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abstract
Some basic questions in quantum field theory and cosmology are addressed

here. We derive some formulas for the change in the canonical and anticommu-
tation relations at an equal time for some of the well-known quantum fields in
the presence of a background curved space-time metric. We then derive formulas
for the approximate change in the canonical commutation relations of a field or
a set of fields when a small perturbing Lagrangian is added to the unperturbed
Lagrangian. We study the problem of quantizing the Klein-Gordon field inter-
acting with the gravitational field of homogeneous and isotropic space-time of an
expanding universe and also simultaneously interacting with a classical random
current field. Formulas for the quantum effective action of the scale factor of the
expanding universe are derived by averaging over the Klein-Gordon field, taking
into account its interaction with a classical random current field. This gives us
information about how the expansion rate of our universe can be affected due to
quantum mechanical interaction effects. Finally, we discuss the general problem
of symmetry breaking in the quantum effective action of a field when it interacts
with a random Gaussian current field source. The symmetry-breaking terms are
expressed in terms of the correlation field of the random current source. We also
discuss how canonical commutation relations of a Bosonic field between the po-
sition and velocity fields get perturbed approximately when a small perturbing
Lagrangian is added.

1 Introduction

In this paper, we present a second quantization of the electromagnetic and Dirac
fields in the background of classical curved space-times like the Schwarzchild
space-time, the Kerr space-time and the Robertson-Walker space-time. We
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discuss how the canonical commutation relations in a curved background space-
time lead to deviations in the commutation relations between the position and
velocity fields when background curvature is present by taking the Robertson-
Walker metric of space-time with a spatially homogeneous Klein Gordon field
also present. We generalize this idea by dropping off the homogeneity condition
on the Klein-Gordon metric. This is achieved by expanding the KG field as a
linear combination of spatial basis functions with the coefficients in this expan-
sion being functions of time only and serving as the position variables for the
KG field. We thus set up the total action for the Robertson-Walker scale factor
and the general KG field in this space-time metric. By path integrating over
the KG position paths, namely over the paths defined by the linear combination
coefficients that appear in the expansion of the KG field in terms of spatial basis
functions, we are able to derive the quantum effective action for the scale factor
of the universe when gravity interacts with the inhomogeneous KG field. This
computation also tells us how to derive the wave function evolution of the scale
factor of the universe when the universe consists of scalar KG particles. We
then proceed further to calculate the quantum effective action of the scale fac-
tor of the universe along with the KG field within it when the KG field interacts
with a classical random Gaussian current field. This quantum effective action is
obtained by evaluating the classical average of the complex exponential of the
total action of the RW gravitational field and the KG field in this metric and in
addition, taking into account interactions between the random current field and
the KG field. A further path integration of this averaged complex exponential
over the KG field then yields us the quantum effective action of the scale factor
of the universe alone. This formula can be used to predict how quantum effects
with matter and random current fields in the universe can affect the rate of
expansion of our universe. We then consider another example of such a sit-
uation in which we start with an arbitrary Lagrangian density of a field also
depending on the metric of space-time with the metric being a function of a
set of random parameter fields. We compute the quantum effective action for
such a field by assuming that these random parameters have small variances. It
should be mentioned that the quantum effective action is computed by forming
the Legendre transform of the expected value of the complex exponential of the
action w.r.t the mean value of the current in all the cases, and this then yields us
the quantum equations of motion satisfied by the quantum effective action. It
also gives us symmetry-breaking effects induced by the random current field in
the sense that the variation of the quantum effective action under the quantum
expectation value of the gauge transformation that leaves the classical action
invariant is no longer invariant but instead depends on the covariance of the
random current field. We illustrate such symmetry breaking using the example
of a finite number of KG fields with its Lagrangian having global O(N) sym-
metry leading to the same symmetry in the quantum effective action but to a
breaking of this symmetry when the current with which the field interacts has
random Gaussian fluctuations.

One of the aims of this paper is to look at the foundations of quantum field
theory from the standpoint of accessible and inaccessible variables introduced
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by Inge Helland when general relativistic effects are considered. We then look at
the Wheeler-De-Witt equation also called the Schrodinger equation for general
relativity and based on the observation that this is a Lagrangian/Hamiltonian
problem with constraints, we derive an intuitive approximate method for quan-
tizing such constrained systems by considering the problem when n position
variables are functions of p < n free parameters and we construct p approxi-
mate conjugate momenta corresponding to the p canonical positions appearing
as the free parameters. This construction is based on a least squares method.

2 The quantum electromagnetic field in curved
background space-time

The Lagrangian density of the electromagnetic field in the background metric
gµν(x) is given by

L(Aµ, Aµ,ν) = (−1/4)FµνF
µν√−g + (a/2)(−g)−1/2(Aµ√−g),µ)2 −−− (1)

where
Aµ = gµνAν

It is clear that the integral of L over the whole of space-time is invariant w.r.t
diffeomorphisms because of the invariance of the 4-volume element

√
−gd4x and

the fact that
(Aµ√−g),µ = Aµ

:µ

√
−g

with Aµ
:µ is a scalar as also is FµνF

µν . The second term in (1) is to be regarded
as a gauge fixing term for the electromagnetic field. It stems from the invariance
of the electromagnetic field

Fµν = Aν,µ −Aµ,ν

under the gauge transformation

Aµ → Aµ + ϕ,µ

with ϕ a scalar field. The parameter a can be looked upon as a Lagrange
multiplier introduced to constrain (Aµ√−g),µ to vanish, just as we have the
Lorentz gauge in flat space-time. It is useful to introduce this gauge fixing term
as then the momentum fields corresponding to all the four position fields Aµ will
be non-zero thereby enabling us to avoid the uncomfortable situation of having
to treat this as a Lagrangian/Hamiltonian problem with constraints thereby
forcing us to use Dirac brackets in place of Lie/Poisson brackets. Noting that

(A0√−g),0 = g0µ
√
−gAµ,0 +X

where X involves non-derivative terms of Aµ, we see that the momentum fields
Pµ corresponding to the position fields Aµ are given by

Pµ(x) = ∂L/∂Aµ,0 = Fµ0(x)
√

−g(x) + a.g0µ(Aν√−g),ν
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The canonical equal-time Bosonic commutation relations (CCR) are

[Aµ(x), P
ν(y)] = iδνµδ

3(x− y), x0 = y0

and of course

[Aµ(x), Aν(y)] = [Pµ(x), Pν(y)] = 0, x0 = y0

These CCRs imply

[Aµ(x), g
νρ(y)g00(y)

√
−g(y)Aρ,0(y) + a.ag0ν(y)g0ρ(y)

√
−g(y)Aρ,0(y)]

= iδνµδ
3(x− y), x0 = y0

or equivalently,

(gνρg00 + agν0gρ0)(y)
√

−g(y)[Aµ(z), Aρ,0(y)] = iδνµδ
3(x− y), x0 = y0

Equivalently, defining the matrix

Cνρ(y) = (gνρg00 + agν0gρ0)(y)
√
−g(y)

and its inverse

((Kνρ(y))) = K(y) = C(y)−1 = ((Cνρ(y)))−1,

we obtain the fundamental CCR for electromagnetics in the curved background:

Cνρ(y)[Aµ(x), Aρ,0(y)] = iδνµδ
3(x− y), x0 = y0

or equivalently,

[Aµ(x), Aν,0(y)] = iKνµ(y)δ
3(x− y), x0 = y0

In flat space-time, we have gνρ(x) = ηνρ and the CCR simplifies to

[Aµ(x), Aν,0(y)] = i[(η + a.uuT )−1]νµδ
3(x− y), x0 = y0

where
u = [1, 0, 0, 0]T

and
η = diag[1,−1,−1,−1]

is the Minkowskian metric.
Remark: The CCR derived above is not a coordinate and gauge-independent

formula. It depends on a specific coordinate system chosen as well as the chosen
gauge. It follows therefore that since the simultaneity of two events depends on
the choice of the reference frame, we cannot use the equal-time commutation
relation derived above in a different system of coordinates. Further, the above
formula suggests that the ”degree of non-commutativity of the position fields
Aµ(x) and the corresponding velocity fields Aµ,0(y) at equal times x0 = y0

is metric dependent and also frame and gauge dependent. This suggests that
the theoretical variables formulation of quantum mechanics proposed by the
second author in a series of papers (see [2] and references there) will lead to
degrees of accessibility and inaccessibility of observables being frame- and gauge-
dependent.
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3 The Dirac field in a background curved space-
time interacting with the electromagnetic field

The covariant derivative is

∇µ = ∂µ − igAµ + Γµ

where
Aµ = Aa

µTa,Γµ = ωmn
µ γmn/4

Note that
[Ta, Tb] = −iC(abc)Tc,

[γmn/4, γab/4] = ηmbγna/4 + γnaηmb/4− γmaηnb/3− ηnbγma/4

Ta are Hermitian matrices. Since γ0, γ0γn are Hermitian, we have

(γ0γmγn)∗ = (γn)∗γ0γm = (γ0γn)∗γm = γ0γnγm

and hence,
γ0γmn = γ0[γm, γn]

are skew-Hermitian matrices. Thus,

iγ0Γµ = ωmn
µ iγ0γmn/4

are Hermitian matrices. The Dirac operator is

iD −m,D = γµ∇µ, γ
µ(x) = γaV µ

a (x)

The Dirac equation is
(iD −m)ψ = 0

which is the same as
iγµ(∂µ − igAµ + Γµ)

The Dirac Lagrangian density from which the Dirac equation is derived is given
by

L = ψ∗γ0[iD −m]ψ.
√
−g

Hence, the momentum field conjugate to the canonical position field ψ is given
by

P = ∂/∂∂0ψ = iV 0
a ψ

∗γ0γa
√
−g = iV 0

a

√
−gψ∗αa = i

√
−gψ∗α̃0

where
αµ = αµ(x) = αaV µ

a (x)

are the non-constant Dirac α-matrices in the gravitational field. Note that the
αa are the constant Dirac α matrices. The canonical equal-time anticommuta-
tion relations are therefore

{ψ(x), ψ(y)∗}α̃0(y)
√

−g(y) = δ3(x− y), x0 = y0

5



or equivalently,

{ψ(x), ψ(y)∗} = (−g(x))−1/2(α̃0(x))−1δ3(x− y), x0 = y0

Now, we have the anticommutation relations

{γ̃µ(x), γ̃ν(x)} = 2gµν(x)

and in particular,

(α̃0(x))2 = (γ0γ̃0(x))2 = (γ0γaV 0
a (x))

2 = (αaV 0
a (x))

2 = {αa, αb}V 0
a V

0
b /2

= (1/2)

3∑
a=0

(V 0
a )

2 = K(x)

say. Note that by K(x), we mean K(x)I. We have used the fact that the αa’s
mutually anticommute and their squares are the identity. It follows therefore
that

α0(x)−1 = K(x)−1α0(x)

Thus, we obtain the equal-time CAR as

{ψ(x), ψ(y)∗} = (−g(x))−1/2K(x)−1α0(x)δ3(x− y), x0 = y0

This is a fundamental equation because it gives us an idea of how much
the canonical anticommutation relations of the Dirac field get affected by the
presence of a background gravitational field. Specifically, we can evaluate this
anticommutator in the background Robertson-Walker metric for an expand-
ing homogeneous and isotropic universe and show that this equal-time CAR
(Canonical anticommutation relation) becomes proportional to S(t)−3.

4 The wave function in cosmological models

The idea of calculating probability amplitudes in cosmology and studying the
evolution of the scale factor of the universe as it evolves through different histo-
ries using the Feynman path integral method is originally due to Hawking (The
wave function of the universe) [reference??]. Hawking’s idea is to start with the
RW model for space-time corresponding to a homogeneous isotropic universe,
i.e.,

dτ2 = dt2 − S(t)2f(r)2 − S(t)2r2(dθ2 + sin2(θ)dϕ2)

so that

g00 = 1, g11 +−S(t)2f(t)2, 22 = −S(t)2r2, g33 = −S(t)2r2sin2(θ)
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where
f(r)2 = 1/(1− kr2)

with k = 0, 1,−1 according to whether the space is flat, spherical or hyperbolic
and then evaluate the Einstein-Hilbert Lagrangian density for this universe

LG(r, θ, S(t), S
′(t)) =

gµν [Γα
µνΓ

β
αβ − Γα

µβΓ
β
να]

√
−g

Hawking then considers the Lagrangian density for a scalar Klein-Gordon field
ϕ(t, r) in this background metric:

LKG(r, θ, χ, ∂µχ|S(t)) = (1/2)gµν
√
−gχ,µχ,ν −m2√−gχ2/2

He then considers evaluating the Schrodinger wave function of the scale factor
of the universeS at time t in a universe filled with such scalar particles using
the Feynman path integral

ψ(t, S) = C

∫
exp(iSG[t, S] + iSKG[t, χ|S])DS[0, t)Dχ[0, t]

where C is a numerical factor and

SG[t, S] =

∫ t

0

ds

∫
LG(r, θ, S(s), S

′(s))drdθ.dϕ

=

∫ t

0

Lg(S(s), S
′(s))ds

where

Lg =

∫
LGd

3x

is the Lagrangian of S(t) and

SKG[t, χ|S] =
∫ t

0

ds

∫
LKG(r, θ, χ(s, r, θ, ϕ), ∂µχ(s, r, θ, ϕ)|S(s))drdθ.dϕ

Hawking notes that since the universe is homogeneous and isotropic, we can
assume that the KG wave field ψ is a function of only time to a good degree of
approximation, so that

LKG = (1/2)χ′(t)2
√
−g −m2√−gχ(t)2

where √
−g = S3(t)f(r)r2sin(θ)

and so ∫ √
−gd3x = KS(t)3,K = 2π

∫ 1

0

∫ π

0

f(r)r2sin(θ)drdθ
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so that the KG Lagrangian becomes

Lkg(χ(t), χ
′(t)|S(t)) = (K/2)S(t)3[χ′(t)2 −m2χ(t)2]

which means that the joint wave function of S(t), χ(t) (ie, the scale factor and
the KG field at time t), is given by the formula

ψ(t, S, χ) = C

∫
exp(i

∫ t

0

Lg(S(s), S
′(s))+Lkg(χ(s), χ

′(s)|S(s))ds)DS[0, t)Dχ[0, t)

where S(t) = S, χ(t) = χ and in particular, the probability density of S(t) is
given by

p(t, S) =

∫
|ψ(t, S, χ)|2dχ

Lengthy but elementary calculations show that the Einstein-Hilbert Lagrangian
density

LG = gµνLµν

√
−g

for the RW metric evaluate as follows:

LG = (g00L00 + g11L11 + g22L22 + g33L33)
√
−g

with
L00 = Γα

00Γ
β
αβ − Γα

0βΓ
β
0α

= −3S
′2/S2,

L11 = Γα
11Γ

β
αβ − Γα

1βΓ
β
1α

= 3S
′2f2(r)− 2/r2,

L22 = Γα
22Γ

β
αβ − Γα

2βΓ
β
2α

= S
′2r2 − rf ′/f3 − 1/f2 − cot2(θ),

L33 = Γα
33Γ

β
αβ − Γα

3βΓ
β
3α

= (S
′2r2 − rf ′/f3 − 1/f2)sin2(θ) + cos2(θ)

so that

LG = (4S
′2/S2 + 2/S2r2 + 2f ′/rS2f3 + 2/S2f2r2)S3fr2sin(θ)

It is clear then, that the Lagrangian of the scale factor S(t) has the form

Lg(S(t), S
′(t)) =

∫
LGdrdθ.dϕ = c1S

′2S + c2S

where c1, c2 are constants and hence that the total Lagrangian of the scale factor
S(t) and the KG field χ(t) in homogeneous and isotropic space-time is given by

L(S, S′, χ, χ′) = c1S
′2S + c2S + (K/2)S(t)3[χ′(t)2 −m2χ(t)2]
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This general form can be used in our study of the joint wave function of the
scale factor and the KG field and of course, also the classical dynamics of
these two quantities. Alternatively, can also quantize these dynamics using
the Schrodinger wave mechanics and the Heisenberg matrix mechanics by re-
garding S, χ as canonical position variables with the corresponding momentum
variables given by

PS = ∂L/∂S′ = 2c1SS
′, Pχ = ∂L/∂χ′ = KS3χ′

The commutation relations (Bosonic) are given by

[S, PS ] = i, [χ, Pχ] = i, [S, χ] = [PS , Pχ] = 0

so in terms of velocities,

[S, S′] = i/2c1S, [χ, χ
′] = i/KS3

The second equation shows that as the universe keeps expanding, S(t) increases
with time, and hence the commutator between χ and χ′ gets smaller and smaller
which means that the uncertainty in measuring both the KG field and its rate
of change with time gets smaller and smaller. Likewise, the first commutation
relations also imply that the uncertainty between the scale factor and its rate of
change with time also decreases in the expanding universe. It is interesting to see
what this implies from the standpoint of degrees of inaccessibility of theoretical
variables.

More generally, this idea of quantization can be looked upon as a form of
restricted quantum gravity or more generally, restricted quantum field theory
in the following sense. Suppose

The Wheeler-De Witt equation or the Schrodinger equation of quantum
general relativity.

An appropriate quantization method shows that the action for general rela-
tivity (more precisely, the ADM action) can be expressed as∫

N
√
q(Q(K) + L(qab, qab,c))d

3xdt

where qab is a three dimensional spatial metric and K = ((Kab)) is linear in the
time derivative qab,t of the 3-metric with Q(K) being quadratic in K. N is a
scalar field that acts as a Lagrange multiplier when we derive the corresponding
Hamiltonian having constraints. This action is derived by embedding a one-
parameter family of three-dimensional surfaces Σt in R4 with the surfaces being
parametrized by time t. The embedding of this surface is defined by the equation

Xµ(t, .) : Σt → R4

with
Xµ

,t = Tµ = Bµ +Nnµ
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where nµ is the unit normal to Σt while Nµ is tangential to Σt, i.e., Nµ is
expressible as

Nµ = NaXµ
,a

Note that the Roman letters a, b, c run over 1, 2, 3, i.e., the spatial coordinates
of points in Σt where t is the time coordinate that parametrizes the surface Σt.
Note that Nµ and nµ are orthogonal w.r.t the metric gµν in R4:

gµνN
µnν = 0

This decomposition leads us to the following decomposition of the metric in R4:

gµν = qµν + nµnν

where
qµν = qabXµ

,aX
ν
,b

and therefore
qµνnν = 0

Note that if g̃µν is the metric in the (xa, t) = (xα) coordinate system where xa

parametrizes the coordinates in Σt, then

gµν = g̃αβXµ
,αX

ν
,β

= g̃abXµ
,aX

ν
,b + 2g̃a0(Xµ

,aT
ν +Xν

,aT
µ)

+g̃00TµT ν

Using then the orthogonality of Xµ
,a and nµ, we get

gµν(T
µ −NaXµ

,a)X
ν
,b = 0

or equivalently,
g̃0b − g̃abN

a = 0

which gives us the above orthogonal decomposition of the metric gµν . The form
of the ADM action is a nice one as it decomposes the action into quadratic form
in the time derivatives of the spatial metric and a purely spatial component
involving only the spatial derivatives of the spatial metric. This form of the
ADM action also immediately reveals that it leads to a Hamiltonian problem
with constraints. The Hamiltonian has the form

H =

∫
(NaHa +NH0)d

3x

where H0 is quadratic in the canonical momenta P ab = ∂L/∂qab,t while Ha

is linear in the canonical momenta. The complete set of position fields are
N,Na, qab, totally ten in number and since the time derivatives of N,Na do
not appear in this Hamiltonian, it follows that N,Na do not vary with time.
Ha is called the diffeomorphism constraint because it is of the form qbcD

aP bc
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and hence it generates spatial derivatives in view of the canonical commutation
relations

[P ab(x), cd(y)] = −iδ3(x− y)(δac δ
b
d + δadδ

b
c)

The functions L,H0 appearing respectively in the ADM Lagrangian and Hamil-
tonian are highly nonlinear functions of qab, qab,c and are therefore very difficult
to deal with in a quantization programme. However, Ashtekar drastically sim-
plified quantization by introducing the so-called Ashtetkar variables in terms of
the SO(3) triad eia for the spatial metric qab, i.e.,

qab = eiae
i
b

the summation over i = 1, 2, 3 being implicit. In terms of the Ashtekar variables,
the canonical Hamiltonian for gravity behaves very much like a Yang-Mills non-
Abelian gauge field Hamiltonian in that although this Hamiltonian is highly
nonlinear in the Ashtekar variables, the highly nonlinear component is homo-
geneous of order zero, i.e., it is invariant under scaling and therefore commutes
with the generator of the scaling group given by a bilinear combination of the
position and momentum fields, also called the Gauss constraint operator. Specif-
ically, if iP.Q is the scaling operator for canonical positions Q and momenta P ,
since

[iP.Q, f(Q)] = Q.f ′(Q)

and therefore,

exp(iλad(P.Q))(f(Q)) = exp(λQ.∇Q)(f(Q)) = f(exp(λ)Q)

The Gauss constraint operator is constructed from

Kab = Xµ
,aX

ν
,b∇µnν

(This is the same K that appears in the momentum-containing component of
the ADM action), by noting that it is symmetric in (a, b) and therefore

K[a,b] = Kab −Kba = 0

This means that if eai is the spatial metric triad, then

Kij = Kabe
a
i e

b
j

is also symmetric. Defining

E(c, k) = ϵ(ijk)ϵ(abc)eiae
j
b

we observe that

E(c, k)emc = q1/2ϵ(ijk)ϵ(ijm) = q1/2δjm

and therefore,
E(c, k) = q1/2eck
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Define
Kai = Kabe

b
i

We then get
Gi = ϵ(ijk)KajE(a, k) = q1/2ϵ(ijk)Kaje

a
k

= q1/2ϵ(ijk)Kabe
b
je

a
k = 0

because Kabe
b
je

a
k is symmetric in (j, k). Gi is called the Gauss constraint or the

rotational constraint since it can be looked upon as a cross product between
the position vector Kaj and the momentum vector E(a, j). Under the condition
of the Gauss constraint, it is easy to show that the Ashtekar position variables
E(a, k) and corresponding Ashtekar momentum variables satisfy the canonical
commutation relations.

We are now interested in formulating a generalization of Hawking’s theory
to the case when the scalar particles in our universe are not distributed homo-
geneously and isotropically, i.e., when the KG field is χ(t, r, θ, ϕ). In order to do
so, we choose basis functions ηn(r, θ, ϕ), n = 1, 2, ... that are functions of only
the spatial variables and expand the KG field in terms of them with coefficients
being functions of time:

χ(t, r, θ, ϕ) =
∑
n

χn(t)ηn(r), r = (r, θ, ϕ)

Then, w.r.t to the RW metric, we have∫
gµνχ,µχ,ν

√
−gd3x

(χ2
,0 + g11χ2

,1 + g22χ2
,2 + g33χ2

,3)
√
−g

= S(t)3
∑
n,m

a(n,m)χ′
n(t)χ

′
m(t)− S(t)

∑
n,m

b(n,m)χn(t)χm(t)

where

a(n,m) =

∫
ηn((r)ηm(r)f(r)r2sin(θ)drdθdϕ,

b(n,m) =

∫
ηn,1(r)ηm,1(r)f(r)

−1r2sin(θ)drdθdϕ,

+

∫
ηn,2(r)ηm,2(r)f(r)sin(θ)drdθdϕ,∫

ηn,3(r)ηm,3(r)f(r)sin(θ)
−1drdθdϕ,

Moreover,

m2

∫
χ2√−gd3x = S(t)3

∑
n,m

c(n,m)χn(t)χm(t)
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where

c(n,m) = m2

∫
ηn(r)ηm(r)f(r)r2sin(θ)d3x

Thus, the KG Lagrangian becomes

Lkg(χn(t), χ
′
n(t), n ≥ 1) =

(1/2)

∫
gµνχ,µχ,ν

√
−gd3x− (1/2)

∫
m2χ2√−gd3x

= (1/2)S(t)3
∑
n,m

a(n,m)χ′
n(t)χ

′
m(t)− (1/2)S(t)

∑
n,m

b(n,m)χn(t)χm(t)

−(1/2)S(t)3
∑
n,m

c(n,m)χn(t)χm(t)

= (1/2)S(t)3χ′(t)TAχ′(t)− (1/2)S(t)χ(t)TBχ(t)− (1/2)S(t)3χ(T )TCχ(t)

where

χ(t) = ((χn(t)))
∞
n=1, A = ((a(n,m))), B = ((b(n,m))), C = ((c(n,m)))

Thus the joint wave function of (S(T ), χ(T )) is now given by

ψ(T, S, χ) = ψ(T, S, ((χn)))) =∫
exp(i(c1S

′(t)2S(t) + c2S(t) + (i/2)S(t)3χ′(t)TAχ′(t)− (i/2)S(t)χ(t)TBχ(t)

−(i/2)S(t)3χ(T )TCχ(t))DS[0, T )Dχ[0, T )

It should be noted that if we were interested only in the wave function of S(t),
then we would first evaluate the Gaussian integral w.r.t χ by replacing it with
the value χ0 at which its action is stationary, i.e., χ0 satisfies

−S(t)3Aχ′′
0(t)− S(t)Bχ(t) + S(t)3Cχ0(t) = 0

This is the same as

Aχ′′
0(t) = −S(t)−2Bχ(t) + Cχ0(t)

This is an infinite-dimensional linear second-order differential equation with
time-varying coefficients for the infinite-dimensional vector-valued function of
time

χ0(t) = ((χ0n(t)))

and its solution will be a function of S(s), s ≤ t.
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5 Quantum effective action in cosmology in the
presence of a random current field interacting
with the scalar field

Some remarks on the quantum effective action in quantum cosmology: Consider
as above, the joint action of the gravitational field and the scalar KG field but
taking into account an interaction between the KG field and a classical random
current source J(t). Assuming for simplicity that the KG field depends only on
time, this action is given by

S1[S, χ|J ] =
∫
[c1S

′2(t)S(t)+c2S(t)+(K/2)S(t)3(χ′(t)2−m2χ(t)2)+J(t)χ(t)]dt

We write this action as∫
[L(S(t), S′(t), χ(t), χ′(t)) + J(t)S(t)]dt = S0[S, χ] +

∫
Jχ.dt

Assume for simplicity that J(t) is a Gaussian random current source with mean
MJ(t) and covariance

Cov(J(t), J(s)) = CJ(t, s)

In order to compute the quantum effective action of S, χ after taking into account
this interaction, we form the statistical mean of the path integral:

Z(M,C) = exp(iW (M,C))

= E
∫
exp(i

∫
(L(S(t), S′(t), χ(t), χ′(t)) + J(t)χ(t))dt)DS.Dχ

=

∫
exp(iS0[S, χ] + i

∫
M(t)χ(t)dt− (1/2)

∫
C(t, s)χ(t)χ(s)dtds)DS.Dχ

Such an approximation to the path integral is justified when the scalar field
interacts with a cloud of other particles like gravitons distributed all over the
cosmos with the quantum fluctuations in the graviton field being approximated
by a classical random field. If we wish to be more accurate, we should take
J(t) as a quantum stochastic process in the sense of Hudson and Parthasarathy
[reference??] and calculate quantum expectations of the resulting path integral
in a coherent state of the current. We first discuss the classical stochastic ap-
proximation and then the quantum stochastic approximation. For given current
covariance C, we can define the quantum effective action in the usual way:

Γ(χ0, C) = ExtM (−i.logZ(M,C)−
∫
Mχ0dt)

Here, we are assuming that the scale factor process S(t) is a given fixed classical
process. Extremizing, we get

iδlogZ(M,C)/δM(t) + χ0(t) = 0

14



Note that this equation implies that the value of the mean current M is that
at which the average of χ(t) equals the classical process χ0(t) given the scale
factor process S(.) and the classical current covariance C. We now observe that
assuming that M satisfies this equation,

δΓ(χ0, C)/δχ0(t) = −M(t)

This is the required equation of motion for the classical field χ0(t) defined as the
classical and quantum average of χ(t) given the mean currentM and the current
covariance C. In this context, it is interesting to generalize this equation to the
general case when we do not restrict it to a homogeneous and isotropic KG
scalar field. In that case, proceeding as earlier, the KG action in the presence
of a random current field J(t, r) is given by∫

Lkg(χn(t), χ
′
n(t), n ≥ 1)dt+

∑
n

∫
Jn(t)χn(t)dt

=

∫
[(1/2)S(t)3χ′(t)TAχ′(t)− (1/2)S(t)χ(t)TBχ(t)− (1/2)S(t)3χ(T )TCχ(t)]dt

+

∫
J(t)TDχ(t)dt

= S0[χ] +

∫
JTDχdt

where we have expressed the current field in terms of the spatial basis functions
ηn(r) as

J(t, r) =
∑
n

Jn(t)ηn(r)

and
χ(t, r, θ, ϕ) = χ(t, r) =

∑
n

χn(t)ηn(r)

so that

intJ(t, r)χ(t, r)d3rdt =

∫
J(t)TDχ(t)dt

where
J(t) = ((Jn(t))n, χ(t) = ((χn(t)),

and

D = ((

∫
ηn(t, r)ηm(t, r)d3r))n,m

Writing
EJn(t) =Mn(t), Cov(Jn(t), Jm(s)) = C0nm(t, s)

or equivalently,

E(J(t)) =M(t) = ((Mn(t))), Cov(J(t), J(s))

15



= E(J(t)J(s)T )−M(t)M(s)T = C0(t, s) = ((C0nm(t, s)))n,m

We get

Z(M,C0) = E
∫
exp(iS0[χ] + i

∫
J(t)TDχ(t)dt)Dχ

=

∫
exp(iS0[χ] + i

∫
M(t)TDχ(t)dt− (1/2)

∫
χ(t)TDC0(t, s)Dχ(s)dtds)Dχ

so that the quantum effective action is given by

Γ(χ0, C0) = ExtM (−i.log(Z(M,C0))−
∫
MTDχ0dt)

= −ilogZ(M0, C0)−
∫
MT

0 Dχ0dt

where M0(t) satisfies

iδ(logZ(M0, C0))/δM(t) +Dχ0(t) = 0

The corresponding quantum equations of motion are

δΓ(χ0, C0)/δχ0(t) = −DM0(t)

Noting that

Q(χ,M,C0) = iS0[χ] + i

∫
M(t)TDχ(t)dt− (1/2)

∫
χ(t)TDC0(t, s)Dχ(s)dtds

= i

∫
[(1/2)S(t)3χ′(t)TAχ′(t)−(1/2)S(t)χ(t)TBχ(t)−(1/2)S(t)3χ(t)TCχ(t)]dt

+i

∫
M(t)TDχ(t)dt− (1/2)

∫
χ(t)TDC0(t, s)Dχ(s)dtds

is a linear-quadratic functional of χ, it is easy to evaluate the Gaussian integral

Z(M,C0) =

∫
exp((−1/2)Q(χ,M,C0))Dχ

as apart from a multiplicative constant, equal to

D0(S,C0)
−1/2.exp((−1/2)Q(χ0,M,C0))

where D0(S,C0) is the determinant of the kernel-matrix of the quadratic form
Q and χ0 is the value of χ at which Q becomes stationary, i.e., χ0 satisfies

(S(t)3Aχ′
0(t))

′+S(t)Bχ0(t)+S(t)
3Cχ0(t)−DM(t)+

∫
DC0(t, s)Dχ0(s)ds = 0

Apart from a multiplicative constant, the kernel-matrix of the quadratic form
Q is given by

KQ(t, s) = (d/dt)(S(t)3δ′(t− s))A+ δ(t− s)(S(t)B + S(t)3C) +DC0(t, s)D

and its determinant has to be evaluated.
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6 Implications of classical randomness in the cur-
rent source on symmetry breaking

It is a well-known fact that when the gauge symmetry of a quantum effective ac-
tion is spontaneously broken by the field acquiring vacuum expectation values,
then massless particles are produced, one particle being associated with each
gauge degree of freedom that is broken. On the other hand, when the gauge
symmetry of the quantum effective action is approximately broken by the pres-
ence of small perturbations that do not respect gauge symmetry, then massless
particles acquire masses, and already massive particles become more massive.
So, it is important to decide the mechanisms by which the gauge symmetry of a
quantum effective action can be broken. We shall consider the problem of sym-
metry breaking from the standpoint of coupling the field to a random classical
Gaussian current field. To this end, consider the action I[ϕ] of a field such that
under an infinitesimal gauge transformation

ϕ→ ϕ+ ϵ.∆(ϕ)

the product of the exponentiated action and the path measure remains invariant,
i.e.,

exp(iI[ϕ])Dϕ = exp(iI[ϕ+ ϵ.∆(ϕ)])D(ϕ+ ϵ.∆(ϕ))

For example, for the complex KG field in a background curved space-time, the
action is

I[ψ] =

∫
gµν

√
−gψ̄,µψ,νd

4x−m2

∫
ψ∗ψ

√
−gd4x

which is invariant under the infinitesimal U(1) gauge transformation

ψ → exp(iϵ)ψ = ψ + iϵψ, ϵ ∈ R, ϵ→

More generally, for a vector valued complex KG field ψ = ((ψn))
N
n=1, the action

can be taken as

I[ψ] =
∑
n

∫
gµν

√
−gψ̄n,µψn,νd

4x−m2
∑
n

∫
ψ∗
nψn

√
−gd4x

which is invariant under the infinitesimal U(N) gauge transformation

ψ → exp(iX)ψ = ψ + iX.ψ,X ∈ CN×N , X∗ = X, ∥ X ∥→ 0

Let Tn, n = 1, 2, ..., N2 be a basis for the N2 dimensional real vector space of
N × N Hermitian matrices. Then, the above U(N) symmetry of the complex
KG action can also be expressed as

ψ → exp(i

N∑
n=1

ϵ(n)Tn)ψ = ψ + i

N2∑
n=1

ϵ(n).Tnψ, ϵ(n) ∈ R, ϵ(n) → 0
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If instead, ψ where a real KG scalar field with action

I[ψ] = (1/2)
∑
n

∫
gµν

√
−gψn,µψn,νd

4x− (m2/2)
∑
n

∫
ψ2
n

then the symmetry would instead be O(N,R), i.e.,

ψ → ψ + ϵ.X.ψ,X ∈ RN×N , XT = −X

this symmetry group now being N(N − 1)/2-dimensional. Now consider the
path integral

Z(J) =

∫
exp(iI[ψ] + i

∫
J.ψd4x)Dψ

where J is a non-random current field. It is well known that when exp(iI[ψ])Dψ
is invariant under the infinitesimal gauge transformation ψ → ψ+ ϵ.∆(ψ), then
the equation

Z(J) =

∫
exp(iI[ψ] + i

∫
J.ψ)(1 + i

∫
J.∆(ψ))Dψ = 0

gives ∫
J. < ∆(ψ) >J d

4x = 0

which can be expressed in the form of a gauge invariance principle for the
quantum effective action∫

δΓ[ψ0]

δψ0(x)
. < ∆(ψ) >J (x)d4x = 0

where J is the current field for which

< ψ > (x)J = ψ0(x)

In the case when the gauge transformation ∆(ψ) is linear in ψ as it happens for
the three examples considered above, then,

< ∆(ψ) >J= ∆(< ψ >J) = ∆(ψ0)

and then we get the result that the quantum effective action is also invariant
under the same gauge transformation that leaves the classical action invariant,
or more precisely as that which leaves the product exp(iI[ψ])Dψ invariant:∫

δΓ[ψ0]

δψ0(x)
.∆(ψ0)(x)d

4x = 0

Note that the quantum effective action is defined as

Γ[ψ0] = ExtJ [−ilogZ(J)−
∫
J.ψ0d

4x]
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where Ext denotes extremum w.r.t J . These results make use of the fact that
the quantum effective action Γ[ψ0] satisfies its equation of motion

δΓ[ψ0]/δψ0(x) = −J(x)

and hence
δΓ[ψ0]/δψ0(x)δψ0(y) = −δJ(x)/δψ0(y)

On the other hand, we have

ψ0(x) = Z(J)−1

∫
ψ(x).exp(i.I[ψ] + i

∫
J.ψ)Dψ

= −iδlog(Z(J))/δJ(x)

and hence,

δψ0(x)/δJ(y) = −iδ2Z(J)/δJ(x)δJ(y) = −∆(x, y)

where ∆(x, y) is the propagator of the field ψ after subtracting out its mean
value ψ0, (ie, the propagator of the quantum fluctuating component of the field
around its vacuum expected value). Thus, we get the fundamental formula

δΓ(ψ0)/δψ0(x)δψ0(y) = ∆−1(x, y)

which means that the eigenfunctions of the Hessian matrix of the quantum
effective action having zero eigenvalues are precisely the eigenvectors of the
propagator having infinite eigenvalues. The eigenvalues of the inverse Bosonic
propagator are however the squared masses of the particles in analogy with the
fact that the inverse propagator of a free KG particle is given by p2 − m2 in
the momentum domain, for which if δm2 is an eigenvalue corresponding to an
eigenvector, then this eigenvector is a field perturbation which when added to
the vacuum expected field, carries a mass of m2+ δm2. Now let us consider the
situation when the current J is a random field with mean M and covariance C.
Then, the quantum effective action is computed as

Γ(ψ0, C) = ExtM (−i.logZ(M,C)−
∫
M.ψ0)

with

Z(M,C) = Eexp(iI[ψ] + i

∫
J.ψ)Dψ

=

∫
exp(iI[ψ] + i

∫
M.ψ − (1/2)

∫
ψTCψ)Dψ −−− (a)

so that

Γ(ψ0) = −i.logZ(M0, C)−
∫
M0.ψ0

where M0 satisfies,

−iδlogZ(M0, C)/δM(x)− ψ0(x) = 0
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This gives
δΓ(ψ0)/δψ0(x) = −M0(x)−−− (b)

However, now observe that Γ(ψ0) is now no longer gauge invariant since we have
to replace ψ by ψ + ϵ.∆(ψ) in the path integral (a),∫
exp(iI[ψ]+i

∫
M.ψ+iϵ

∫
M.∆(ψ)−(1/2)

∫
ψTCψ−ϵ

∫
ψTC∆(ψ))Dψ = 0

or equivalently,

i

∫
M. < ∆(ψ) >M −

∫
< ψTC∆(ψ) >M= 0

or equivalently, making use of the equations of motion∫
(δΓ(ψ0)/δψ0(x)). < ∆(ψ)(x) >M0= −i

∫
< ψ(x)C(x, y)∆(ψ(y)) >

which shows clearly how much is gauge invariance of the quantum effective
action is broken when the current to which the field is coupled has random
fluctuations.

An example from background general relativity and cosmology: Suppose
that gµν(x|θ(x)) is the metric of space-time where θ is a random parameter field
and that the field ϕ(x) in this background field is described by the Lagrangian

L(ϕ(x), ∂µϕ(x), gµν(x|θ(x))

Assume that θ(x) has small random fluctuations around its mean value θ0(x),
so writing

δθ(x) = θ(x)− θ0(x),

we can write approximately

gµν(x|θ(x)) = gµν(x|θ0(x) + gµν,k(x|θ0)δθk(x)

where
gµν,k(x|θ0) = ∂gµν(x|θ0)/∂θk

Another linearization gives approximately

L(ϕ(x), ∂µϕ(x), gµν(x|θ(x)))

= L(ϕ(x), ∂µϕ(x), gµν(x|θ0(x))+

(∂L(ϕ(x), ∂µϕ(x), gµν(x|θ0(x))/∂gµν)gµν,k(x|θ0(x))δθk(x)

with obvious summation conventions. This expression may be abbreviated to

L0(ϕ(x), ∂µϕ(x)) + Lk(ϕ(x), ∂µϕ(x))δθk(x)
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and hence the action integral for ϕ has the form

S0(ϕ) +

∫
Lk(ϕ)(x)δθk(x)d

4x

Calling the vector (θk(x)) = J(x) and L(ϕ) = ((Lk(ϕ)), we can express the path
integral as

Z =

∫
Eexp(i.S0(ϕ) +

∫
L(ϕ)(x)TJ(x)d4x)Dϕ

so that when J(x) is a Gaussian field, this evaluates to give

Z(M,C) =∫
exp(iS0(ϕ)+i

∫
L(ϕ)(x)TM(x)d4x−(1/2)

∫
L(ϕ)(x)TC(x, y)L(ϕ)(y)d4xd4y)Dϕ

so that the effective action can be defined as (for a given classical field ϕ0(x))
as

Γ(ϕ0, C) = ExtM (−i.logZ(M,C)−
∫
L(ϕ0)(x)

TM(x)d4x)

= −i.logZ(M0, C)−
∫
L(ϕ0)(x)

TM0(x)d
4x

where M0 solves

i.δlogZ(M0, C)/δM(x) + L(ϕ0)(x)
TM0(x) = 0

In other words, M0 is that current field at which the combined classical and
quantum expectation of L(ϕ)(x) becomes L(ϕ0)(x). We then get our quantum
equations of motion as

δΓ(ϕ0, C)/δϕ0(x) = −
∫
(δL(ϕ0(y))/δϕ0(x))

TM0(y)d
4y

Now, assume that S0(ϕ) has a gauge symmetry

S0(ϕ+ ϵ.∆(ϕ)) = S0(ϕ) + o(ϵ)

with the path measure Dϕ being invariant under this gauge transformation.
More precisely, we assume that the product

exp(iS0(ϕ))Dϕ

is invariant under ϕ→ ϕ+ϵ.∆(ϕ). Then, we get on changing the path integration
variable from ϕ to ϕ+ ϵ.∆(ϕ) that

Z(M,C) =∫
exp(iS0(ϕ)+i

∫
L(ϕ)(x)TM(x)d4x−(1/2)

∫
L(ϕ)(x)TC(x, y)L(ϕ)(y)d4xd4y)
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×(1+iϵ

∫
(L′(ϕ).∆(ϕ))(x)TM(x)d4x−ϵ

∫
(L′(ϕ).∆(ϕ))(x)TC(x, y)L(ϕ)(y)d4xd4y)Dϕ

(where

L′(ϕ).∆(ϕ)(x) =

∫
(δL(ϕ)(x)/δϕ(y)).∆(ϕ)(y)d4y),

which can alternatively be expressed as∫
< (L′(ϕ).∆(ϕ))(x) >T

M,C M(x)d4x

= −i
∫
Tr(C(x, y) < L(ϕ)(y).(L′(ϕ).∆(ϕ))(x)T >M,C d4xd4y

Substituting for M(x) from the equation of motion rewritten below

δΓ(ϕ0, C)/δϕ0(x) = −
∫
(δL(ϕ0(y))/δϕ0(x))

TM0(y)d
4y

this equation of broken gauge invariance of the quantum effective action can be
expressed in the form∫

(δΓ(ϕ0, C)/δϕ0(x)). < ∆(ϕ)(x) >M0,C

= −
∫
(< (L′(ϕ)− L′(ϕ0)).∆(ϕ)(x) >T

M0,C M0(x)d
4x

−i
∫
Tr(C(x, y) < L(ϕ)(y).(L′(ϕ).∆(ϕ))(x)T >M0,C d4xd4y

7 Conclusions

We have in this paper, addressed a few basic questions in quantum cosmol-
ogy, The first question is related to how much commutation relations between a
quantum field and its velocity get altered by the presence of a background grav-
itational field. The second is related to computing the Feynman path integral in
quantum cosmology for the scale factor of our universe in which there are scalar
Klein-Gordon particles. We then derive some formulae regarding the joint wave
function of the scale factor and the scalar field, first in a situation when the
scalar field is homogeneous and isotropic like the gravitational field and then
more generally, when the gravitational field is homogeneous and isotropic but
the scalar field can be arbitrary functions of space and time. The third question
addressed here is related to the computation of the quantum effective action of
the scalar field in the presence of a homogeneous and isotropic background grav-
itational field when the scalar field is coupled to a current source that can have
classical randomness. The final question concerns symmetry-breaking terms in
an otherwise gauge invariant quantum effective action induced by classical ran-
domness in the current field. We are able to provide a formula for the change in
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the quantum effective action of the field under a quantum gauge transformation
in terms of the covariance matrix field of the random Gaussian current source.
This formula can provide us with a clue about how much mass can the field
acquire by virtue of random fluctuations in the coupling current field. This
result can be applied to cosmology by noting that the KG scalar field action in
curved space-time contains the scale factor S(t) of the expanding universe as a
parameter and if this parameter undergoes small random fluctuations, then it
can be regarded as a current source whose randomness generates extra mass in
the KG scalar field particles.
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9 Appendix 1. Some remarks on the Wheeler-
De-Witt equation in cosmology

The ADM Hamiltonian for general relativity (Thiemann [3]) has the form

H =

∫
(N.H +NaHa)d

3x

whereHa is the diffeomorpniam constraint andH is the Hamiltonian constraint.
N,Na, a = 1, 2, 3 are position fields apart from the six position fields qab, 1 ≤
a ≤ b ≤ 3 that form the spatial components of the metric tensor of the one-
parameter family of 3-D surfaces that are embedded into four-dimensional space-
time. Note that the constraint equations areHa = 0, H = 0 with the latter being
interpreted in the quantum theory as a Schrodinger equation

Hψ(q) = 0, q = ((qab))
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It is readily verified [Thiemann] that H is the sum of a quadratic form in the
momenta P ab with coefficients being nonlinear functions of q plus a nonlinear
function of q. This Hamiltonian thus has the form

H(Q,P ) = PTF (Q)P + V (Q)

where we write P for the six component of ((P ab)) and Q for the six components
of q = ((qab)). Note that the beauty of the ADM action implies that linear terms
in P do not appear in the Hamiltonian constraint. The equation

H(Q,−iδ/δQ)ψ(Q) = 0

is called theWheeler-De-Witt equation or equivalently, the Schrodinger equation
of general relativity. After spatially discretizing the 3-D space on which the
position and momentum fields are defined, we can interpret Q,P as N × 1
vector operators where N = 6M with M being the number of spatial pixels.
Actually, in loop quantum gravity, the position fields are defined using the
Ashtekar connection A = Γ(E) + iK with the momentum fields E being the
electric flux fields. Γ(E) is a homogeneous functional of E of zeroth order. In
loop quantum gravity as described in the book by Thiemann, space is discretized
by the edges of a graph and since the connection Γ is an SO(3) spin connection,
A = (Ai

a)) can be viewed as an SO(3)-gauge field or equivalently as an SU(2)
gauge field, i.e., Aa = Ai

aτi where τ1, τ2, τ3 are the Pauli spin matrices. Rather
than using Aa as the position fields, in loop quantum gravity, we parallelly
displace the connection Aa along the different edges of the graph giving for each
edge e, an SU(2)-group matrix g(e), i.e., g(e) = exp(i

∫
e
Ai

a(x(s))τidx
a(s)) ∈

SU(2) with the edge being parametrized as (xa(s)), 0 ≤ s ≤ 1. The wave
function of the universe is then regarded as a function of all the g(e)′s and can
be represented using a basis comprising of the products over all the edges e
of matrix elements of the irreducible representations of SU(2) evaluated at the
g(e)′s. Such a basis is called a basis of spin network functions.

In the case of restricted quantum gravity, our position variables are very few
in number, call these θ with the position vector Q being a function of these, i.e.,
Q(θ). Assume that Q has N components while θ has p < N components. Then,
our wave function ψ must be regarded as a function of the θ. The problem
then becomes how to approximate the N momentum components P as linear
combinations of −i∂/∂θ. To do so, we define the matrix

B(θ) = Q′(θ) = ((∂Qi/∂θj)) ∈ RN×p

We write Pθ = −i∂/∂θ so that by the chain rule

∂/∂θi = (∂Qj/∂θi)∂/∂Qj

summation over j being implied. In matrix-vector notation, this is the same as

Pθ = B(θ)TP
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We must now find an N × p matrix C(θ) so that C(θ)B(θ)T ≈ IN , i.e., C must
be chosen so that

∥ CBT − IN ∥2

is a minimum where the matrix norm used is the Frobenius norm.

10 Appendix 2. Some techniques of construct-
ing operators (Heisenberg observables) in quan-
tum mechanics from the Feynman path inte-
gral

Let L(q(t), q′(t), t) be the Lagrangian of a particle moving in one dimension.
The Schrodinger evolution kernel in position space between times 0 and T is
given by

KT (q(T )|q(0)) = C.

∫
exp(i

∫ T

0

L(q(t), q′(t), t)dt)Dq(0, T )

where
Dq(0, T ) = Π0<t<T dq(t)

ie, the path integral excludes q(0) and q(T ). If ψ0(q) is the initial wave function,
then at time T , the wave function is

ψT (q(T )) =

∫
KT (q(T )|q(0))ψ0(q(0))dq(0)

We denote by U(t2|t1) the Schrodinger unitary evolution between times t1 and
t2. Thus,

|ψT >= U(T |0)|ψ0 >

in position space, reads

ψT (q) =< q|ψT >=< q|U(T |0)|ψ0 >=

∫
KT (q|q(0))ψ0(q(0))dq(0)

The momentum conjugate to the canonical position q(t) is

p(t) = ∂L(q(t), q′(t), t)/∂q′(t)

if Ot is a Heisenberg observable at time t, then in most situations, it can be
expressed as a function of (q(t), p(t)), i.e. O(q(t), p(t)) or in view of the above
definition of the momentum, as Ot = O(q(t), q′(t)). The average value of Ot is
given by

< ψ0|Ot|ψ0 >
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or equivalently, in terms of the unitary evolution operator Ut = U(t|0), as

< ψ0|O(q(t), q′(t))|ψ0 >=< ψ0|U∗
t O(q(0), q′(0))Ut|ψ0 >

=< ψt|O(q(0), q′(0))|ψt >

which expresses precisely the duality between Heisenberg’s matrix mechanics
in which the observables evolve but states are fixed and Schrodinger’s wave
mechanics in which observables are fixed in time but states evolve. (Note
that the Heisenberg evolution of observables is given by q(t) = U∗

t q(0)Ut and
q′(t) = U∗

t q
′(0)Ut, so by unitarity of Ut, O(q(t), q′(t)) = U∗

t O(q(0), q′(0))Ut).
Equivalently, in terms of the path integral,

< ψ0|O(q(t), q′(t))|ψ0 >=< ψ0|U∗
t O(q(0), q′(0))Ut|ψ0 >

=< ψ0|U∗
TUTU

∗
t O(q(0), q′(0))Ut|ψ0 >

=< ψT |U(T |t)O(q(0), q′(0))U(t|0)|ψ0 >

=

∫
ψ̄T (q(T ))dq(T )∫

exp(i

∫ T

t

L(q(s), q′(s), s)ds).O(q(t), q′(t))

.exp(i

∫ t

0

L(q(s), q′(s), s)ds)Dq(0, T )ψ0(q(0))dq(0)

=

∫
ψ̄T (q(T )).ψ0(q(0)).O(q(t), q′(t)).exp(i

∫ T

0

L(q(t), q′(t), t)dt)Dq[0, T ]

The action of the operator Ot on the wave function ψ0(q) on the other hand
can be represented by a kernel Ot(q

′′, q′):

Otψ0(q
′′) =

∫
Ot(q

′′, q′)ψ0(q
′)dq′

If ϕ0 is another initial wave function which evolves to ϕT in time T , then the
matrix element of Ot w.r.t the two states ψ0, ϕ0 is along the same lines, given
by

< ϕ0|Ot|ψ0 >

=

∫
ϕ̄T (q(T )).ψ0(q(0))O(q(t), q′(t))exp(iST (q))Dq[0, T ]

This immediately gives us the formula for the kernel of Ot in terms of the path
integral as∫

ϕ0(q
′′)dq′′Ot(q

′′, q(0)) =

∫
ϕT (q(T ))O(q(t), q′(t))exp(iST (q))Dq(0, T ]

=

∫
ϕ0(q

′′)dq′′KT (q(T )|q′′)O(q(t), q′(t))exp(iST (q))Dq(0, T ]
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or equivalently,

Ot(q
′′, q(0)) =

∫
KT (q(T )|q′′)O(q(t), q′(t))exp(iST (q))Dq(0, T ], t ∈ [0, T ]

Note that we have used the notation

ST (q) =

∫ T

0

L(q(t), q′(t), t)dt

Using the evolution composition property

U(t2|t1)U(t1|t0) = U(t2|t0), t2 > t1 > t0

in the kernel form∫
K(T, q(T )|t, q(t))dq(t).K(t, q(t)|0, q(0)) = K(T, q(T )|0, q(0))

as can also be derived readily from the basic property of the path integral, we
can equivalently write

Ot(q
′′, q(0))

=

∫
K(T, q(T )|0, q′′)O(q(t), q′(t))exp(iS0,t−0(q))exp(iSt+0,T (q))Dq(0, T ]

=

∫
K(T, q(T ), |0, q′′)O(q(t), q′(t))K(t−0, q(t−0)|0, q(0))K(T, q(T )|t+0, q(t+0))

Dq[t− 0, t+ 0]dq(T )

=

∫
K(t+0, q(t+0)|0, q′′).O(q(t), q′(t)).K(t− 0, q(t− 0)|0, q(0))Dq[t− 0, t+0]

This is the path integral version of the Heisenberg matrix mechanics formula
for the evolution of observables:

Ot = U(t|0)∗O0U(t|0)

Note that q′(t) is a function of (q(t− 0), q(t), q(t+0)) which is why we required
a partition of the above form. Note that the above path integral formula for the
kernel of a Heisenberg observable, more precisely, can be expressed as

Ot(q
′′, q′)

= limδ→0

∫
K(t+δ, q(t+δ)|0, q′).O(q(t), q′(t)).K(t−δ, q(t−δ)|0, q′)Dq[t−δ, t+δ]
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11 Appendix 3, A remark on how equal-time
commutation relations of a Bosonic quantum
field get affected when it interacts with an-
other quantum field

Let L0(ϕ(x), ∂µϕ(x)) denote the unperturbed Lagrangian density of a quan-
tum field ϕ(x). Taking ϕ(x) as our canonical position field, the corresponding
conjugate momentum field is given by

P0(x) = ∂L0/∂∂0ϕ(x)

The equal-time commutation relations are then given by

[ϕ(t, r), P0(t, r
′)] = iδ3(r − r′)

Now suppose that the field ϕ interacts with another quantum field χ(x) in accor-
dance with the interaction Lagrangian density L1(ϕ(x), χ(x), ∂µϕ(x), ∂µχ(x)).
Here, we are also assuming that the self Lagrangian of χ(x) is also present as
a component in L1. Then, the canonical momentum conjugate to the position
field ϕ(x) is given by

Pϕ(x) = ∂L0/∂∂0ϕ(x) + ∂L1/∂∂0ϕ(x)

= P0(x) + δP (x)

say where P0 is the first term and δP is the second term on the rhs. We thus
obtain the revised equal-time commutation relationship

[ϕ(t, r), Pϕ(t, r
′)] = [ϕ(t, r), P0(t, r

′) + δP (t, r′)] = iδ3(r − r′)

or equivalently,

[ϕ(t, r), P0(t, r
′)] = iδ3(r − r′)− [ϕ(t, r), δP (t, r′)]

In order to evaluate the last commutator, we note that in the expression

δP (t, r) = ∂L1/∂∂0ϕ(t, r)

the rhs is a function of ϕ, χ,∇ϕ,∇χ, ∂0ϕand∂0χ, all evaluated at (t, r). We
also note that the spatial gradients ∇ϕ,∇χ are functions of the position field
at the same time and hence their equal-time commutation relations with the
position fields vanish. In order to evaluate [, ϕ(t, r), δP (t, r′)], we therefore have
to express the canonical velocity fields ∂0ϕ, ∂0χ in terms of the canonical position
and momentum fields, all at the same time and then make use of the canonical
commutation relations between the position and momentum fields at the same
time. We proceed to do this analysis below:
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Remark: A typical example of this situation is present in the main body of
this paper where ϕ(x) is represented by S(t) the scale factor of the universe and
χ(x) is the KG field.

Now we observe that χ(x) is the second position field and as such we have
the canonical equal-time commutation relation

[ϕ(t, r), χ(t, r′)] = 0

and of course, also
[ϕ(t, r), ϕ(t, r′)] = 0

and
[ϕ(t, r), Pχ(t, r)] = 0, [Pϕ(t, r), Pχ(t, r)] = 0,

[χ(t, r), Pχ(t, r
′)] = iδ3(r − r′)

Suppose that we are able to solve the defining relations for Pϕ, Pχ to express
∂0ϕ(t, r), ∂0χ(t, r) in terms of Pϕ(t, r), Pχ(t, r),∇ϕ(t, r),∇χ(t, r). We express
these solutions as

∂0ϕ(t, r) = F1(Pϕ(t, r), Pχ(t, r),∇ϕ(t, r),∇χ(t, r)),

∂0χ(t, r) = F2(Pϕ(t, r), Pχ(t, r),∇ϕ(t, r),∇χ(t, r)),

Then, we easily find using standard properties of the commutator the following
equal-time commutation relations between the canonical position and canonical
velocity fields:

[ϕ(t, r), ∂0ϕ(t, r
′)] = i

∂F1(Pϕ(t, r
′), Pχ(t, r

′),∇ϕ(t, r′),∇χ(t, r′))
∂Pϕ(t, r′)

δ3(r − r′)

and likewise for the field χ. This equation is fundamental because it tells us how
much the interaction of a quantum field with other quantum fields will affect
the equal-time commutation relations between the field and its velocity. We can
go a step further by assuming that the interaction Lagrangian L1 is weak. To
this end, for the sake of illustration, we shall assume that χ is a background
classical field and hence, we can express the perturbed Lagrangian of ϕ as

L0(ϕ(x), ϕ,µ(x)) + L1(x, ϕ(x), ϕ,µ(x))

The explicit dependence on x of the second term here arises owing to the pres-
ence of the classical field χ(x). Assume that in the absence of the perturbing
term L1, the position field is ϕ0(x) and the corresponding momentum field is
P0(x). Thus,

P0(x) = ∂L0(ϕ
0(x), ϕ0(x),µ)/∂ϕ,0(x)

Solving this gives
ϕ0,0(x) = F0(P0(x), ϕ

0(x), ϕ0,r(x))

where by ϕ0,r we mean the components of the spatial gradient of ϕ0 or in other
words, that r varies over the spatial indices 1, 2, 3 in contrast to µ which varies
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over the space-time indices 0, 1, 2, 3. Then the perturbed momentum is given
up to the first order of smallness by

P0 + δP = ∂L0(ϕ, ϕ,µ)/∂ϕ,0

+∂L1(ϕ
0, ϕ0,µ)/∂ϕ,0

solving which, we get

ϕ0,0 + δϕ,0 = ϕ,0 = F0(P0 + δP − F1(ϕ
0, ϕ0,µ), ϕ, ϕ,µ)

= F0(P0 + δP − F1(ϕ
0, ϕ0,µ), ϕ

0 + δϕ, ϕ0,µ + δϕ,µ)

where
F1(ϕ

0, ϕ0,µ) = ∂L1(ϕ
0, ϕ0,µ)/∂ϕ,0

Equivalently, up to first-order terms,

δϕ,0 = (∂F0(P0, ϕ
0, ϕ0,µ)/∂P )(δP − F1(ϕ

0, ϕ0,µ))

+(∂F0(P0, ϕ
0, ϕ0,µ)/∂ϕ)δϕ

+(∂F0(P0, ϕ
0, ϕ0,µ)/∂ϕ,µ))δϕ,µ

Our aim is to calculate the equal-time commutator (x0 = y0)

[ϕ(x), ϕ,0(y)] = [ϕ0(x) + δϕ(x), ϕ0,0(y) + δϕ,0(y)]

= [ϕ0(x), ϕ0,0(y)] + [δϕ(x), ϕ0,0(y)] + [ϕ0(x), δϕ,0(y)]

up to the first order of smallness. This is equivalent to computing the pertur-
bation in the equal-time commutator of the position and velocity fields:

δ[ϕ(x), ϕ,0(y)] =

[ϕ(x), ϕ,0(y)]− [ϕ0(x), ϕ0,0(y)] =

[δϕ(x), ϕ0,0(y)] + [ϕ0(x), δϕ,0(y)]

Note that we already have available with us the corresponding unperturbed
commutator between position and velocity fields at equal times:

[ϕ0(x), ϕ0,0(y] =) = [ϕ0(x), F0(P0(x), ϕ
0(x), ϕ0,r(x))]

= iδ3(x− y)∂F0(P0(y), ϕ
0(y), ϕ0,r(y))/∂P0(y)

= iδ3(x− y)∂F0(P0(x), ϕ
0(x), ϕ0,r(x))/∂P0(x)

Actually, this result should be dependent upon the orders in which the various
operators appear in the function F0. We therefore agree to the convention that
in F0, P0(x) appears to the left of the commuting fields ϕ0, ϕ0,r. If not, we can
always use the commutation relation

[ϕ0(x), P0(y)] = iδ3(x− y)

to arrange these matters after discarding infinite constants, or equivalently,
replacing infinite constants by large numbers. This problem will not be so severe
if we discretize space into pixels of finite size, and replace Dirac δ-functions with
Kronecker delta functions divided by the volume of each spatial pixel.
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12 Conclusions

This paper presents some novel aspects of quantum gravity with applications to
the idea of theoretical variables, i.e., accessible and inaccessible variables pro-
posed in earlier works by Professor Inge Helland. We demonstrate by taking
the example of the gravitational field in a homogeneous and isotropic space-
time interacting with a KG field, how the commutation relations of the field
vary as the scale factor of the universe expands which means from the measure-
ment standpoint in quantum mechanics, that the degree of uncertainty between
two observables or equivalently, the degree of simultaneous non-measurability
of two observables varies as the universe expands. In the beginning, we also
illustrate this phenomenon using the quantum electromagnetic field interacting
with the classical gravitational field. We generalize these results from a spatially
homogeneous KG field to a spatially inhomogeneous KG field and then to the
anticommutator of the Dirac field in curved space-time. We then explain how
to calculate the wave function of one field interacting with another field using
the path integral over the second field. Actually, we should instead be talking
about TPCP maps corresponding to one field when it interacts with the other.
We then explain how to compute the quantum effective action of the scale fac-
tor of the universe when it interacts with the quantum KG field present in the
form of particles distributed within our universe when in addition, the KG field
interacts with a random current field. As an example of such a phenomenon,
we consider the metric of space-time depending on random classical parameters
having small variances, so that the formula for the KG field in a background
curved space-time yields an interaction component between the KG field and
the classical metric fluctuations with the interaction being quadratic in the KG
field and linear in the parameter fluctuations. We then explain how symmetry
breaking can occur in the quantum effective action of a field that interacts with
a classical random current field, when the classical action has a gauge symme-
try. It is a well-known result (Steven Weinberg, The quantum theory of fields,
vol.2)that when the gauge symmetry is linear in the field and the current source
is non-random, then the quantum effective action has the same gauge symmetry
as the classical action but when the gauge symmetry is nonlinear in the field,
the corresponding gauge symmetry of the quantum effective action is not the
same as the classical symmetry, rather, it is given by the quantum expectation
value of the infinitesimal gauge symmetry of the classical action taken when the
current source equals a value at which the quantum field has the same quantum
expectation as the classical field. However, when a current source is random,
event this gauge symmetry gets broken and we derive a formula for the change
in the quantum effective action under the quantum infinitesimal gauge sym-
metry defined by the quantum expectation of the classical gauge symmetry in
the presence of a non-random current field that yields the quantum expectation
value of the field equal to the classical field. This formula for the change in
the quantum effective action, namely, the degree by which gauge symmetry is
broken is expressed in terms of the statistical correlations of the random current
source. In the last section of this paper, we derive some formulas for the change
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in the field propagator of a field in the presence of a random current source and
from this change in the propagator, it is possible to infer how much mass the
field gains by its interaction with both another quantum field as well as with
a classical random current source field. This calculation could provide a clue
to the mystery of how particles acquire masses in our universe by saying that
masses are acquired by particles via symmetry breaking caused by randomly
distributed current fields in the form of cosmic microwave background radiation
and perhaps also other forms of radiation. We then consider the Wheeler-De-
Witt equation for the wave function of the metric field in general relativity and
observe that the associated Hamiltonian is constrained. One usually treats such
constrained problems using Dirac brackets in place of Poisson and Lie brackets.
Here, we suggest an approximate method for quantizing such fields based on
expressing the constrained position fields in terms of a smaller number of ”pa-
rameter fields” which form our revised set of position fields and then construct
the revised momentum fields using a least squares method for approximately
inverting the associated Jacobian matrix of the position field w.r.t the smaller
set of parameter fields.

Acknowledgements: I wish to thank Professor Inge Helland for introduc-
ing me to his theory of accessible and inaccessible variables as a new way of
looking at the foundations of quantum theory.

32


