.Fairly satisfied
3.Not very satisfied
4.Not at all
satisfied

✓

Table 13. Questions generated by LLaMA-3-8B-Instruct.
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satisfied

Q12362
Ethical Values and Norms
& Political Regimes

How much do you think people should be able to hold public officials accountable for their
actions?

1 - Not at all
important
2
3
4
5 - Very important
6 - Extremely
important

X
(error
2)

Q10000
Ethical Values and Norms
& Political Regimes

Do you think that companies prioritizing profits over social responsibility can always be
justified?

1,2,3,4,5,6,7,8,9,10
X
(error
1)

Statements and Declarations

Ethical Statement

In this paper, we use the World Values Survey to study the cultural alignment of LLMs. Our use of this data complies with

established protocols and is consistent with its intended purpose. While our experimental results reveal that LLMs exhibit

imbalanced biases across various cultures, our goal is to mitigate these biases and promote the pluralistic culture

alignment of LLMs.

Footnotes

1 (1) Social Values, Attitudes, and Stereotypes, (2) Happiness and Well-being, (3) Social Capital, Trust, and

Organizational Membership, (4) Economic Values, (5) Corruption, (6) Migration, (7) Security, (8) Post-materialist Index,

(9) Science and Technology, (10) Religious Values, (11) Ethical Values and Norms, (12) Political Interest and

Participation, and (13) Political Culture and Regimes.

2 (1) America: USA (American), CAN (Canadian), BOL (Bolivian), BRA (Brazilian); (2) Europe: GBR (British), NLD (Dutch),

DEU (German), UKR (Ukrainian); (3) Asia: CHN (Chinese), RUS (Russian), IND (Indian), THA (Thai); (4) Africa: KEN

(Kenyan), NGA (Nigerian), ETH (Ethiopian), ZWE (Zimbabwean); (5) Oceania: AUS (Australian), NZL (New Zealand).

3 https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

4 https://github.com/hiyouga/LLaMA-Factory

5 Our preliminary experimental results support this. For example, probing LLaMA3 in Chinese yields poorer alignment

results compared to English, even for Chinese culture. This is likely due to LLaMA3’s lower proficiency in Chinese rather

than a lack of understanding of Chinese culture.
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