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Some basic questions in quantum field theory and cosmology are addressed here. We derive some
formulas for the change in the canonical commutation and anticommutation relations at equal time
for some of the well known quantum fields in the presence of a background curved space-time metric.
We study the problem of quantizing the Klein-Gordon field interacting with the gravitational field of
homogeneous and isotropic space time of an expanding universe and also simultaneously interacting
with a classical random current field. Formulas for the quantum effective action of the scale factor of
the expanding universe are derived by averaging over the Klein-Gordon field, taking into account its
interaction with a classical random current field. This gives us information about how the expansion
rate of our universe can get affected due to quantum mechanical interaction effects. Finally, we discuss
the general problem of symmetry breaking in the quantum effective action of a field when it interacts
with a random Gaussian current field source. The symmetry breaking terms are expressed in terms of
the correlation field of the random current source. Since the Hessian of the quantum effective action
equals the inverse of the propagator kernel, it follows that the former tells us how much mass do
particles gain by interacting with a random current field. This fact could provide us with a clue about
how particles in our universe acquire masses. We then derive Hawking’s temperature formula for a
quantum Blackhole using the approximate solution to the Klein-Gordon equation in the vicinity of the
Schwarzchild radius. This is a new derivation not present in the literature. Finally, a short discussion is
presented about the quantum mechanical meaning of estimating the state of a gravitational wave
from continuous noisy measurements on the electromagnetic field with which it interacts on a real
time basis using the well known Belavkin quantum filter based on the Hudson-Parthasarathy noisy

Schrodinger equation. The appendix provides a simplified analysis of loop quantum gravity based on
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Ashtekar’s variables and how one constructs the area operator that is crucial in deriving the blackhole

entropy.

1. Introduction

In this paper, we present second quantization of the electromagnetic and Dirac fields in the background
of classical curved space-times. We discuss how the canonical commutation relations in a curved
background space-time lead to deviations in the commutation relations between the position and
velocity fields when background curvature is present by taking the Robertson Walker metric of space
time with a spatially homogeneous Klein Gordon field also present. We generalize this idea by dropping
off the homogeneity condition on the Klein-Gordon metric. This is achieved by expanding the KG field as
a linear combination of spatial basis functions with the coefficients in this expansion being functions of
time only and serving as the position variables for the KG field. We thus set up the total action for the
Robertson-Walker scale factor and the general KG field in this space-time metric. By path integrating
over the KG position paths, namely over the paths defined by the linear combination coefficients that
appear in the expansion of the KG field in terms of spatial basis functions, we are able to derive the
quantum effective action for the scale factor of the universe when gravity interacts with the
inhomogeneous KG field. This computation also tells us how to derive the wave function evolution of the
scale factor of the universe when the universe consists of scalar KG particles. We then proceed further to
calculate the quantum effective action of the scale factor of the universe along with the KG field within it
when the KG field interacts with a classical random Gaussian current field. This quantum effective action
is obtained by evaluating the classical average of the complex exponential of the total action of the RW
gravitational field and the KG field in this metric and in addition, taking into account interactions
between the random current field and the KG field. A further path integration of this averaged complex
exponential over the KG field then yields us the quantum effective action of the scale factor of the
universe alone. This formula can be used to predict how quantum effects with matter and random
current fields in the universe can affect the rate of expansion of our universe. We then consider another
example of such a situation in which we start with an arbitrary Lagrangian density of a field also
depending on the metric of space-time with the metric being a function of a set of random parameter
fields. We compute the quantum effective action for such field by assuming that these random

parameters have small variances. It should be mentioned that the quantum effective action is computed
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by forming the Legendre transform of the expected value of the complex exponential of the action w.r.t
the mean value of the current in all the cases, and this then yields us the quantum equations of motion
satisfied by the quantum effective action. It also gives us symmetry breaking effects induced by the
random current field in the sense that the variation of the quantum effective action under the quantum
expectation value of the gauge transformation that leaves the classical action invariant is no longer
invariant but instead depends on the covariance of the random current field. We illustrate such symmetry
breaking using the example of a finite number of KG fields with its Lagrangian having global o)

symmetry leading to the same symmetry in the quantum effective action but to a breaking of this
symmetry when the current with which the field interacts has random Gaussian fluctuations. In the
process of discussing the KG field, we analyze its behaviour in the vicinity of the event horizon of a
Schwarzchild blackhole and provide an independent derivation of Hawking’s formula for the temperature
of a blackhole at which it radiates photons. The quantum mechanical problem of estimating the state of a
gravitational wave from electromagnetic field measurements using the Belavkin quantum filter is also

presented.

2. The quantum electromagnetic field in curved background space-
time
The Lagrangian density of the electromagnetic field in the background metric g, (x) is given by
LA, )= (= UHF, F\=g+(@/2)(~g) 24\ )7 = = ()
where
Al =g, — = = (2)

It is clear that the integral of L over the whole of space-time is invariant w.r.t diffeomorphisms because of

the invariance of the 4-volume element - gd*x and the fact that
i\-g) =4 e = -0

with A% isa scalar as also is , /. The second term in (1) is to be regarded as a gauge fixing term for the

electromagnetic field. It stems from the invariance of the electromagnetic field

F,IAV - Av,,u _A/z,v - @
under the gauge transformation
Ay = Ayt @ ===
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with ¢ a scalar field. The parameter a can be looked upon as a Lagrange multiplier introduced to
constrain (A”\/:g)’ . to vanish, just as we have the Lorentz gauge in flat space-time. It is useful to
introduce this gauge fixing term as then the momentum fields corresponding to all the four position
fields 4, will be non-zero thereby enabling us to avoid the uncomfortable situation of having to treat this
as a Lagrangian/Hamiltonian problem with constraints thereby forcing us to use Dirac brackets in place

of Lie/Poisson brackets. Noting that
AN=2) o= g"\ed, o+ X = = =(6)

where X involves non-derivative terms of 4,, we see that the momentum fields P* corresponding to the

w

position fields 4, are given by
Pi(x) = 0L/0A,, o= FrOx)\-g(x) + a. gof‘(A"\/*_g)’v -—=
The canonical equal time Bosonic commutation relations (CCR) are
[4,), P*0)] = i8,6% 0 = ), x" =)0 = = = (8)
and of course
[4,(), 4,001 = [P, (), P,0)] = 0,x" = y° = = = (9)
These CCR’s imply

[4,(x), 8700804, o) + a. ag Mg IN-g0)4, (1]

= i5;53(x—y),x° =30— — —(10)
or equivalently,
(@7¢" +ag" g YIN-2WINA, (), 4, ()] = i0,0%(x —3),2" =)0 = = —(11)
Equivalently, defining the matrix
CP) = (278" + ag" ¢ oN-g0) - — —(12)

and its inverse
(K, =Kp) = Co) "' =(CPe) = - —(13)
we obtain the fundamental CCR for electromagnetics in curved background:

CYOIA, (), 4, (W] = 875 = y),x" =)0 = = = (14)
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or equivalently,
[4,00, 4, o] =K, (8 (x =), x" =)0 = = = (15)

In flat space-time, we have g"”(x) = #'” and the CCR simplifies to

(4,00, 4, (0] =il + a.u”) ™1, @ =),x" =)0 = = = (16)
where
u=11,0,0,0"- - — (17a)
and
n=diag[l, — 1, =1, —1]1— — — (17b)

is the Minkowskian metric.

Remark: The CCR derived above is not a coordinate and gauge independent formula. It depends on a
specific coordinate system chosen as well as the chosen gauge. It follows therefore that since simultaneity
of two events depends on the choice of the reference frame, we cannot use the equal time commutation
relation derived above in a different system of coordinates. Further, the above formula suggests that the
"degree of non-commutativity of the position fields 4,(x) and the corresponding velocity fields 4, ,(») at
equal times x° = )° is metric dependent and also frame and gauge dependent. This suggests that the
theoretical variables formulation of quantum mechanics proposed by the second author in a series of
papers (see 1l and references there) will lead to degrees of accessibility and inaccessibility of observables

being frame and gauge dependent.

3. The Dirac field in a back-ground curved space-time interacting

with the electromagnetic field

The covariant derivative is

V,=0,~igd,+T,~ = —(18)
where
A4, =AZTa, r,= meymnM— - —(19)
Note that
[Ty Tp] = — iClabo)T,. — — —(20)
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[ymn/4, yab/4] = rymbyna/4 + Vna”mb/4 ~Vmdap!3 ~ rynbyma/4 - - —(20)
T, are Hermitian matrices. Since y0, y%" are Hermitian, we have
GO * = 0" % = 0% Fy =% - - - @)
and hence,
PO = M - - - (22)
are skew-Hermitian matrices. Thus,
T, = w:'”iyoymn/4 il X))

are Hermitian matrices. The Dirac operator is

iD—m,D = y"V, y"(x) = y“V’Z(x) i 020
The Dirac equation is
(iD-myy=0- — —(25)
which is the same as
iy(0, —igA, +T,)— — —(26)

The Dirac Lagrangian density from which the Dirac equation is derived is given by
L=y*)°liD—mly. g~ — - (27)
Hence, the momentum field conjugate to the canonical position field y is given by
P =0/00yy = ngl// * yoy”\/:g = ngx/:gl// ot = i\/:gl// L A—— (28)
where
a = a(x) = a"Vix) — — = (29)

are the non-constant Dirac «-matrices in the gravitational field. Note that the o are the constant Dirac a

matrices. The canonical equal time anticommutation relations are therefore
~0
@),y * ja ON-g0) = P = »),x0 =y = = = (30)
or equivalently,

W), ) * 3 = (- g0) 2@ W) 1P -0 =)0 - - -3

Now, we have the anticommutation relations

01,7 ()} = 2¢7(x) - — - (32)
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and in particular,

@) = 6% = % V) = Vo) = (o, VP2
3
=(112) 2 (V)* = Kx) — — —(33)
a=0
say. Note that by K(x), we mean K(x)I. We have used the fact that the «*’s mutually anticommute and their

squares are the identity. It follows therefore that
@ = K0l w - - - (34

Thus, we obtain the equal time CAR as

W@,y ¥} = (—g0) K@ @0 ),20 =)0 - - - 39)
This is a fundamental equation because it gives us an idea of how much the canonical anticommutation
relations of the Dirac field get affected by the presence of a background gravitational field. Specifically,
we can evaluate this anticommutator in the background Robertson-Walker metric for an expanding
homogeneous and isotropic universe and show that this equal time CAR (Canonical anticommutation

relation) becomes proportional to S(7) ~3.

4. The wave function in cosmological models

The idea of calculating probability amplitudes in cosmology and study the evolution of the scale factor of
the universe as it evolves through different histories using the Feynman path integral method is
originally due to Hawking (The wave function of the universe). Hawking’s idea is to start with the RW

model for space time corresponding to a homogensous isotropic universe, ie,

de* = dt* = S(t*fir)? = S(0)*rX(do? + sin*(0)d¢?) — — - (36)
so that
200 = Lgy + —SOD%22 = = S0 g35 = — SW*r*sin*(0) — — — (37a)
where
A2 =1/ -kt - — = (37b)

with £ =0, 1, — 1 according as space is flat, spherrical or hyperbolic and then evaluate the Einstein-Hilbert

Lagrangian density for this universe

L(r,0,80),8 (1) =
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vire 1B o B o
gy I, rﬂﬂrm]\/_g (38)

Hawking then considers the Lagrangian density for a scalar Klein-Gordon field ¢(z, r) in this background

metric:
Ly, 0,1, 0,01S®) = (1/2)g""\=gx ., ~m*\-gr* /2~ = = (39)

He then considers evaluating the Schrodinger wave function of the scale factor of the universes at time ¢

in a universe filled with such scalar particles using the Feynman path integral
w(t, ) = CJ€XP(iSG[t, S+ iSgclt, x| SDDSI0, )Dx[0, 1] = — — (40)
where C is a numerical factor and

Sglt, 8] = j gds j L(r, 0, 5(5), ' (s))drd0. dep

= I;L L8565), 8" (5))ds = — — (41a)
where
L,=[Lod*x— — —(41b)
is the Lagrangian of S() and
Salts 2181 = [(ds[ L, 0, 15, 7, 0, $), 0, 1(s, 7, 0, §) | S(s))drd. dep~ — — (42)

Hawking notes that since the universe is homogeneous and isotropic, we can assume that the KG wave

field y is a function of only time to a good degree of approximation, so that

Ly = (112) (0*\Fg = m\=gr(®? - - - (43)
where

V=g = SOy sin(0) - — ~ (44)
and so
j \-gd3x = KS(03, K = 2743 j S 2sin(O)drdg — — — (45)
so that the KG Lagrangian becomes
Ly (0, ' (01 8@) = (KI2)S@03[x (07 = m?x(1)*] = — — (46)

which means that the joint wave function of S(¢), x(¢) (ie, the scale factor and the KG field at time ¢), is given

by the formula

W(t, S.2) = Clexplif Lo(S(5). S'(5)) + LigGu(s). 2 (5) | S()ds)DS[O, )D£[0, 1) = — = (47)
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where S(9) = S, x() = y and in particular, the probability density of S(¢) is given by
p(t,8) = [ 1wt .20 %y — — — (@8)
Lengthy but elementary calculations show that the Einstein-Hilbert Lagrangian density
Lg=g"L\-g— — —(49)

for the RW metric evaluate as follows:

Lg=(8"Loy+ "Ly +g%Ly+ gPLyn-g~ — ~(50)

with

Loy = rgorﬁﬂ — o0 ga

= 35282 - - —(51)

Ly = r?lr/ajﬂ -Ii /lfa

=352 -2/2 - - ~(52)
Ly = ngriﬂirgﬁrga
=S22—pf 1A =1/ = co(0) — — = (53)
Ly = F§3F§ﬂ - Fgﬂrlga
= (S 2= f 1B = 1/P)sin®(0) + cos®(O) — — — (54)
so that
L= (482182 +2/8%2 + of 1182 + 2/ ) S i 2sin(0) — — — (55)

It is clear then, that the Lagrangian of the scale factor S(¢) has the form
L(S(0),S' (1)) = jLGdrde. dp=c,S25+c,S— — —(56)
where ¢, ¢, are constants and hence that the total Lagrangian of the scale factor S(r) and the KG field ()
in homogeneous and isotropic space-time is given by
LSS 1) = ;S 2+ ¢,8 + (KIS0 (02 = m()2] - = — (57)

This general form can be used in our study of the joint wave function of the scale factor and the KG field
and of course, also the classical dynamics of these two quantities. Alternatively, can also quantize this
dynamics using the Schrodinger wave mechanics and the Heisenberg matrix mechanics by regarding S, x

as canonical position variables with the corresponding momentum variables given by

Pg=0L/3S =2¢,SS,P,=0L/dy = KS% — — —(58)
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The commutation relations (Bosonic) are given by
[S. Pgl =4, [, PX] =5 [S,x] =[P P)(] =0---(59
so in terms of velocities,
[S,S'1=i/2¢,8, [, x 1= i/KS®> = — = (60)

The second equation shows that as the universe keeps expanding, S(s) increases with time, and hence the
commutator between y and ;' gets smaller and smaller which means that the uncertainty in measuring
both the KG field and its rate of change with time gets smaller and smaller. Likewise, the first
commutation relations also implies that the uncertainty between the scale factor and its rate of change
with time also decreases in the expanding universe. It is interesting to see what this implies from the

standpoint of degrees of inaccessibility of theoretical variables.

5. Joint wave function of Klein-Gordon field and the scale factor of

the universe from the Feynman path integral

We are now interested in formulating a generalization of Hawking’s theory to the case when the scalar
particles in our universe are not distributed homogeneously and isotropically, ie, when the KG field is
(& 1,0, @). In order to do so, we choose basis functions 7,,(r, 6, ¢),n = 1,2, ... that are functions of only the

spatial variables and expand the KG field in terms of them with coefficients being functions of time:

27,0, @) = Y 0O, (0, v = (1,6, $) — = = (61)

Then, w.r.t to the RW metric, we have
[2% o e =
o+t e, + e

= 80> Y aln, my, (), (6) = S0 D bln, my, (D, () = — = (62)

n,m n,m

where
a(n, m) = [, (O, (O sin(O)drdodp — — — (63)
b(n, m) = j M A0, (O~ Psin(0)drdod g,
+ j N 2Oy AOSP)sin(O)drdOdep +

Iﬂn,3(r)'1m,3(r)f(r)sin(9Yldrd9d¢* - (64
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Moreover,

m [P\ gdPx = S(t)° Y cln, my, (9, (1) — — —(65)

n,m

where
c(n, m) = m*[ 1, (O, (ORI sin(@)d’x = — ~ (66)
Thus, the KG Lagrangian becomes
Liglt (0 2,(0m = 1) =
(112)[8"% o N-gd* = (1/2)[m g

= (112803 Y. a(n. my (0, () = (1/2)S(0) Y bl myz, (0, (0

n,m n,m

—(1/2)S(t)3 Y, c(n, my, (,,(0)

= (/SO T4y (1) = (1/12)S(Op() TBx(1) = (1/12)S@O* (DT Crlt) = = = (67)
where

2O = (G, ()7, 4 = ((a(n,m)), B = ((b(n,m))), C = ((c(n,m))) = — — (68)
Thus the joint wave function of (S(7), (7)) is now given by

w(T, S, %) = w(T, S, (x,N) =
[explie,S (0y2S(t) + ¢, 8(0) + (11281, (07 dy (&) = (112)SO()) Bx(t)
—(i/2)SW> (D) CLUNDSIO, D0, T) = = = (69)

It should be noted that if we were interested only in the wave function of S(r), then we would first evaluate

the Gaussian integral w.r.t y by replacing it by the value y, at which its action is stationary; ie, y satisfies
=Sty Ay (1) = SOBx() + S0 Cro(H) = 0~ — —(70)
This is the same as
AX(; ()= = S)*By() + Cro() = = = (71)

This is an infinite dimensional linear second order differential equation with time varying coefficients

for the infinite dimensional vector valued function of time
X0 = (o, — — = (72)

and its solution will be a function of S(s), s < ¢.
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6. Quantum effective action in cosmology in the presence of a

random current field interacting with the scalar field

Some remarks on the quantum effective action in quantum cosmology: Consider as above, the joint
action of the gravitational field and the scalar KG field but taking into account an interaction between the
KG field and a classical random current source J(¢). Assuming for simplicity that the KG field depends only

on time, this action is given by
S118,7171 = JleyS 208(0) + ¢38(0) + K/ 2SO @0 = m>(0)) + oyt — — = (73)
We write this action as
JILS@), S 00,0, 1 @) + JOSO1de = S([S, 11 + [y de = = = (74)
Assume for simplicity that J() is a Gaussian random current source with mean M (r) and covariance
Cov(J(0), J(s)) = C(t,s) — — — (75)

In order to compute the quantum effective action of S, y after taking into account this interaction, we

form the statistical mean of the path integral:
M, C) = exp(iW(M, C))
= B[ exp(if (L(S(0), S (0. 2(0), 1 (6) + Jey(1))d)DS. Dy

= [expliS,[S, ) + if M(ty(t)d = (1/2)[ C(t, syDy(s)deds)DS. Dy = — = (76)

Such a approximation to the path integral is justified when we the scalar field interacts with a cloud of
other particles like gravitons distributed all over the cosmos with the the quantum fluctuations in the
graviton field being approximated by a classical random field. If we wish to be more accurate, we should
take J(f) as a quantum stochastic process in the sense of Hudson and Parthasarathy [2) and calculate
quantum expectations of the resulting path integral in a coherent state of the current. We first discuss the
classical stochastic approximation and then the quantum stochastic approximation. For given current

covariance C, we can define the quantum effective action in the usual way:
T(xq» C) = Exty [ — i. logZ(M, C) — f Myodt) = — = (77)

Here, we are assuming that the scale factor process S(¢) is a given fixed classical process. Extremizing, we

get

iologZ(M, C)/SM(t) + xo(t) = 0 — — —(78)
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Note that this equation implies that the value of the mean current M is that at which the average of y(¢)
equals the classical process y() given the scale factor process S(.) and the classical current covariance C.

We now observe that assuming that M satisfies this equation,
0L (xg, O/ g = —M@5) — — —(79)

This is the required equation of motion for the classical field y(r) defined as the classical and quantum
average of () given the mean current M and the current covariance C. In this context, it is interesting to
generalize this equation to the general case when we do not restrict to a homogeneous and isotropic KG
scalar field. In that case, proceeding as earlier, the KG action in the presence of a random current field

J(¢, r) is given by
[ L0 .2 (0.0 = Ve + Y [, (0, (0t

= [1/280°%, 0 T4x (1) = /2830 Bx(t) = (17280 U Cr(v)lde
+ j JOTDy(t)dt
:SO[X]+IJTDXdz— - -8

where we have expressed the current field in terms of the spatial basis functions 5,(r) as

S, 1) = ) J () = = = (82)

and
W70, 9) = x(t,0) = 2, (0, (0) = — — (83)
so that
[ I e, vydree = [ SO Dy(t)de = — — (84)
where
J@O) = (J@®) o 2@ = (Crn()) — — —(85)
and
D = ([t (1. O, — ~ ~ (86)
Writing
EJ (1) = M, (1), Cow(J (1), J,,(5)) = Copp(tss) — — — (87)
or equivalently,

geios.com doi.org/10.32388/QOI6PH.2

13


https://www.qeios.com/
https://doi.org/10.32388/QOI6PH.2

E(J(0) = M(1) = (M,(0))), Cov(J(0), J(s))
= BUOJ(s)") = MOM()" = Cyt,5) = (Cpppts M),y = = — (88)
We get
Z(M, Co) = E[ exp(iSylx] + if J) Dy(t)de)Dy
= [exp(iSylxl + i M) "Dyt — (1/2)[ 1)) 'DC oz, 5)Dy(s)dtds)Dy — ~ = (89)
so that the quantum effective action is given by
T(tgr Co) = Exty[(— i. log(Z(M, Cg)) — [ M Dydr)
= — ilogZ(M,, Cg) — [M{Dyydt = = = (90)
where M(y) satisfies
i0(logZ(My, C))/OM(f) + Dyo(f) = 0— — — (91)
The corresponding quantum equations of motion are
O (ro, Co)/dxo(t) = — DM(t) — — — (92)
Noting that
Ot M, Cy) = iSyll + i M) "Dt — (112)[ 1) 'DC o1, 5)Dy(s)deds
= i[1112)50% 0 4x" & = (112800 Bx(t) — (112)S@ 10 vt
+i[ M) D0yt — (112)[ () 'DC (1, $)Dy(s)dleds — — — (93)
is a linear-quadratic functional of y, it is easy to evaluate the Gaussian integral
ZM, Cy) = [exp((— 1/2)Q0 M, C)Dy = — —(94)
as apart from a multiplicative constant, equal to
Dy(S, Co) ™12 exp((= 1/2)Q0¢gs M, Cg)) = = = (95)

where DS, C) is the determinant of the kernel-matrix of the quadratic form Q and y, is the value of y at

which Q becomes stationary, ie, y, satisfies
(S Ax (1) + SOBxo(0) + S(1)* Crot) = DM(1) + [ DCy(t, $)Dy(s)ds = 0~ — = (96)
Apart from a multiplicative constant, the kernel-matrix of the quadratic form Q is given by
K(t,s) = (d/d)(S(1)%8" (t — s))A + 8(t — s)(S(1)B + S(1)*C) + DC(t, s)D — — = (97)

and its determinant has to be evaluated.
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7. Implications of classical randomness in the current source on

symmetry breaking

It is a well known fact that when the gauge symmetry of a quantum effective action is spontaneously
broken by the field acquiring vacuum expectation values, then massless particles are produced, one
particle being associated with each gauge degree of freedom that is broken. On the other hand, when the
gauge symmetry of the quantum effective action is approximately broken by the presence of small
perturbations to it that do not respect gauge symmetry, then massless particles acquire masses, and
already massive particles become more massive. So it is important to decide the mechanisms by which
the gauge symmetry of a quantum effective action can be broken. We shall consider the problem of
symmetry breaking from the standpoint of coupling of the field to a random classical Gaussian current
field. To this end, consider the action /[¢] of a field such that under an infinitesimal gauge

transformation
P> PpteAP)— - —(98)
the product of the exponentiated action and the path measure remains invariant, ie,,

exp(ill @)D @ = exp(il[ ¢ + € AP)DD(@ + € A(@)) = — —(99)

For example, for the complex KG field in a background curved space-time, the action is
1) = [g"N=gw @' =m?[y* ya=gd*x = = = (100)
which is invariant under the infinitesimal U(1) gauge transformation

v — expiey=y+ieyg,e ER, €—> 0— — —(101)

N

.- the action can be taken as

More generally, for a vector valued complex KG field y = ((v,))

M1 = Y. [6N g,y d% —m*Y [w ¥y \Fedc— = = (102)

n n
which is invariant under the infinitesimal U(N) gauge transformation
= NXN yk _ _
y—epXy=y+ Xy XECLX* =X [|X]|-0 (103)

Let T,,n=1,2,... ,N? be a basis for the N? dimensional real vector space of N x N Hermitian matrices.
Then, the above U(W) symmetry of the complex KG action can also be expressed as
N N?

v — exp(i ), &mT,)y = y+i ), €n). Tyy, €n) € R, n) — 0— — — (104)

n=1 n=1
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If instead, w where a real KG scalar field with action
M) = (12 2 [8"N=gw,, ¥ = m212) ) [y’ = = = (105)
n n

then the symmetry would instead be O(, R), ie,
yoyteXy XERVN XT= - x— - —(106)
this symmetry group now being NV — 1)/2-dimensional. Now consider the path integral
2(J) = [exp(illy] + i[ J. yd*»)Dy — — — (107)

where J is a non-random current field. It is well known that when exp(il[y])Dy is invariant under the

infinitesimal gauge transformation v — y + €. A(y), then the equation
2() = [exp(illy] + if 1. w)(1 + i J. A@)Dy = 0~ — = (108)
gives
[7. < A@) > =0- - - (109)

which can be expressed in the form of a gauge invariance principle for the quantum effective action

Iﬁl"[wo] d4
<A > =0—- — — (110
Sy (y) > () (110)
where Jis that current field for which
<y>@);=yx) - — —(111)

In the case when the gauge transformation A(y) is linear in y as it happens for the three examples

considered above, then,
<AW) >, =A<y >)=Ayy - - —(112)

and then we get the result that the quantum effective action is also invariant under the same gauge
transformation that leaves the classical action invariant, or more precisely as that which leaves the

product exp(il[y])Dy invariant:

oLyl

_ 4.0 — _
| o AWt =0 (113)

Note that the quantum effective action is defined as

Tlyo] = Ext [ — ilogZ(J) — [J. wod*x] — — = (114)
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where Ext denotes extremum w.r.t J. These results make use of the fact that the quantum effective action
I'[y,] satisfies its equation of motion

Oy ol/ dpo(x) = —Jx) — — —(115)
and hence

Oy ol/ oy o(x)owo(y) = — J(x)/dyy(v) — — —(116)
On the other hand, we have
vol) = 20) "y expli. ) + i 1. y)Dy
= — islog(Z()))/6J(x) — — — (117)

and hence,
Oy () 3J(y) = = i0*Z(J)/0J(x)0J(y) = — Alx,y) — — — (118)

where A(x, y) is the propagator of the field y after subtracting out its mean value y, (ie, the propagator of
the quantum fluctuating component of the field around its vacuum expected value). Thus, we get the

fundamental formula

ST (o) /Sy o)) = A~ (e, ) — — = (119)

which means that the eigenfunctions of the Hessian matrix of the quantum effective action having zero
eigenvalues are precisely the eigenvectors of the propagator having infinite eigenvalues. The eigenvalues
of the inverse Bosonic propagator are however the squared masses of the particles in analogy with the
fact that the inverse propagator of a free KG particle i s given by p? — m? in the momentum domain, for
which if ém? is an eigenvalue corresponding to an eigenvector, then this eigenvector is a field
perturbation which when added to the vacuum expected field, carries a mass of m?+ ém?. Now let us
consider the situation when the current J is a random field with mean A and covariance C. Then, the

quantum effective action is computed as

Ty, ©) = Exty((— i. logZ(M, ©) - [M.yg) - — — (120)
with
Z(M, C) = Bexp(il[y] + ijJ. w)Dy
= [exp(ifly] + i[ M.y — 1/ 2)[y"Cy)Dy — — —(121)
so that
T(yg) = — i. logZ(My, ©) - [My. vy~ — — (122)
qeios.com doi.org/10.32388/QOI6PH.2
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where M|, satisfies,
—i6logZ(My, C)/SM(x) = wo(x) = 0— — —(123)
This gives
L (w)/ oy y(x) = — My(x) — — —(124)

However, now observe that I'(y,) is now no longer gauge invariant since we have on replacing y by

w + € A(y) in the path integral (a),
jexp(i][z,/] + ijM, wt iej M. A(y) — (1/2)[ wTCy— ejq/TCA(z,/))Dq/ =0- — —(125)
or equivalently,
i[M. < A@) >y~ [ <wTCA(y) >\, =0~ — —(126)
or equivalently, making use of the equations of motion
J(JF (o) oy p(x)). < AWI(x) >y, = —if < p)Cx MAWYR) > - — —(127)

which shows clearly by how much is gauge invariance of the quantum effective action broken when the

current to which the field is coupled has random fluctuations.

An example from background general relativity and cosmology: Suppose that g(x | 0(x)) is the metric of
space-time where ¢ is a random parameter field and that the field ¢(x) in this background field is

described by the Lagrangian
L(¢(x), 0,@(x), g,,,(x | 6(x)) = — — (128)

Assume that 0(x) has small random fluctuations around its mean value 6,(x), so writing

86(x) = 0(x) — Op(x) — — — (129)
we can write approximately
8, 10(x)) = g,,(x|0y(x) + g,,,, ((x0)00,(x) — — —(130)
where
gﬂv’k(xwo) = agw(xwo)/ﬁ@k* - — (131

Another linearization gives approximately

L(@(x). 0, P(x). ,0(x| 0x)
= L), 8,(x). 8, (x| ) +

(OL(@(x), 0, (%), &,,,(x | 0(x))/ 08,8y (x| 0(x))30,(x) = — — (132)
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with obvious summation conventions. This expression may be abbreviated as
Ly(@(x), 0,9(x)) + Li(P(x), 0, §(x))00,(x) = — —(133)
and hence the action integral for ¢ has the form
So(@) + ka(¢)(X)59k(X)d4x - - -3
Calling the vector (6,(x)) = J(x) and L(¢) = ((L,(¢)), we can express the path integral as
7= [Bexp(i. Sy(@) + [L( @@ I@)d*)Dp ~ — — (135)
so that when J(x) is a Gaussian field, this evaluates to give
Z(M, C) =
[exp(isy(@) + i L@ TME)d* — (1/2)[ L(@)x) TClx, ML(P)p)d*xd*y)D$ ~ — —(136)
so that the effective action can be defined as (for a given classical field ¢,(x)) as
[(¢g, C) = Exty( — i. logZ(M, C) — j L(P) ) "M(x)d*x)
= —i.logZ(My, ©) ~ [ L(@)) M(x)d*x = = = (137)
where M, solves
i. 0logZ(My, C)/SM(x) + L(Pp)(x) = 0 — — — (138)

In other words, M, is that current field at which the combined classical and quantum expectation of

L(¢)(x) becomes L(¢)(x). We then get our quantum equations of motion as
I (Pg, O)/dpy(x) = — I(5L(¢o(y))/ SPoe) Mo)dty — — ~(139)
Now, assume that 5(¢) has a gauge symmetry
So(@+ € A(P)) = Sp(P) + o(€) — — —(140)

with the path measure D¢ being invariant under this gauge transformation. More precisely, we assume

that the product
exp(iSy($))DP — — — (141)

is invariant under ¢ — ¢+ € A(¢). Then, we get on changing the path integration variable from ¢ to

¢+ € A(¢) that

ZM, C) =

Jexplisy(@) + i L)) ™M@)a* - (1/2)[ L)) Cx, nL(P)v)a*xd?y)

% (1+ i€ (L (#). AN M) — €] (L' (). A@)®) Cx, WL xd*DP— — — (142)
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(where
L($). APK) = J(éL(¢)(X)/ 391 AD)d*y),
which can alternatively be expressed as
[ <@ @A) >}, Mt
= i THCw ) < L) (L (@) AN >y, cd'va'y — = —(143)
Substituting for M(x) from the equation of motion rewritten below
oL(¢g, C)/do(x) = — I((5L(¢o(y))/ SPo(e) Mo)dty — — — (144)
this equation of broken gauge invariance of the quantum effective action can be expressed in the form
[©@T(g, 154 < AP >y, ¢
= (<@ @-L' (@) AP >, Mo
~] TH(C ) < L) (L' (@) MW >, cd'xdly— — —(143)

This equation tells us the degree to which gauge invariance of the quantum effective action is broken by
the mean and covariance of the random current field to which the original field is coupled. If L(¢) is a
linear functional, then only the covariance term will appear. It should be noted if the quantum effective
action is gauge invariant, then its Hessian matrix evaluated at its minimum will have zero eigenvalue
eigenvectors corresponding to broken gauge symmetries acting on the vacuum state. These are the
Goldstone Bosons. However, since the presence of random currents show that it is no longer gauge

invariant, these Goldstone vectors will acquire small masses whose values can be easily computed from

its Hessian along similar lines as pointed out in Steven Weinberg, "The quantum theory of fields, vol.2" 3l

8. The Klein-Gordon wave equation in the vicinity of the event
horizon of a Schwarzchild blackhole and derivation of Hawking’s

temperature formula

We start with the basic general relativistic diffeomorphic invariant wave equation for a scalar field

@(t,r) = () in a curved space-time having metric g, (x):

"¢ -2, +1N-gp=0- ~ —(146)
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where according to the Einstein energy-momentum relation for a particle of mass m E> = P?c* + m?c*, and

the formula for the energy and momentum operators in special relativity, £ = ikd,, P = - ihV,
u=mc*lh— — —(147)

In the case of a Schwarzchild metric, x° = 7,x! = r, x> = 6,x° = ¢,

oo = (1),81 = — a(r)fl/cz, g» =~ }’Z/CZ,g33 = - rzsinz((-))/cz, o(r)y=1-2m/r,m= GM/c*— — - (148)
gOO = ot(r)fl,g11 = - czot(r),g22 = - cz/rz, g22 = - cz/rzsinz(é’) - = —(149)
and of course,
g = de((g,,)) = ~ rsin?(0)/ ¢S, \/5 = rZsin(0)/c3 — — — (150)

so that assuming radial symmetry of the wave, we get in the case of massless particles like the photon,
u=0and
ar) '~ Aty ), =0- — —(151)

Assuming ¢(z, r) = ¢(r)exp(iot), ie, we are dealing with KG waves of definite frequency o, this equation

becomes
K23 @) + r(r = 2m)2 " (r) + 2(r — m)(r —2m)@ (1) = 0 — — — (152)
where
K=wlc— — —(153)
To investigate this solution further, we write
@) = exp(iS(r)/h) — — — (154)

where S(r) denotes the action function at the fixed frequency ». We get on substituting this,,

K23 + r(r = 2m)%GS " (0 /h = 8" (21 h?) + 20 = m)(r = 2m)iS ("/h = 0 — — — (155)
or
K027 + ihr(r = 2m)2S" (r) = r(r — 2m)2S (1)* + 2h(r — m)(r — 2m)iS (r) = 0 — — — (156)
Writing
r=2m+x— — —(157)

this equation becomes, with a prime now denoting partial derivative w.r.t x, and S(x) denoting S2m + x),
K2h%@m + x) + hx@m + x)2iS " (x) — x2Q2m + x)S (x)* + 2hx(m + x)iS (x) = 0 — — — (158)

For very small | x| (ie, when r is in the vicinity of the event horizon), this equation approximates to
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8m>K2h? + 4m>hxiS " (x) — 2mx2S (x)% + 2hmxiS (x) = 0 — — — (159)
For very small wavelengths, this equation further approximates to
8m K2h? — 2mx2S (x)2 = 0— — — (160)
Note that in this approximation, we are assuming that with r_ = 2m,
[x]| |8 @) /h>>1- — —(161)
and
|x|S" )2/ hr,|S" ()| > 1— — —(162)

To see what these two inequalities mean, we observe first that S'/4 = K has the interpretation of wave

vector, ie K, = 2x/4 where 4 is the wavelength and then these two inequalities can be rephrased as
Kolx| >> 1, Kg@)2[x| /(r, | K y()]) >> 1= = = (163)
Now, K, = —2m'/A? so that K /K, = — ' /2m, so these two inequalities are the same as
x| >> A, [2' ()| <<r./|x] = = —(164)

The first inequality states that the length span in the vicinity of r, over which the tunneling takes place is
much larger that the particle wavelength while the second inequality states that the variations in the
wavelength over the length span in the vicinity of _ are much smaller than » , the Schwarzchild radius. If

we agree to both of these assumptions, then we get
S'(x) = +2m.Kh/x— — —(165)
which gives on integration,
S(x) = +2m. K. h. log(x) — — — (166)
The change in S(x) as x varies from 0 - to 0 + or equivalently as » varies from - tor, + equals
AS = +2mKh. it — — — (167)

so that the change in exp(iS/h) over this tunneling zone is given by exp(+2m. Kx) or equivalently, the
change in |exp(iS/h)|? over this infinitesimal tunneling interval in the vicinity of the event horizon is
given by exp(+4mKr) = exp( + 4mrw/c). Note that here r stands for Planck’s constant divided by 2z.
Equating this tunneling probability to exp(+ hw/kT) gives us Hawking’s celebrated formula for the

equilibrium temperature at which the blackhole radiates massless particles: T = hc/4mmk = hc/8zGMk.
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9. Conclusions

This paper presents some novel aspects of quantum gravity with applications to the idea of theoretical
variables, ie, accessible and inaccessible variables proposed in earlier works by Professor Inge Helland%L
We demonstrate by taking the example of the gravitational field in a homogeneous and isotropic space-
time interacting with a KG field, how the commutation relations of the field vary as the scale factor of the
universe expands which means from the measurement standpoint in quantum mechanics, that the
degree of uncertainty between two observables or equivalently, the degree of simultaneous non-
measurability of two observables varies as the universe expands. At the beginning, we also illustrate this
phenomenon using the quantum electromagnetic field interacting with the classical gravitational field.
We generalize these results from a spatially homogeneous KG field to a spatially inhomogeneous KG field
and then to the anticommutator of the Dirac field in curved space-time. We then explain how to calculate
the wave function of one field interacting with another field using the path integral over the second field.
Actually, we should instead be talking about TPCP maps corresponding to one field when it interacts with
the other. We then explain how to compute the quantum effective action of the scale factor of the
universe when it interacts with the quantum KG field present in the form of particles distributed within
our universe when in addition, the KG field interacts with a random current field. As an example of such a
phenomenon, we consider the metric of space time depending on random classical parameters having
small variances, so that the formula for the KG field in a background curved space-time yields an
interaction component between the KG field and the classical metric fluctuations with the interaction
being quadratic in the KG field and linear in the parameter fluctuations. We then explain how symmetry
breaking can occur in the quantum effective action of a field that interacts with a classical random
current field, when the classical action has a gauge symmetry. It is a well known result (Steven
Weinbergﬁl, The quantum theory of fields, vol.2) that when the gauge symmetry is linear in the field and
the current source is non-random, then the quantum effective action has the same gauge symmetry as
the classical action but when the gauge symmetry is nonlinear in the field, the corresponding gauge
symmetry of the quantum effective action is not the same as the classical symmetry, rather, it is given by
the quantum expectation value of the infinitesimal gauge symmetry of the classical action taken when
the current source equals a value at which the quantum field has the same quantum expectation as the
classical field. However, when a current source is random, event this gauge symmetry gets broken and we
derive a formula for the change in the quantum effective action under the quantum infinitesimal gauge

symmetry defined by the the quantum expectation of the classical gauge symmetry in the presence of a
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non-random current field that yields the quantum expectation value of the field equal to the classical
field. This formula for the change in the quantum effective action, namely, the degree by which gauge

symmetry is broken is expressed in terms of the statistical correlations of the random current source.

An interesting calculation based on the quantum effective action in the presence of a random current
source could provide a clue to the mystery of how particles acquire masses in our universe is to calculate
the corrected field propagator to deduce that masses are acquired by particles via symmetry breaking
caused by randomly distributed current fields in the form of cosmic microwave background radiation and
perhaps also other forms of radiation. One usually treats such constrained problems using Dirac brackets
in place of Poisson and Lie brackets. Here, we suggest an approximate method for quantizing such fields
based on expressing the constrained position fields in terms of a fewer number of "parameter fields"
which form our revised set of position fields and then construct the revised momentum fields using a
least squares method for approximately inverting the associated Jacobian matrix of the position field w.r.t

the smaller set of parameter fields.

Appendix Al. The Belavkin quantum filter for estimating the state
of a gravitational wave from continuous measurements on the

electromagnetic field

Let Q, P denote canonical position and momentum fields of the ADM action for the gravitational field.
Specifically, Q are the spatial metric tensor coefficient and P the canonical momenta derived from the
ADM version of the Einstein-Hilbert action. Let ¢, p denote the canonical position and momentum fields
of the electromagnetic field derived from the action (- 1/4)[ F‘”F/N\/Qd“x with the canonical position
fields ¢ being chosen as the components of the vector potential. Here, we work in the Coulomb gauge so
that the scalar electric potential vanishes. The electromagnetic action clearly contains the metric
coefficients but not their time derivatives and hence the corresponding electromagnetic Hamiltonian can
be denoted by H,(q, p| 0). The Hamiltonian of the gravitational field derived from the gravitational action
is denoted by #,(Q, P). In the presence of quantum electromagnetic noise w, we replace ¢ by ¢ +w in H,
and Taylor expand it upto second degree terms in w. w is expressible as time derivatives of the creation
and annihilation processes of the Hudson-Parthasarathy quantum stochastic calculus [2] 50 that second

degree terms in w can be expressed as the conservation process. Substituting this noisy Hamiltonian in

geios.com doi.org/10.32388/QOI6PH.2 24


https://www.qeios.com/
https://doi.org/10.32388/QOI6PH.2

the Schrodinger equation and adding quantum Ito correction terms shows that the joint unitary

evolution of the fields and the noise can be expressed as
dU(t) = — i(H,(Q, P) + Hy(q, p| Q) + Py)dt + L1dA — LydA™® + SAN)U() — — (168)

where L,,L,,S are field operators expressible as functions of ¢,p,0 and 4,4 * A are the standard
annihilation, creation and conservation quantum stochastic processes of the Hudson-Parthasarathy
theory 21 P, is a field operator and is the quantum Ito correction term introduced to ensure unitarity fo
the evolution. Non-demolition measurements Y (1) =U#*Y()Ur) can be defined with
Y () = c(DA() + ¢(1)A(t) * + cQA®D). Y(.) form an Abelian family of self-adjoint operator in Boson Fock
space I' (L*(R ,)) and these operators commute with the field/system operators X built out of O, P, ¢, p and
hence using Y (1) = U(T) * Y()U(T), T > ¢, it easily follows that ¥ (.) forms an Abelian family such that v, (/)
commutes with j(X) = U(T) * XU(T), T > «. This is the celebrated non-demolition measurement property
discovered by V.PBelavkin and it implies that the conditional expectation x,(X) = E(j(X)|#n,(?)) can be
constructed where 7 () = 6(Y (s): s < 7) form the measurement algebra upto time +. Here, expectations are
taken wrt the tensor product of an initial field/system state and a coherent bath state:
p(0) = p4(0) ® p,(0) ® p(0) Where p(0) is the initial state of the gravitational field, p (0) is the initial state of
the electromagnetic field and p,40) is the bath coherent state. Using the orthogonality principle:
E(j (X)) — = (X))C(r)) = 0 in estimation theory where C(1) € #(1), one can easily derive the filter differential

equations in the form

dn(X) = F(X)dt+ ), G, (X0dY ()F ~ = - (169)

k=1
where F(X), G(X) belong to the commutative Von-Neumann algebra 7 (1) and can be constructed out of
the operators z(2) with Z varying over field/system operators. Writing z (X) = Tr(p(1)X) where p() is the real

time system state estimate, we get by duality a stochastic Schrodinger equation for p(s):

dp(t) = O(p()de + )0, (pO)dY (0~ — = (170)

k=1
with 6, 6, linear maps on the space of system operators and dependent upon the coherent parameter u(7)
appearing in p4(0) = | ¢(u) >< ¢(u)|. Once p(7) is known, we can determine the state of the gravitational
field as the partial trace p (1) = Tr p(T) where the partial trace is over the electromagnetic degrees of
freedom. Or, we can choose a POVMM(a), a € E on the electromagnetic field Hilbert space and by taking
measurements get to know the parameters ¢ on which the initial gravitational state p o(0) = p,(06)

depended. Indeed, if 4 is the measurement outcome, its probability is P(a|6) = Tr(p(T)(I ® M(a))) and a
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maximum likelihood algorithm applied to this probability distribution would yield an estimate of 6. More
generally, we can take sequential measurements at times 7, <1, < ... <1, between the state evolutions
defined by (a) using this POVM allowing for state collapse after each measurement and from the resultant
joint probabilities of the outcomes, estimate the parameter 6. It should be mentioned here that if the
gravitational field is described by a weak graviational wave with metric perturbations # ,(x) around flat
space-time, then the Einstein-Hilbert gravitational action is approximately a quadratic form in # )
and hence the corresponding gravitational Hamiltonian is a quadratic form in Q, P just like an infinite
family of quantum Harmonic oscillators and its interaction with the electromagnetic field generates
anharmonic perturbations involving products of a single #,, and two photon creation-annihilation
operators, ie, a cubic interaction and we can study the evolution of the resulting perturbed gravitational
state using standard time dependent perturbation theory in the absence of noise. The cubic coupling
causes the initial separable state of the gravitons and photons p 2(016) ® p (0) after time 7 to evolve into an
entangled state U(T)(p 2(016) ® p ()U(T) * and after applying a POVM M(a), « € E on the photons, we get
probability of a occurring as p(a|6) = THU(T)(p (016 ® p ()U(D) * (I ® M(a))) and the maximum likelihood

method can be used to estimate the gravitational wave parameter 6.

Appendix A2. A simplified analysis of loop quantum gravity with
applications to the derviation of blackhole entropy using the area

operator

In order to explain how loop quantum gravity provides a rigorous derivation of the entropy of the
blackhole as being proportional to its area horizon, we must first learn to quantize the internal and
surface degrees of freedom of a blackhole and then calculate the possible eigenvalues of the surface area

of the blackhole.

First, we introduce the flux-holonomy algebra. The flux involves computing the flux of the Ashtekar
momentum variable Ej‘.’(x) (also called the electric field) out of a surface S, ie, Y(S) = | SEj‘?(x)na(x)dS(x).
Specifically, if we coordinatize S in terms of (u,...,u,_,), ie, a D - 1 surface embedded in D dimensional

space, by means of the equations
X=Xy, ...,up_q),a=12,...,D— — —(171)

abbreviated as X = X(u), then we can express
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D_laX"k
—)duy...dup_;— — —(172)

n (X(u))dS(X(u)) = €(aay...a,;_ 1)(Hk:1 o

The Ashtekar position variable is Ajc; (x). The canonical commutation relations are
[A{I(X), E,f(y)] =Py~ - —(173)

Note that these actually represent equal time commutation relations in R?*!, because, we are assuming
that at each time ¢, we have a D-dimensional space =, embedded inside R?*! and our variables are all

defined in this D-dimensional space.

h(f) is the SO(D) holonomy matrix. Let A;(x) = F;(x)+K;(x) denote the Ashtekar connection and
E(x) = \/@ef(x) the associate Ashtekar canonical momentum field. It should be noted that the spin
connection F;(x) can be expressed as a homogeneous functional of E;(. ) of degree zero, ie, F;(x) is a scale

invariant field. From this fact, it can be deduced that

[T}, E}0)] = 0= = = (174)
and hence the CCR
(A1 (). E7)] = 10157 6P = ). 141,00, 4,0)] = 0, [E{(). E)()] = 0= = = (174),
can be deduced using the CCR
KL (), B} )] = 0100, 6P = ), [KL(x), K401 = 0, [E{(), E/()] = 0~ — —(175),

This latter CCR can be deduced in turn from the CCR derived using the ADM action with the spatial
metric coefficients ¢ ,(x) as the position fields and the canonical momenta as 6L/99,4,, = P(“) under the
condition of the Gauss constraint G,(x) = e(kij)Ka[(x)E;‘(x) = 0. This constraint has a natural intepretation
that K, = qﬁ ,q:,qvﬂ'nv' is a symmetric tensor or equivalently, that K, = X" X",V », is symmetric where X,

is a one parameter family of D dimensional space-like surfaces parametrized by time embedded into
RP*1 (Usually, D=3, D+1=4) and X*(x) are the coordinates on this surface with »# as the unit normal to this

surface. Thus, with x4, a = 1, 2, 3 denoting spatial coordinates in £, we decompose
Xt = NX' + Nt — — —(176)

into tangential and normal components on %, ie, n“x" g, =0 and consequently, one obtains the
decomposition of the metric ¢*” in RP*! into spatial tangential components and normal components:
g = g + ¥ — — — (177)

so that
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¢*n,=0- - —(178)

One then observes that

— Vo 7 vV
qabigva/jaX,biqﬂv/w’aX’hi - =179

are the spatial components of the metric in £, and these serve as the canonical position fields for the ADM
action. The Gauss constraint is a natural consequence of the fact that we can write the covariant unit

normal to £, as n Pt/ for some scalar functions f, # and then

Vﬂnv - anﬂ =h ,#fwv - h,vf,/z = (logh)wﬂnv - (logh),vnﬂ - — —(180)
would result in zero if we contract with qﬁ:qz since qgn , = 0.0ne takes a spatial vector field u ,a=1,2,...,D
, ie, a vector that lives in the D-dimensional space £, and computes its spatial covariant derivative as

follows. First define i =0,1,2,...,D SO that u/(“a =u, and then, with Vﬂ denoting the covariant

derivative in R”*' and D, the projected covariant derivative in ”, we have

— ‘llv Vv , P
Du, 4,4, Vﬂ u, (181)
Then,
Dy =X X"\ Du, = X' X"V u,— = —(182)
owing to the obvious formula
o
X d, 7x’fa (183)
because
n o 00— — —
d, +nfn,=g, =38 X'n,=0 (184)

Likewise, one defines the double spatial covariant derivative of a spatial vector u , or u,as
_ /4’ v /7’ , I
D#Dvup =4,4,4, Vﬂ D, u,
L A N
=4,9,4,V,4,,4,V, u") (185)
Continuing in this way, we can define the spatial covariant derivatives of any order of a spatial vector.
Note our convention: By a spatial vector, we mean a vector that lives in the D-dimensional manifold £, for
any fixed time ¢ at which the embedding is carried out and by a space-time vector or simply a vector, we
mean a vector that lives in R”*!. The recursion formula for computing the »"” order spatial covariant

derivative of a spatial vector u, or u, is

D,D, ...D,D, u,=
g e e Tl
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v n /lv. ' ' o — — —
gy (_ g3V, D, D, ...D,u, (186)

for n > 1. Then,

DDy, DLyt = Xy X% D, D, ...D, D ~ —(187)

.. u, —
n -1 1 Hy v

Note that the spatial indices are raised and lowered using either ¢ ,, ¢* or ¢ o 4" with

Gap = G X X = 8o Xy~ = ~(189)
and
g = g"g"q,,— — —(189)
g = q Xt XY+ nfnY = — = (190)
where
@) = (@)~ (@) = (g, ' = — —(191)

The spatial curvature tensor is defined by

D _ pDu _ _ o
R#wmu'“ = Rv/muﬂ =[D,, Dp]uv (192)

which can be easily evaluated in terms of RfV;;, or more precisely, the projection of R/f’v;; onto ¥, =RP

using the spatial projection matrix ¢* and X ,, using the fact that u »* = 0 and K, n" = 0.
To check these identities, we require the orthogonality relations

(X’ft - N”X*fa)XngW =0, N”X*ja =Nt— — —(193)

or equivalently,
Tp = Nqap =0~ — —(194)
so
N = g%qp— — = (195)
so that

N? = g (X, = NOYX' = N") = (X", = NX“ )X" = ¢ = g N
“du~ qazqabqbt = 1/h" = = = (196)

and then, with # denoting the D+l-metric w.r.t the coordinates in the D+l-dimensional manifold Uz,

(h_ab=q ab, h_at=q_at, h_tt=q_tt, but ¢** is not the same as 1%")

_ pabyit v teyvit vV v it vV
gﬂ",ha /\d,aX,b+ha(/w,aX,t+X/ij,a)+hXi,t)(,t
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= h””)d‘aXV pt XS (N + No')+ X7 (N + Nnt) + B(N* + Nn")(NY + Nn¥)
= hX! XY, 4 (hXE 4 RINNY + (B X+ BINYNE — hINENY +
,da b ,a ,a

+hN*nfn” + (hX"  + hN“)Nn¥ + (hXY -+ h"NV)Nn" — — —(197)

Using the above derived orthogonality relations, we easily show that
(hX" + RN = (b + RINOXE = 0— — —(198)

In fact, the orthogonality relations are easily shown to be equivalent to

R+ RN =0- — —(199)
or equivalently,
N = —h/h" ~ — ~(200)
To show this, we must show that
_hat/htl = qabqbt - — — (201)
or equivalently, that
g%+ h" = 0= = = (202)

or equivalently, since ((¢,,)) and ((¢°*)) are inverses of each other,
g "+ g ph" = 0— — —(203)
or
i+ hh? =0 — —(204)
But the lhs is 6; =0,a = 1,2,3 and so we are done with the proof of the claim. Note that the equation

hli},[ H

T .
qtt q];3’[ htt hl.3,tT
q1:3,¢ 0

)—1— - —(205)

where 0 = ((¢,,)) and # = ((h b)) shows after some manipulations that

T _
' = ]/(qtt7q1;3’tQ 191:3,1): 1/(‘1117%1‘1@‘1171 - = —(200)

Putting all these into (1) finally results in the required decomposition of the contravariant metric into its

spatial and normal components with the cross terms cancelling out:
g =g+ nfn” — — — (207

where
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g = h“”X{‘aXf p— hININY = (h® + h”N"N”)X’jabe - — —(208)
Now we claim that
(= "NN") = g — — = (209)
To prove this, its suffices to verify that

q (" = HINPN) = 5 = — —(210)

or equivalently, since as shown above, N* = — 7%/ 1", we require to verify that

q g (hP¢ = WP Rt ) = 6 — = - (1)
Now,
Gah"™ = 4" + 4"~ 41" = 05— q h = — —@12)
so we require to verify that
(@a" +auph™ =0- = = —@13)

which is obvious since it is equal to 6; = 0. Thus, we obtain
¢ =qPx X - — = (214)
and hence, to summarize,
g ="+ nfn’ g = X" X" - = = (219),
where ¢,,, 1 < a,b <3 are the spatial components of the metric tensor in £, corresponding to the metric
tensor g, in R”*' while, g ,#"n"nn, = 1 and ¢"*n, = 0. We then choose an SO(3) triad ¢/, for ¢, ie, e’¢}, = ¢,

The expression RP*!\[~¢ for the Einstein-Hilbert Lagrangian can be expressed as the sum of R”+[gV and a

quadratic form in K , multiplied by ~ on making use of identities such as

D u_
R =D, D,Ju,~ ~ —(216)

HUvpo
for spatial vectors u, to obtain

D+1 _vp uo _ pD+1_bc, ad _
R,uvpoq q Rabcdq q

RP +fiKap) — — —(217)

where R? is the spatial curvature, ie, curvature in =, and f, is a quadratic form in K, with coefficients

given by nonlinear functions of the spatial metric ¢ ,. Observe that the above formula is consistent with

D+1 _ pD+1lyu v vp o
Rabcd - R,uvpo'Xl,aX,bX/,cX?—d (218)
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because of the spatial relation
¢ =qPx" X' - — = (219)

One then relates the curvature scalars RP*! and R” in RP*! and %, respectively using the relation
(obtained using the symmetries and skewsymmetries of the curvature tensor)

D+1
uvpo

RD+1 =R g,uogvp _

Rfv;; ("% + n*n®)(q"’ + n"n") =
_ RD+ lqﬂo-qv/) + 2RD+ lqv/}n/zno'
uvpo Hpo

. D+1
=R? K )+ ZRMVZUCIV/)”#"” - - —(220)

with the last term evaluated using

D+1 —
RS In = [V, V I, = = = (221)

and expressing the last term evaluated as a quadratic form f,(X,,) in K, or equivalently in K, after
neglect of a total covariant divergence which does not contribute to the action integral. In this way, one
calculates the Einstein-Hilbert action integral in R°*! in terms of the coordinates (known as the ADM

coordinates) in U =, in the form
[RP+1\FgdP*1x = [(RP + K, ))NAqdPxdi — — — (222)
where
K ) = 11K gp) (K ) = = = (223)

is a quadratic form in X, not involving any partial derivative of the latter and with coefficients that are
nonlinear functions of ¢,,. More precisely, f is of the form a K ,K*” + a,k*> where a,, a, are numerical

constants and X = ¢*°k ,, while K = ¢“’¢*K , .

The next step is to evaluate K, = X* X",V n, as an affine linear function of ¢, , (in fact linearing,;, ,.q,, .
) and hence derive a formula for the canonical momentum o.°*!/8g,, ,= P* corresponding to the
position field ¢ ,. Here, L *! is the Einstein-Hilbert Lagrangian in R°*! and is proportional to R”*!'\-g.

We observe that
\~gdP "\ X = \[gNdPxdt — — — (224)

owing to the fact that the metric in Uz, is given by
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90 91:3,¢

((h) = ((h)~1 =
" q1:3,t Q

— —(225)

and hence the determinant of this matrix is (from a standard formula for the determinant of a block

matrix)
h=q@,=q{,5 0 '91.3) = q/h" = ¢. N = = = (226)
so that
\-gdP "X = \[hdPxdt = N\lqdPxdi — — — (227)
Note that (z, x% a = 1, 2, 3) are the space-time coordinates in |J2,and (X, x =0, 1,. .., D) are the space-time

coordinates in R”*!. The formula for P*’ is a linear function of K, and hence the canonical commutation
relations between ¢,, and P°/ result in corresponding canonical commutation relations between ¢, and
K4 The next step is to define the SO(D) spatial spinor connection F;a so that the corresponding covariant

derivative D,e} = 0, ie

0="Dg,e, =Dl +T! e, — — —(228)

ja b
where D is the spatial covariant derivative on =, evaluated using the connection derived from the spatial

metric g,

Dyey =€, ,~ O 0“C o Caar = 12 Gta b+ Qb0 = Qab.d) — — — (229)

ab” ¢

It should be mentioned that D u, as a spatial tensor transforms to D u; on using the projection x* with
D, being defined as the spatial covariant derivative using the connection derived from the spatial metric

q - Let us verify this:
TREY _
X{ anhDﬂuv =
)(’faX‘th”uv =
v _r°

leaX,b(u",ﬂ r,uvuﬂ)
=X (w0 0) X ) T XX
=up quYah - l"pwch’ch”‘aX‘jb - - —(230)
Now
n oY =

FP#VX,,)CX,aX,b

v
(1120 Bpv ™ o )X XX =
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= (1D)lgypt - W XX = = = (231)
where the three dots refer to similar terms with p, x, v appropriately permuted. Now this equals
(112, X ) Xy~ 8,00 X ) X
DI X X)X~ 8,00 X)X,
(/DX X' ) X~ g X! X)) X ]
=/ Deap T beba = dan.d

(1/2)[g,, (X X' ) ,+ 8, (X X)) =g, (X' X)) ]

Epu
=/ Deap T beba = 9an,d
(1/2)g,, [(X X" ), + (X X))~ X X)) ]
=/ Gea,b* 9eb,a ~ dab,c]
g X T~ XX~ ~(232)
Substituting this into (139) finally gives us the required result:
XijaXTbDﬂuv -
=uy  —u X, X XX
=t 4 gy ™ Coap = AT X ¢
=up Fcab“c =Du,— — —(233)

since

Xfcuc =u", gﬂvu" =u,~ — —(234)

and we have defined the spatial connection
Feap = (1 /2)(qca,b tqch,a qab,c) - = —(235)

Now, we address the primary issue required for the canonical quantization of the gravitational field: On
passing over from the above ADM action described in terms of the (7, x“) coordinates in the family U, of
D-dimensional spatial manifolds that have been embedded into R?*!, to the corresponding Hamiltonian
for the gravitational field described in terms of the canonical position fields ¢,, N, N* and the
corresponding momentum fields P, I1, I1%, what are the constrained variables, what is the Hamiltonian
constraint and what is the diffeomorphism constraint ? Using the Hamiltonian constraint, how does one
arrive at the Wheeler-De-Witt equation, namely the Schrodinger equation for the gravitational field in

general relativity ? How does one introduce the Gauss constraint and how does one show by means of the
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Ashtekar variables, that the Hamiltonian density for general relativity after multiplying by an appropriate

power of g look exactly like that for a Yang-Mills non-Abelian gauge field with gauge group as SO(3) ?

In order to answer this question, we first require the fact derived above, namely that the action integral

when expressed in the coordinates system adapted to | =, has the form
S = [(RP + iK)NgNaPx, aPx = aP~xdi - — — (236)
with
AK) = a(K ,K° = K, K = ¢"°K , — — — (237)

The next step is to express X, in terms of ¢, ,and g, .: To do so, we first define the Lie derivative w.r.ta

vector field of a one form and then of a two form:
(L yo)(Y) = X(o(Y)) =~ o([X, Y]), o(Y) = 0, Y X = X0, ~ — —(238)
S0
(Lyo)(Y) = X(, Y% ,— o X1, - VX))

= (w

X+ X )Y"— — —(239)

a,p

so that in terms of the local coordinate system chosen, we have the result that the Lie derivative of the

one form o along the vector field . is given by

(Lyxw), = wa’po-%a)pX’fa— - —(240)

Next by assuming that the Lie derivative along a vector field when acting on tensors satisfies the
derivation property, it immediately follows that the Lie derivative of a covariant two tensor

® = 0" ® dx* is given in these local coordinates by

Ly = @5 KX+ 00X+ 0 X = = —(241)
Applying this result to the covariant two tensor ¢, with X taken as 7 = ijta , 8ives us
P R P T P e Co)
and finally pulling this Lie derivative from R”*! into R” = £, gives us
L)y = L)X X, =
qﬂv,fX/jaX‘jb + qVﬂXV,bX/jta + q/wX’,laijtb
= @A XD XX

vV L /) V
X X T 40X X
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=Gy~~~ 4

which is quite a remarkable result. Continuing this thread, we have using
X' =T = N+ Nt = NX' + N — — — (244)
and the linearity of the Lie derivative X — L, gives
CrDpy = EN+MaDyy = ENDyy T Lvnd)py = — — (245)
on the other hand. Now
EINDyy = Ny p + 4N’ + 4N, = = = (246)

and pulling this back to =, using

Gab = G X N = NK' = = = (24)
gives
INDap = (LNQ)ﬂvX!jaX‘:b =
q#v,pNCX’jaXThX/,)c + qV/’N/jyleaX‘jb + q/l/)Nlij’jabe
- q/tv,L‘NCX/faX‘,}b * qpr’ja * qa/’ijb
= qah,ch*Ncqﬂv(XfaX‘:b),u+qh/)(NCX7?C),a+qap(Nchc),h
= Gap N NG X = NG TGN app NN T 40N, + 4 g NN
=Gy, N QN  F 40N = Gy e = Gpea ™ Dae, VN TN p + Ny = ~20 N HN, y+ N, = = = (248)

Finally, we require

Cn®Dpw = N'q,, ,+ 4, (NP) |+ q,,(Nn”) |, =
Nn/’(q/w)p - qﬂp)VNn/’ TGy T T (249)
since

g’ =0— — —(250)

This gives on pulling back,

CynDap = (Lqu)qujf aXYb -
NP @y = Gy v~ G XX
= NPl(gyy =) = 8y = my) 1y~ (8 = 1, ’#)XKT“X‘:b
=Nl " 8y v T &y (1) () | F(nn) ,ﬂ])(’fabe

= [ 2V ) + NG, + iy JIXE X = = = (251)
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where we used n ”X’:a =0, anf » = 0and »”n , = 1. Finally, we can express this as

(Ln@ap = NV, +Vyn )X X' = 2NK gy = = = (252)
Finally, on equating the two above derived expressions for (L ), We arrive at

Gup.i= ~ 2l"wa” + Na’b + Nb’a +2NK = D,N,+ DN, +2NK , — — —(253)
or equivalently,
Kyp=02N gy ,~ DNy~ DN~ — —(254)

This is a nice expression for ¢, , as a linear form in the time and space derivatives of ¢, with coefficients
being nonlinear functions of the position fields »,q.,. Now we are in a position to discuss the

Hamiltonian constraint, the diffeomorphism constraint and the Gauss constraint. The ADM action

functional for general relativity can now be expressed as
S = [[RP + a(K K — K2)INAfqdPx, K = q*K ,, = = = (255)
and noting that R” involves only g ab and its space derivatives ¢, ., it follows that with g, as the
canonical position fields, the corresponding canonical momentum fields are
P = §8/6q,, , = a.\q. (K — Kq®) — = —(256)

The fact that K, is symmetric implies that €K/, e'; =0 and with D=3,D+1=4, we define the
Ashtekar momentum variable as £¢ = \lge = e(ijk)€(abe)ee” so that e(ijk)e,e’ = eabo)E?. Define K, = K ¢,
so that we get

b_ o b_ .o

KB = \q.K e =\q.K,;— — = (257)
so that the symmetry of K, can equivalently be expressed in the form
Gy = €ki)K £ =0~ = = = (258)

which is called the Gauss constraint. Now Ashtekar proved that we can define position fields ¢, as

nonlinear functions of £/ and momentum fields P*” as nonlinear functions of £{ and x ,, that is linear in

the latter in such a way that if we introduce commutation relations
[E¢Q), Kpy()] = i6,0,;0°(x = y),x,y € T, — — —(259)

then under the Gauss constraint, G, = 0, these commutation relations imply the canonical commutation
relations between ¢, and P* (ie, we first compute the corresponding commutation relations between the

latter and then impose the constraint) and that if the Gauss constraint holds, these definitions of ¢ ,, P/
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precisely coincide with those defined in the ADM action. Further, Ashtekar observed that if we define

spin connection Fij by the equation
Dy, = Dyey +Tiel, = 0~ — = (260)
where D, is the spatial covariant derivative on ¥, ie,

Dy, =e,. =e —T§e -~ —(261)

ba ¢

which amounts to saying that

ri = 7et.’ei,
aj :

).~ — —(262)

a

and extend the definition of the spatial covariant derivative to contravariant spatial vectors so that
b b b b i b_ b
ONED) = 0y(\gel) = \gel. , = \JaDye! = \fg. Tlel =T, E = = = (263)
(this amounts to the fact that the spatial covariant derivative of the spatial metric tensor ¢, on %,

vanishes), then we can express the Gauss constraint in the following way:

0=0,E~T E“=0 E'~T E‘~G,=
J a aj !

a j
0.E! - r £ — eikK 4B = — — (264)
Note that F{l .is an SO(3) Lie algebra connection because it is skewsymmetric w.r.t interchange of (i, )):
r b

= —e.e

i _ _,bj boi_ b i _ o _ _ _
aj jSbia (ejelb):a+ej € €:ab Fai (265)

ra b ja
since the indices i, , k are raised and lowered using the flat space metric § i because by definition of triad,
9up = e:e;7 = 5”@;61}; - — —(266)
Ashtekar’s idea was to introduce another connection (Like Ffl , this is also an SO(3) connection)
A=K +T - — —(267)
a a a
where
i -
I/ = €(ikj)l', — — — (268)
This equation makes sense because F{l . is skew-symmetric wr.t interchange of (/, /). In fact, we can invert
this equation and write
k -
r‘=qa /Z)G(IkJ)F/” .~ —(269)
since

elim))elikj) = 20, ~ — — (270)
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In terms of this new connection, which is a spinor SO(3) connection, we can express the Gauss constraint

as
DIEY=0- - —(271)
a j
where noe DZ‘ is the covariant derivative w.r.t the SO(3) connection A; ,ie,
A b b o kb
DyF] = 8, F; + elik)A,F] = = = (272)

This result, namely, that the Gauss constraint can be formulated as the vanishing of the covariant
divergence of EJ" w.r.t the spinor connection Af; has given its name, namely coming from Gauss’
divergence theorem and Gauss’ law of electrostatics in free space, that the divergence of the electric field
vanishes. It should be emphasized that F; can be expressed as a homogeneous functional of Ej" of degree
zero, ie, FZ is invariant under constant scale transformations of £Y. From this, fact, we deduce the first
commutation relation [Afl(x),AfZ;(y)] =0 in Ashtekar’s theory. The second commutation relation in
Ashtekar’s theory is derived from the standard one of the ADM action theory, namely, the momentum
operators at different spatial points commute:[K ,(x), K, (»)] = 0. The third is [E7(x), K,(»)] = J,J-JachD(x -
Ashtekar observed that since F; can be expressed in terms of the £7, it follows that [Fi *), Ejl.’(y)] =0 and
hence that [4/ (x), E]l,’(y)] = [K. ), E][.’(y)] = 3,0,°(x — y). To prove the first Ashtekar commutation relation, in
view of the second one, it suffices to show that [Kfl(x), Ffl;(y)] + [F;(x), Kjl;(y)] = 0. This follows directly from
the fact that the scale transformations are generated by the scalar product between position £7 and
momentum X,; and that Ff}; is invariant under scale transformations, ie, under scalings of the position

fields. The details can be found in .

The above observations suggest to us strongly, that if we use the Ashtekar position and momentum
fields A;(x) and E?(x), then the Einstein-Hilbert Hamiltonian should look something like a Yang-Mills
non-Abelian gauge field Hamiltonian when the Gauss’ constraint is satisfied. It indeed turns out to be so
after multiplying by a power of /. Like the Yang-Mills Hamiltonian, it turns out to be a fourth degree
functional in the position and momentum variables which enables us to successfully perform the
quantization without encountering serious renormalization problems. It should be mentioned here in
passing that the formula G, = e(kij)KalE;’ for the Gauss’ constraint is in fact a rotational constraint or more
precisely an angular momentum constraint because, it resembles a cross product between the Ashtekar
position field £7 and the Ashtekar momentum field K. In the next section, we shall show that by
replacing the position field 47 by it holonomy, ie, the SO(3) group elements obtained by parallely

translating the SO(3) Lie algebra position field A; along small paths in ¥, and by replacing the momentum
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field £ by its flux through a small surface through which the former path pierces, we can effectively get
rid of the singularities in the gravitational field quantization process after discretizing space into a graph
of edges. Further, this method enables us to obtain an elegant formula for the area operator of a quantum
blackhole in terms of SO(3) angular momentum operators and thus derive the Hawking-Beckenstein
formula for the blackhole entropy. These matters form the subject of the next section. However, before

doing so, we remark that according to the above discussion, the ADM Hamiltonian is given by
H=[(P%q,, ,~ NNgdPx = [P?q,, dPx— [LN\qd"x
= [PPDN, + DN, + 2NK )dPx — [(RP + a(K 1K™ — K)Nq. N.dPx — — = (273)

where

P = a.\q. (K - Kqg®™) - — — (274)
The second one gives on contraction, using g,,¢* = 3, that

P=quP% = —20.+g.K— — —(275)
so that

K% = (anlg) " 1P% + g9~ 2a\q) 1P

= (onfg) 1P~ Pq/2) — — —(276)
This gives (Note that for the real world, D = 3)

= J'zPabDaNbde _ I[RDql/zN+ a Ng) VAN [P — Pg 12)(P,, — Pq,/2) — P2/41dPx +
j 2N(alg) "' (P® — Pg“?/2)P ,dPx
= jzpabDaNbde - j[RDq‘ PN+a Yq) VAN (PP, ~ P?/2 — P2/2 + 3P?/2 — P?/4]dPx
+ j 2N(alg) 1P — P /2)P ,dPx
= [2P*D NdPx — [[NgRP + o~ 1q~ V12 [ = PP, + 5P'4INdx — — — (277)
The first integral on the rhs defines the diffeomorphism constraint. In fact, the equation of motion
corresponding to the position field ¥ which has zero canonical momentum is given by observing that
PUD N, = PN, =TSN = (PN, — (P +T0 PUIN, — — —(278)

and using integration by parts:

P b pre—0- - —(279)
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The second integral on the rhs defines the Hamiltonian constraint. The equation of motion

corresponding to the position field N which has zero canonical momentum is given by
[—gRP +a g V2. [P®P,, —5P'41= 0~ — — (280)
In quantum mechanics, this equation is to be interpreted as the famous Wheeler-De-Witt equation,
namely, the Schrodinger equation for general relativity:
H[N]y = OVN — — —(281),
where
HINY = [~ \gRP +a~'g V2. (PP, — 5P'4]. Nd"x — — — (282)

Note that ” is a highly nonlinear function of only the position fields g, and their spatial derivatives g, ,
. While quantization, g,,(x) are interpreted as multiplication operators while PP(x) = — ihd/5q ,;(x). The

wave function y is a functional of the position field ¢ ,(x),x € £, = R>.

Appendix A3. Fundamental idea of loop quantum gravity based on

the flux-holonomy algebra

In loop quantum gravity, we introduce the flux-holonomy algebra of operators in place of the Ashtekar
position-momentum field operators. This involves partitioning the fabric of space £, into little loops that
penetrate little surfaces and we compute the SO(3) group elements obtained by parallely translating the
SO(3) Lie algebra element Ai(x)ri around these loops parallely according to the same connection where
7,i=1,2,3 form the standard basis for the Lie algebra of SO(3). These group elements are called
holonomies and we also simultaneously compute the flux of the Ashtekar momentum field £ through
the corresponding little surfaces associated with the different loops. The holonomies are computedby

solving the differential equations
dh(s)/ds = h(s)z;. A" (x(s))(dx%(s)/ds), s € [0, 1], h(0) = Iy — — — (283)

where x(s), s € [0, 1] defines a little loop in the space %, Solving this by the standard series expansion

gives the holonomy associated with the path x(s) as

h(l)y=1+ Z.[0<s1< <S”<1Aa1 (x(sl))Aaz(x(sz))...Aan(x(sn))x”1'(51)...x“:/(sn)dsl...dsn - — —(284)

n>1
where

A, (x) = A ()7~ — —(285)
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Further, the flux of £/(x) through a little surface § is computed as
Yi(S) = ISEf(X)na(X)dS(X) -~ —(286)

where »,(x) is the covariant unit normal to the surface § at a point x on it. Suppose we parametrize the

surface Sas X“(u,, u,). Then, we can write
n()dS(x) = €laa a) X"} (WX 3(w)d%u, x = X(u) = = = (287)
We can write
Y(S) = jEf(x)§3(x — X(u))€(aa,a,)X" ll(u)X‘g(u)dZud% - — —(288)

We find using the canonical Ashtekar commutation relations that

[Y,(S), h(1)] =
2 J A0 ) A, s DY) A (s DM, | (K )- - A, (K5, )ds . ds,
n>1
CE BT o))t o )0 (D ) o))t ()

n N -
x (Hj=1,j,+.an’/ (sj))dsl..,dsn (289)
where

[Y(8), 4 ()] = = i ) ~ x(5)0 1 827, 0)AS(XKC0)

aa; ij j"a
= - iriJ.¢53(X(u) - x(sk))nak(X(u))dS(X(u))

= —irij53(X(u)—x(sk))e(akab)xf 1(u)x{’z(u)azzu— - —(290)

We now replace the surface S by one having a small thickness s parametrized by the variable ¢ with the
thickness varying along the path x(s) in the vicinity of the point where it intersects the surface $ so that
the factor o3(X(u) —x(s;)) gets replaced by [© (sdzé3(X(u, 1) —x(s;)) and we can replace 53(X(u,?) —x(s;)) by
33w, O — (uy, 1))/ | €(cab)Xi'](u k)Xijz(u k)xc,(tk) | (Using a standard formula for the delta function of a function)
with (u,, #,) denoting the point at which X(u,, 1) = x(s,). This gives us the result

[ 0rS). 4 ot DR(sds = — i o

ds,z; j 02w = u)o(t = t)sgn(n, (X(uy)- (s Ddtd?u

= i ["ds 7, ele, s, 8) — — — (291)
Sk-1
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where €(e, s, S) is 1, —1 or 0 according as the edge ¢ = x: [0, 1]Z, intersects S at s, with a tangent making an
acute angle, an obtuse angle or zero angle with the unit normal. It is clear that the range of s, should in
fact be taken as the intersection of [s,_,, s, , ;] and the width of the surface introduced by making it have a
small thickness and in the limit when this width shrinks to zero, the above integral will become zero
except at the end points of the above multiple integral, ie, only when either k¥ = n so that s, =s,,s, ., =1 0r

when k = 1 so that s, = 0. Taking into account all of these facts, we finally end up with the result that
[Y(S), h(1)] = — i€le, S)r, h(1) — — — (292)
or equivalently, in terms of matrix elements,
[Yi(S), h(1) 451 = — i€le, S)(z (1)) yp = — i€le, S)(z;) 4lM(1) cp — — —(293)

We write & = k(1) = h([0, 1]) = h(e) for simplicity of notation. Here, €(e, S) is one if the path e intersects S
making an acute angle with the unit outward normal to S at its point of intersection -1 if this angle is
obtuse and zero if the path falls lies in the surface. By using standard properties of commutators, it then

follows that if f{#) is any differentiable function of the path holonomy #, then
onh)
[Y{(S),/Im)] = — i€le, S)(z ih)AB@ I 2]

with summation over the repeated index C being implied. Note that # is an SO(3) matrix. Now this formula

looks very much like the formula for a right invariant vector field ®; on SO(3) defined by
d . . ofh)
Rfh) = —flexp(—itz)h) | =g = = l(rjh)AB% - — —(295)

So we can infer that v,(S) is the same as the right invariant vector field e(e, S)R; = E/S) say. It is clear that R,
is an angular momentum operator obtained by constructing the right regular representation of SO(3)
evaluated at the SO(3) generator 7. Now consider a general two dimensional surface S embedded into £,
parametrized by the equation « € R* — X(u) € =, < R>. The area of this surface, from a standard result in

differential geometry is given by

Area(S) = j'\/det((qabX‘jl.(u)X}z/.(u)))l <ijeadiu— = = (296)
and we can write
Gap = €y — = = (297)
on the one hand and on the other,

E = Jgel = = —(298)
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or equivalently,

E = eabo)eijk)ele — — - (299)
Now,

det((q X (X (), < j<o(dw)

= Eik)Em)q X X’ X X, (du)’

= E(ik)(:‘(]'m)eieéecmeZ’Xﬂfl_Xli/kaX(fm(dzu)z
= E(ik)X‘leC’kdzueflecm. EOm)Xledm d2ueée;,n. d*u
= €lacp)n,dSs. eiecm. €(bdq)n,,. dS. eéeg
= n,,. dS. €(lmk)EY. n,. dS. e(zmj)E_j. ds
= n,.dS. E{.n. dS.E!o(kj) = n,. E{.n Fhds® - - - (300

Thus,

Area(S) = j\/Z(Z n, ED))dS = j\/z Y(dS)*~ — —(301)
k p k

which on discretization of space into infinitesimal paths and surfaces gives

Area(S) = Z\/Z Y,(AS)? = Z\/ZEk(AS)2|6(e, AS)| — — —(302)
k k

This formula has the remarkable interpretation as being equal to the sum of square roots of squared

angular momentum operators whose eigenvalues are well known in elementary quantum mechanics ie

Jj(i + 1) with j integral. This sum is taken over directed edges that either have their beginning or ends on S

and can be used to derive the celebrated Hawking-Beckenstein formula for the quantum Blackhole

entropy Area(S)/4G provided that we compute the entropy of the blackhole as the logarithm of the number

of eigenvalues of the area operator that have values in a neighbourhood of the classical Blackhole area.
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