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Commentary

On the Potential Influence of Radio Waves

on the ALPHA-g Experiment

Steffen Kühn1

1. Independent researcher

In the ALPHA-g experiment at CERN, it was found that antihydrogen atoms escaping from a magnetic

Penning trap drifted primarily downward. As antihydrogen atoms are electrically neutral, the research

team attributed this preference in drift direction to the gravitational force of the Earth. This

explanation, in turn, led to the conclusion that matter attracts antimatter. However, it is unclear

whether the ALPHA-g experiment team considered the potential for interactions between electrically

neutral particles and electromagnetic fields in the radio frequency range, a phenomenon that could

warrant further exploration. Unfortunately, the direction of action of these ponderomotive forces is

identical for a hydrogen atom and an antihydrogen atom. This article derives the formula of the

ponderomotive force from the basic equations of classical physics. Subsequently, it is shown that in

unfavorable cases, even comparatively weak radio waves of suitable frequency, such as those

generated by electronic devices, could lead to forces that reach or exceed the force of gravity.

Corresponding author: Steffen Kühn, steffen.kuehn@aurinovo.de

I. Introduction

The ALPHA-g experiment performed at the European Organization for Nuclear Research (CERN) was

designed to investigate whether gravity influences matter and antimatter in the same way[1]. The basic

aim of the experiment was to release antihydrogen atoms from a trap working with static magnetic fields

and to then determine whether the atoms drift upward or downward. In the measurements, the

researchers observed that approximately 80% of the antihydrogen atoms escaped downward from the

trap, similar to ordinary hydrogen. Thus, the team concluded that Earth’s gravitational field attracts

antihydrogen atoms and hydrogen atoms in the same way. This article points out, however, that another

possible force has not been considered as an alternative explanation.
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Physicists often believe that electrically neutral particles interact only with gravitational fields or, if they

have a magnetic moment as in the case of antihydrogen, with static magnetic fields. However, it is less

well known that, under certain circumstances, electromagnetic waves can generate a non-negligible

force on an electrically neutral particle. Certain conditions must be met for this force to arise. One

prerequisite is that the electrically neutral particle must contain components that are electrically

charged. With antihydrogen, this requirement is met because the positron has a positive elementary

charge, whereas the antiproton has a negative elementary charge.

If such an outwardly electrically neutral particle is in a static electric field, an external force acts on the

particle, pulling the two differently charged components of the particle apart, while the internal forces of

the particle work against this action. These forces cause the particle to become an electric dipole. For

example, hydrogen can be polarized in an electrostatic field, as proven by the Stark effect discovered in

1913[2]. If the external force is sufficiently strong, a hydrogen atom can potentially even be ionized[3].

In harmonically oscillating electric fields, the direction of the electric force at the location of the particle

is constantly changing. At very low frequencies, the situation shows little difference from that of an

electrostatic field, and the particle is always polarized in such a way that the effect of the external field is

weakened. However, a unique frequency exists at which the external and internal forces act

synchronously. In classical physics, this phenomenon is called resonance, and the associated frequency is

denoted the resonance frequency. A well-known resonance frequency of hydrogen[4]  occurs at

approximately  , falling within a frequency range that is used intensively for technological

purposes.

If the hydrogen atom were a classical system, an alternating electromagnetic field would pull the particle

further and further apart with each reversal of polarity and finally tear it apart into its components. In

fact, experiments show that a hydrogen atom can be ionized not only by individual photons but also by

means of microwave radiation[5][6]. Because the energy of a single photon in the microwave and radio

wave range is not sufficient for ionization, theoretical physics explains these effects via multiphoton

absorption or tunnel ionization[7].

In theory, alternating electromagnetic fields with frequencies close to the resonance frequency should

also be able to accelerate individual atoms if the fields are spatially inhomogeneous. Many

electromagnetic transmitters in the gigahertz range satisfy this condition, as they are usually highly

= 1.42 GHzfe
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localized sources. Examples include clocked microprocessors, switched-mode power supplies, cell

phones, Bluetooth transmitters, and routers for wireless local area network (WLAN).

The significance of the spatial inhomogeneity of the electric field strength is that the sum of the two

forces on the two components of a polarized particle in a spatially inhomogeneous field is no longer zero.

Thus, a small net force is produced in the temporal average, which accelerates the particle despite its

electrical neutrality. This force is referred to as the ponderomotive force[8]. Interestingly, this force does

not differ between hydrogen atoms and antihydrogen atoms. In most cases, the ponderomotive force is

very small for electrically neutral particles. However, this is not always the case, especially if the

frequency of the external field is close to the resonance frequency of the particle.

The present article presents theoretical calculations suggesting that under specific circumstances,

ponderomotive forces could be non-negligible. While these forces may be effectively shielded in the

ALPHA-g experiment, it is worthwhile to assess their potential role as a supplementary consideration.

II. Ponderomotive force

In the following, formulas for the ponderomotive force for electrically charged and electrically neutral

particles are derived from the general basic equations of classical physics. The intention of this section is

to present the necessary background as compactly as possible.

We start by deriving the ponderomotive force for electrically charged particles, which has some

interesting technical applications, such as the free-electron laser[9]  and the Paul trap[10]. For this

derivation, we assume a spatially inhomogeneous electric field of the form 

with a point charge   in this field.   is taken to be a function that does not depend on the time   but

only on the location  . Therefore, the time-dependent component is only present in the oscillation 

, where   is the angular frequency.

The equation of motion of the point charge   with mass   is then 

The trajectory 

E(r, t) = (r) cos(ωt)Er (1)

q (r)Er t

r

cos(ωt) ω

q m

m = q ( ) cos(ωt).r̈q Er rq (2)

= +rq rd ro (3)
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of the point charge   consists of a rapidly oscillating part   and a slowly drifting part  . If the angular

frequency   is high, the oscillation amplitude   must be small. Therefore, 

applies approximately, where 

represents the Jacobian matrix. By inserting Equation (3) and the approximation from Equation (4) into

the equation of motion (Equation (2)), we obtain

In the next step, we can exploit the fact that the acceleration  , which leads to the drift motion, is much

smaller than the acceleration  . This fact and the small oscillation amplitude of   simplify the equation

of motion (Equation (6)) to 

Because    only changes very slowly compared with  ,    is essentially a constant in the time

period under consideration, which allows the differential equation to be solved, leading to 

By inserting this expression into Equation (6), we obtain 

after some rearrangement.

Equation (9) describes a force, as can be realized by multiplying both sides by mass  . Furthermore, the

force at the location    always points in the same direction. Although the force oscillates, the term 

 is always positive and thus cannot influence the direction of the force. Consequently, a resultant

force remains in the temporal mean. This force can be obtained by calculating the time average of 

. By means of 

q ro rd

ω ∥ ∥ro

( ) ≈ ( ) + ∇ ⊗ ( ) ⋅Er rq Er rd Er rd ro (4)
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(5)

m ( + ) ≈ q ( ( ) + ∇ ⊗ ( ) ⋅ ) cos(ωt).r̈d r̈o Er rd Er rd ro (6)

r̈d

r̈o ro

m ≈ q ( ) cos(ωt).r̈o Er rd (7)

rd ro ( )Er rd

≈ − ( ) cos(ωt).ro

q

mw2
Er rd (8)

≈ − ∇ ⊗ ( ) ⋅ ( ) cos(ωtr̈d
q2

m2 ω2
Er rd Er rd )2 (9)
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rd

cos(ωt)2
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1

2T
∫

−T

T

)2 1

2
(10)
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we find the approximation 

If we multiply both sides by the mass  , we finally obtain a force  , which is referred to as the

ponderomotive force. Because all dependencies on   have now disappeared, the parameter in   can

also be omitted, and the formula can be written in a compact form as 

For the case in which    can be expressed as the gradient    of a scalar potential    (

), we obtain 

because of 

This relation simplifies Equation (12) even further, and we obtain

Equation (15) gives the formula for the ponderomotive force on an electrically charged particle. However,

a ponderomotive force can also act on an electrically neutral particle under certain conditions. As far as

the author is informed, there are no practical applications for the ponderomotive force on electrically

neutral particles. This may explain why the ALPHA-g experiment team did not account for this force in

their analyses.

To derive the formula of the ponderomotive force for an electrically neutral particle, a bound particle is

considered, which consists of a negative charge   and a positive charge  . The force between the two

charges is modeled by a harmonic oscillator with a coupling constant  .

The oscillating, spatially inhomogeneous electric field   is again given by Equation (1). The equations of

motion are therefore

and 

≈ − ∇ ⊗ ( ) ⋅ ( ).r̈d
q2

2m2 ω2
Er rd Er rd (11)

m Fp

ro ( )Er rd

= − ∇ ⊗ ⋅ .Fp

q2

2mω2
Er Er (12)

Er = ∇Er φr φr

∇ × = 0Er

∇ ⊗ ⋅ = ∇ ( ⋅ ) = ∇Er Er
1

2
Er Er

1

2
E2
r (13)

(∇ ⊗ ∇ ) ⋅ ∇ = ∇ (∇ ⋅ ∇ ) .φr φr
1

2
φr φr (14)

= − ∇ .Fp

q2

4mω2
E2
r (15)

−q +q

k

E

= −q ( ) cos(ωt) + k ( − )mn r̈n Er rn rp rn (16)

= q ( ) cos(ωt) + k ( − ) .mp r̈p Er rp rn rp (17)
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Here,   is the trajectory of the negative charge, and   is the trajectory of the positive charge.   and 

 are the corresponding masses.

Similar to the case for an electrically charged particle, the solutions consist of a slowly drifting

component  , which describes the movement of the system’s center of gravity, and rapidly oscillating

components   and  . Therefore, we can set   and  . The drift component 

 for a bound particle is, of course, identical for both charges and equal to the trajectory of the center of

gravity.

Using the approximation in Equation (4), the equations of motion (Equations (16) and (17)) become 

 and 

With the approximations  ,  ,  , and  , this expression

simplifies to 

and 

This system of differential equations can be solved by assuming that    is essentially only a time-

independent constant at the time of consideration. The solutions are 

and 

where   represents the resonant angular frequency 

of the bound particle and 

rn rp mn

mp

rd

ron rop := +rn rd ron := +rp rd rop

rd

( + )mn r̈d r̈on ≈ k ( − ) −rop ron

q ( ( ) + ∇ ⊗ ( ) ⋅ ) cos(ωt)Er rd Er rd ron

(18)

( + )mp r̈d r̈op ≈ k ( − ) +ron rop

q ( ( ) + ∇ ⊗ ( ) ⋅ ) cos(ωt).Er rd Er rd rop

(19)

∥ ∥ ≪ ∥ ∥r̈d r̈on ∥ ∥ ≪ ∥ ∥r̈d r̈op ∥ ∥ ≈ 0ron ∥ ∥ ≈ 0rop

≈ −q ( ) cos(ωt) + k ( − )mn r̈on Er rd rop ron (20)

≈ q ( ) cos(ωt) + k ( − ) .mp r̈op Er rd ron rop (21)

( )Er rd

=ron

q ( ) (cos(ωt) − cos( t))Er rd ωe

( − )mn ω2 ω2
e

(22)

= − ,rop

q ( ) (cos(ωt) − cos( t))Er rd ωe

( − )mp ω2 ω2
e

(23)

ωe

=ωe
k

mred

− −−−−

√ (24)
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represents the reduced mass.

For the center of gravity  , the equation 

applies. By differentiating twice, we obtain 

Substituting the right-hand sides of Equations (16) and (17) yields

With the approximation in Equation (4), we obtain 

Here, the solutions given in Equations (22) and (23) can now be used to obtain

whereby we now only write   as  .

In the next step, we again take the average with respect to time in order to remove the fast oscillation of

the two charges, which is irrelevant for the movement of the center of gravity. Using 

 and 

we eventually obtain 

for the ponderomotive force of a bound particle. For the case in which   is the gradient of a potential (

), this expression can again be simplified and we obtain 
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e
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by applying Equation (13).

It is important to point out the term    in the denominator of the fraction in Equation (33). This

term seems to imply that an infinitely strong ponderomotive force acts for  , which is unrealistic.

Numerical simulations clearly show that a bound particle resonates at the eigenfrequency and oscillates

more and more violently until algorithmic instabilities occur. However, the center of gravity of the bound

particle does not change its position. Nevertheless, it is true that the ponderomotive force is particularly

strong for angular frequencies   close to the resonant angular frequency  . The direction of the force

depends on the sign of the term  . For eigenfrequencies higher than the field frequency, the

ponderomotive force acts in such a way that bound particles are drawn to where the field strength

increases.

III. Electric field of a small dipole antenna

In the previous section, it was shown that, under certain circumstances, electromagnetic fields have an

effect on electrically neutral particles. In this section, we seek to calculate the electromagnetic field of a

small, almost point-shaped transmitter. The aim is to derive a formula that can represent the field of a

WLAN router, cell phone, or clocked microprocessor at a distance of 1 m or more. To calculate this

formula, we again use the basic laws of classical physics.

One of these fundamental laws relates to the electric field  , which is generated by a moving point

charge   with trajectory   at location  . The formula reads 

and can be found by solving Maxwell’s equations[11]. In Equation (34),   is the distance vector 

The parameter   is a certain moment in the past, which can be calculated by using 

In turn, the parameters   and   are defined by 

and 

−ω2 ω2
e

=ω2 ω2
e

ω ωe

−ω2 ω2
e

Esd

qs (t)rs rd

( , r, v, a) =Esd qs

( + )
qs

4πε0

(r c + rv) ( − − r ⋅ a)c2 v2

(r c + r ⋅ v)3

a r

(r c + r ⋅ v)2

(34)

r

r := − (τ).rd rs (35)

τ

τ := t − .
∥ − (τ)∥rd rs

c
(36)

v a

v :=
dr

dτ
(37)
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Equation (34), which follows directly from Maxwell’s equations, allows us to calculate the field generated

by a very small antenna located at the coordinate origin in a rather simple way. To obtain the field of the

antenna, we simply add the field of a stationary positive point charge    to the field of an oppositely

charged point charge    that moves with a trajectory  . For the antenna model to be reasonable,

however, the condition 

must be satisfied for all times  , i.e., the two charges must remain close together.

Using Equation (39), it is possible to simplify Equation (36) to 

From this, Equation (35) becomes

and Equations (37) and (38) become 

and 

The resulting field   of the antenna is then 

By plotting this field, one can verify that it corresponds to the well-known field of the Hertzian dipole[12].

To carry out simple calculations, this formula should be simplified even further. For this purpose, one can

exploit the very small magnitude of  , which allows us to express   by a first-order Taylor series. After

a skipped calculation, we obtain 

a := .
rd2

dτ 2
(38)

q

−q (τ)rs

∥ − (τ)∥ ≈rd rs rd (39)

τ

τ ≈ t − .
rd

c
(40)

r = − (t − /c),rd rs rd (41)

v = − (t − /c)ṙs rd (42)

a = − (t − /c).r̈s rd (43)

Ea

= (q, , 0, 0) + (−q, r, v, a).Ea Esd rd Esd (44)

rs Ea

≈Ea − +
q ( × ( × (t − )))

rd

rd

rd

rd
r̈s

rd
c

4πε0 c2 rd

+
q ( (t − ) − 3 ( ⋅ (t − )))r2

d
ṙs

rd
c

rd rd ṙs
rd
c

4π cε0 r4
d

,
q ( (t − ) − 3 ( ⋅ (t − )))r2

d
rs

rd
c

rd rd rs
rd
c

4πε0 r
5
d

(45)
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i.e., the electric field of the Hertzian dipole including the near field. This expression can likewise be

simplified even further if we assume that we are not in the immediate vicinity of the antenna, but that

the distance is sufficiently great for the last two terms to be irrelevant. In this case, we can focus on the

far field of the Hertzian dipole and obtain 

The sign and scaling factor vary in the specialist literature, owing to the fact that one can also allow the

positive charge or both charges to oscillate. However, these details are irrelevant for the following

considerations.

IV. Ponderomotive force of a dipole antenna in the far field

Equations (33) and (46) can now be used to calculate the force exerted by an electromagnetic transmitter

on a hydrogen or antihydrogen atom. A number of electronic devices, such as WLAN routers or cell

phones, can be considered as transmitters. These devices emit almost perfect sine waves of a certain

frequency   in the gigahertz range. The antennas are relatively small, and the wavelength is so short that

the far-field approximation in Equation (46) can be used at a distance of just 1 m.

For this reason, we only use the approximation in Equation (46) and assume that the negative point

charge moves along the trajectory 

Here,    is a very small spatial displacement significantly smaller than the diameter of an atom, 

 is the angular frequency, and   is a direction vector that represents the orientation of the dipole

antenna. Inserting this expression into Equation (46) gives the corresponding electric field 

The numerical value of   is an unknown quantity. However, the electric field strength generated at a

defined distance is often known. Therefore, the partially unknown parameters can be summarized in a

single parameter  , and this voltage can be selected in such a way that the measured field strengths

correspond to the model, leading to 

≈ − .Ea

q ( × ( × (t − )))
rd

rd

rd

rd
r̈s

rd
c

4πε0 c2 rd
(46)

f

(τ) = eA cos(ωτ).rs (47)

A

ω = 2πf e

= .Ea

Aq ( × ( × e)) cos(ω (t − ))ω2 rd

rd

rd

rd

rd
c

4πε0 c2 rd
(48)

A ⋅ q

Un

= ( × ( × e)) cos(ω(t − )).Ea
Un

rd

rd

rd

rd

rd

rd

c
(49)
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From this, we can now calculate the ponderomotive force in Equation (33). First, we can read from

Equation (49) that the amplitude of the field strength is 

In the next step, we verify that  . Thus, we can use Equation (33), and after calculating and

inserting the term  , we obtain the ponderomotive force 

i.e., the force exerted by a small electromagnetic transmitter on an electrically neutral bound particle that

consists internally of two charges   and  , with reduced mass  .

For the special case in which the dipole antenna is aligned in the z-direction,  , the ponderomotive

force is strongest in the x-y plane. Therefore, we can set  , and Equation (51) becomes

As one can easily see, the force is the same for hydrogen and antihydrogen and has an attractive or

repulsive effect depending on the sign of  . It is also clear that the force for   can be strong.

Equation (52) can now be used to estimate the force exerted, for example, by a WLAN router on a

hydrogen atom at a distance of  . WLAN routers use different frequencies depending on the standard.

A typical frequency is  . As already mentioned, the eigenfrequency    of hydrogen is 

. WLAN routers generate a field strength ranging from approximately    to more than 

 at a distance of 1 m[13][14][15]. Thus, we use the parameters  ,  , and  .

The reduced mass    corresponds to approximately the mass of an electron. Because the hydrogen

atom consists of an electron and a proton and the antihydrogen atom consists of an antiproton and a

positron,  . If these parameters are inserted, a force of   is obtained.

The gravitational force of the Earth on a hydrogen atom can be estimated by using the formula 

, where    is the free-fall acceleration and    is the mass of a proton. Inserting these

parameters gives  . This force significantly exceeds the value of  . Therefore, the

force exerted by a WLAN router at a distance of 5 m would not present an issue.

However, the situation changes if the transmitter is nearby and the transmission frequency is closer to

the resonance frequency of hydrogen. For example, if we assume that the transmitter is transmitting at a

= ( × ( × e)) .Er
Un

rd

rd

rd

rd

rd
(50)

∇ × = 0Er

∇ ( ⋅ )Er Er

= ,Fp

( ( − 2 (e ⋅ ) + e (e ⋅ ))q2 U 2
n rd r2

d
rd)2 r2

d
rd

2 ( − )mred ω2 ω2
e r6

d

(51)

+q −q mred

e = ez

=rd ex rd

= .Fp

q2 U 2
n ex

2 ( − )mred ω2 ω2
e r3

d

(52)

−ω2 ω2
e ω ≈ ωe

5 m

f = 2.4 GHz fe

1.42 GHz 0.7 V/m

3 V/m = 1 VUn ω = 2πf = 2πωe fe

mred

=q2 e2 ≈ 7.61 ⋅ NFp 10−31

= gFg mp g mp

≈ 1.64 ⋅ NFg 10−26 Fp
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frequency of   and is only 1 m away, then  , which approaches the force of

gravity. If the transmitter is even closer or the field strength is greater than the relatively small field

strength of  , the ponderomotive force can be stronger than the gravitational force. Importantly, the

direction of the ponderomotive force is identical for both an antihydrogen atom and a hydrogen atom.

V. Conclusions

This article has shown that ponderomotive forces should not be ignored in the ALPHA-g experiment. It is

likely that the apparatus used in the experiment is relatively well shielded against external

electromagnetic fields in the radio and microwave range because of its metallic structure. However, such

fields can penetrate through glass windows or electrical cables. A problem arises here, as the fields inside

would be relatively inhomogeneous. In addition, standing waves could occur. The resulting

ponderomotive forces would then have an equally attractive or repulsive effect on hydrogen and

antihydrogen atoms. Moreover, because the ponderomotive forces can theoretically be stronger than the

weak force of gravity, the ponderomotive forces could, under certain conditions, influence the observed

drift direction of antihydrogen atoms, potentially complicating the interpretation of gravitational effects

if not adequately ruled out.

For this reason, it is necessary to prove in the ALPHA-g experiment that there are no or almost no

alternating electromagnetic fields inside the cylinder and that no individual frequencies are particularly

prominent in the spectrogram. One potential avenue for future validation could involve controlled

exposure of antihydrogen to radio-frequency fields under experimental conditions, to assess the

magnitude and directionality of any resulting ponderomotive effects. It is certainly possible that no

interactions with radio waves occur, because the    resonance in hydrogen relates to magnetic

coupling with the electron spin. Therefore, the considerations made in this article based on the electric

field strength might not reflect the situation correctly. Furthermore, hydrogen atoms are not classical

systems.

This article is not intended to dispute the findings of the ALPHA-g experiment but rather to offer a

constructive criticism of the experimental interpretation, grounded in classical physics. The intention is

to stimulate scientific discussion by presenting a theoretical mechanism that may warrant consideration

in future experimental validations. This work is written with the goal of fostering open scientific debate

and encouraging feedback from other physicists and engineers, particularly those with expertise in

f = 1.41 GHz ≈ 1.26 ⋅ NFp 10−26

1 V/m

1.42 GHz
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atomic and antimatter systems. Only through such discourse can we ensure that fundamental questions,

such as how gravity acts on antimatter, are approached with the fullest scientific rigor.
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