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Abstract

We propose a formula for evaluating the product of step discontinuous and delta functions.
Using tensor calculus and the above proposed formula, we evaluate of the total curvature of
a polyhedron vertex where curvature is infinite and total curvature is finite and therefore the
Gaussian curvature can be represented by a Dirac delta function.

From the above calculation we find the well known deficiency angle formula which gives the
discrete curvature of a polyhedron vertex and therefore we find an analytic proof of the known
results that the Gauss-Bonnet theorem for smooth surfaces and the Descartes deficiency angle
theorem for polyhedron, are the same thing.

1 Introduction

Products of distributions are quite common in several fields of both mathematics and physics.
Examples arise naturally in quantum field theory, gravitation and in partial differential equations
(e.g shock wave solutions in hydrodynamics) see [1]. An important issue, related to product of
distributions, is the fact that the product, in the general case, is not well defined in D′. This issue
is known as the Schwartz impossibility result (see [1] §1.3). In the Schwartz classical theory, only
the product between a smooth function and a distribution is well defined. Historically, products of
distributions are addressed by means of algebras of generalised functions developed initially by J.
F. Colombeau (see [1] and [2]).

Discrete differential geometry is a rather new field of mathematics which borrows concepts and
ideas from both differential geometry and discrete mathematics. Main applications are concerned
with the discrete version of several classical concepts of differential geometry such as discrete curva-
ture, minimal surfaces, geodesics coordinates, minimal paths, surfaces of constant curvature, curva-
ture line parametrisation and the discrete version of continuous functionals (see [3]). At the moment,
discrete differential geometry uses many tools of discrete mathematics while the classical tools of
differential geometry (e.g. tensors and coordinate free exterior calculus) are difficult to be applied.
This leads to an ambiguous definition of the various operators (see [4]) which are instead well defined
in the continuous counterpart of the theory.

In this paper, we propose a method for evaluating the product of step discontinuous functions and
Dirac delta functions, related each other by an integrable function. Moreover, the method is applied
to a special class of non differentiable manifolds for which, the classical idea of curvature, together
with all tools of differential geometry, needs to be redefined in terms of distribution functions. In
particular, the class of manifolds analysed is the one composed of a collection of several Riemannian
manifolds glued in such a way the final surface is not differentiable on the resulting edges and
vertices. In this case, it is possible to show that vertices and edges carry a concentrated discrete
curvature which gives a contribution to the total curvature of the surface, contribution that has to
be taken into account in order for the Gauss-Bonnet theorem to work.

For vertices, an important result was already known since the time of Descartes which proved,
in the first half of the 17th century, its deficency angle theorem for polyhedra. That idea, using
the modern concept of curvature and applied to the class of surfaces defined above, can be stated
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by saying that the discrete total curvature of a vertex is equal to 2π minus the sum of the angles
between edges. The concept of discrete curvature can be also easily generalised to edges.

These surfaces with discrete curvature an vertices and edges, characterised by a step discontinuous
metric, are typical of problems in many fields, where the usual way to proceed is to brake down the
problem along edges and to define boundary conditions (with conserved quantities) in order to keep
the whole problem definition consistent (see [5]) or to use methods of discrete mathematics to define
the relevant operators (see [4]). The approach proposed in this paper is to use a more direct method
derived from the classical differential geometry.

In Paragraphs 2 and 3, we derive a method for evaluating products of step discontinuous and
Dirac delta functions).

In Paragraphs 4 and 5, we use the product of step discontinuous and Dirac delta functions,
mentioned above, to evaluate the discrete curvature of a polyhedron vertex. In order to do that, we
define the step discontinuous metric of polyhedron vertices and we evaluate their Riemann tensors
by applying the classical rules of the differential geometry but taking the derivatives in D’. By using
this approach, the final result is, as expected, the deficiency angle formula for the total curvature of
a polyhedron vertex.

2 Product of steps and delta functions

Proposition 0. Let u(x) be the Heaviside function, δ(x) its derivative and f(x) a function which
is locally integrable in A ⊇ [0, 1]. Given the above, it follows that f(u(x)) is a step discontinuous
function in 0 and:

f(u(x))δ(x) =

(∫ 1

0

f(x)dx

)
δ(x) (1)

Important Remark: Since product of distribution are not well defined in the Schwartz theory of
distributions, which is the most commonly used, in order for the above proposition to make sense
we need to clarify what we mean with the product f(u(x))δ(x). There are two possible approaches:

Approach 1: Given any smooth function g and the relevant sequence of functions gn = g(nx) with
n ∈ N such that limn→∞ gn(x) = u(x) where u(x) is the Heaviside step function, then clearly we
have limn→∞ g′n = δ(x) and we can define the product f(u(x))δ(x) to be the following limit:

f(u(x))δ(x) = lim
n→∞

f(gn(x))g′n(x) (2)

where all limits above are intended to make sense in the framework of the Schwartz theory of
distributions.

Approach 2: A common way to handle products of distributions is the Colombeau Algebras of
generalised functions. There are several ways to define these algebras, however the proposition
above will work with all of them. Given a Colombeau Algebra of generalised functions G, then
u(x) ∈ G, δ(x) ∈ G and the product f(u(x))δ(x) is a well defined element of that algebra. In this
case the = symbol in Eq. (1) has to be intended as an association relation usually denoted by ≈ in
the Colombeau theory.

In this paper we will follow approach 1 to make the paper accessible also to the readers which
are not familiar with Colombeau Algebras although approach 2 would not be much more difficult.

We give below two non formal proofs of the above proposition to make the reader confident of
the fact that it is true in order to jump immediately to the geometric part of the paper. A more
formal proof of the proposition is given in the Appendix. Although we said that we will follow the
first approach, the first prove below is according to the second approach just because of its extreme
simplicity.

Proof 1. Let F a function such that F ′(x) = f(x). Then we have that F (u(x) it’s a step discontinuous
function which has a jump of F (u(0+))− (u(0−)) = F (1)− F (0) in 0 and therefore its derivative is
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a Dirac delta function of amplitude equal to that jump:

d

dx
F (u(x)) = f(u(x))δ(x) = (F (1)− F (0))δ(x) =

(∫ 1

0

f(x)dx

)
δ(x) (3)

where the derivative above, using the Leibniz Rule, is legal because we are in a Colombeau algebras
(i.e. a derivative algebra).

Note that F (u(x)) and (F (1) − F (0))u(x) − F (0) are the same function in D′ but they are
separate elements of the Colombeau Agebra because they differ by a null function. However, they
can be related by an association relation and this is the reason why we need to substitute the symbol
= with the symbol ≈ in Eq. (1).

Proof 2. Let h(x) be a continuous function which image is contained in A, limx→−∞ h(x) = 0 and
limx→∞ h(x) = 1. It follows that limx→−∞ h′(x) = 0, limx→∞ h′(x) = 0.

Figure 1: Function h(x)

and: ∫ +∞

−∞
f(h(x))h′(x)dx =

∫ +∞

−∞
F ′(h(x))dx

= F (h(∞))− F (h(−∞)) (4)

= F (1)− F (0) =

∫ 1

0

f(x)dx

where F (x) is the primitive of f(x) and the value of the integral (4) is independent from h(x). This
is the key point of the proof!

If h(x) goes continuously to u(x), then we have that the integrand of the right side of the (4) goes
to f(u(x))δ(x) which is a product of a step and a delta function. This product is a delta function
itself since it vanishes everywhere apart from the point x = 0 where it is infinite and its integrand
has finite value. This product converges therefore to a delta function αδ(x), where the amplitude
α of the delta is given by the the right side of the (4) which, regardless the the shape of h, will be
always equal to:

α =

∫ 1

0

f(x)dx (5)

Proposition 1. Let g(x) be a function defined as follows:

g(x) =

{
a for x < 0
b for x > 0

(6)

Also let (b− a)δ(x) be the derivative of g(x). Then:

f(g(x))δ(x) =

(
1

b− a

∫ b

a

f(x)dx

)
δ(x) (7)
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with a, b ∈ R, and f(x) any locally integrable function in A ⊇ [a, b] (or [b, a] if b < a).

Proof. To prove the (7) we can proceed exactly on the same steps of the proof for (1) or we can
notice that any function g(x) can be related to the Heaviside function by means an an auxiliary
function t = χ(x) = (b−a)x+k such that g(x) = χ(u(x)). For example the function sign(x) (which
is −1 for x < 0 and 1 for x > 0) can be written as:

sign(x) = 2u(x)− 1 with χ = 2x− 1 (8)

We have t = (b− a)x+ k, dt = (b− a)dx and by a simple change of variable we have:

f(χ(u(x)))δ(x) =

∫ 1

0

f(χ(x))dx =

(
1

b− a

∫ b

a

f(t)dt

)
δ(x) (9)

which is the (7).

A more formal prove can be found in Appendix A.2. The above result is already present in the
literature (compare with [6]). With respect of the theory developed in [6], in this paper, we have
derived the (7) by means of a completely different approach, we require f to be integrable (in [6]
f is required to be continuous) and we have generalised the equation to the multidimensional case
(see next paragraph).

Note that, even in the case where f(a) = f(b) and therefore there is no step in the discontinuity,
proposition 1 is essential to evaluate the product of the discontinuity with a related delta function.
For example, is easy to show that sign2(x)δ(x) = 1

3δ(x).
We finish this paragraph with a general remark on product of distributions and the way they are

addressed in this paper. Every time we define the product in a point x0, where the distributions
are discontinuous, we always want the discontinuities to have each other structure related by a well
known law (in this case, one to be the derivatives of the other) so that, if the structure of one
distribution in x0, which is unknown to us, changes, the structure of all other distributions in the
same point will change accordingly.

3 The multidimensional case

Proposition 2. Let g1(x) and g2(y) be two functions defined as follows:

g1(x) =

{
a for x < 0
b for x > 0

(10)

g2(y) =

{
c for y < 0
d for y > 0

(11)

with a, b, c, d ∈ R and let f(x, y) be any function locally integrable in A ⊇ [a, b] × [c, d] (if b < a
and/or d < c the definition of A has to be changed accordingly). Also let (b− a)(d− c)δ(x, y) be the
product of the derivatives of g1(x) and g2(y). Then:

f(g1(x), g2(y))δ(x, y) =

(
1

(b− a)(d− c)

∫ d

c

dy

∫ b

a

f(x, y)dx

)
δ(x, y) (12)

This proposition can be proved by following the same steps of Proposition 1 and by using functions
h1 and h2 having the same property of the function h defined in the paragraph above. For the proof
we also need the following identity:∫ +∞

−∞
dy

∫ +∞

−∞
f(h1(x), h2(y))h′1(x)h′2(y)dx

=

∫ +∞

−∞
dy

∂

∂y

∫ +∞

−∞

∂

∂x
F (h1(x), h2(y))dx
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= F (1, 1)− F (0, 1)− F (1, 0) + F (0, 0) (13)

where F (x, y) is a function such that Fxy = Fyx = f(x, y) and the result is independent from the
functions h1 and h2. A more formal prove of Proposition 2 is sketched in Appendix A.3.

Obviously, we can interchange the roles of x and y since we may integrate first with respect of y
and then with respect of x. Note that the discontinuity f(g1(x), g2(y)) addressed by this proposition
is not the most general step discontinuity we may have in two dimensions.

Note that proposition 2 gives a clear path on the possible way to generalise the idea of products
of step discontinuities and delta functions to the case with as many dimensions as we like.

As a final remark, the fact that proposition 1 and 2 are valid for f locally integrable is an
important feature. An example, where we use this feature, is given in paragraph 4 and 5 of this
paper.

4 Metrics for a polyhedron vertex

The product of step and delta functions, developed in paragraphs 2 and 3, may be applied to a
number of fields of both physics and mathematics where the product of step discontinuity and Dirac
delta function arise naturally from the theory. Among all, we have decided to focus our attention
to applications related to differential geometry and, in particular, to the evaluation of the curvature
for those manifolds, described in the introduction, having step discontinuous metric.

As mentioned in the introduction, this kind of variety may have discrete curvature concentrated
on edges and vertices. In both cases, Christoffel symbols, Riemann and Ricci tensors, curvature as
well as a number of different differential operators, may only be expressed by means of product of step
and delta functions. In this case, the relationship between the structures of the step discontinuities
and the delta functions codify the geometrical aspects of the non-differentiable point of the surface
and proposition 1 (for edges) and proposition 2 (for vertices) turn up to be very useful in finding an
expression for the differential quantity of interest

As an example, in this paragraph we will show a convenient and standard way to define a step
discontinuous metric for vertices of polyhedra with 3 or 4 concurrent edges, which are very common
in many applications, and in paragraph 5 we will show how to use these metrics to evaluate the
curvature of that polyhedron in the vertices. Even thought this paragraph is focused on curvatures,
the same method can be applied to evaluate any kind of differential parameters and operators (e.g.
Laplace-Beltrami operators).

Before we proceed, we need to introduce a definition. For the purpose of this paper, we will call
a 2d-step function any function defined as follows:

s(x1, x2) =


r1 for x1 > 0, x2 > 0
r2 for x1 < 0, x2 > 0
r3 for x1 < 0, x2 < 0
r4 for x1 > 0, x2 < 0

(14)

where ri ∈ R and s(x1, x2) is not defined on the axis (x1, x2). Any function of the kind (14) can
always be expressed in the form:

s(x1, x2) = s0 + s1(x1)s2(x2) (15)

where s0 ∈ R and s1, s2 are defined as follows:

s1(x1) =

{
a for x1 < 0
b for x1 > 0

(16)

s2(x2) =

{
c for x2 < 0
d for x2 > 0

(17)

and where there is always one degree of freedom in the parameters (s0, a, b, c, d). Conversely any
function of the form (15) is always a 2d-step function.

Now, let V be a vertex of a polyhedron whit 4 edges and angles between edges α, β, γ and θ. Let
also S be the surface composed of the vertex, the 4 edges and the relevant 4 faces. We can always
open S on a (x1, x2) plane by stretching each face by a different amount so that each of the 4 edges
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lies on one of the semi-axes of the plane. By doing so, we basically map each face of S to a specific
sector of the plane (x1, x2). It is easy to see that the metric of S is:

gij =

(
1 s(x1, x2)

s(x1, x2) 1

)
(18)

where s(x1, x2) is a 2d-step function for which the amplitude, in each sector of the (x1, x2) plane, is
a function of one of the angles α, β, γ, θ and the parameters (s0, a, b, c, d) are defined as follows:

s(x1, x2) =


cos(α) = s0 + bd for x1 > 0, x2 > 0
−cos(β) = s0 + ad for x1 < 0, x2 > 0
cos(γ) = s0 + ac for x1 < 0, x2 < 0
−cos(θ) = s0 + bc for x1 > 0, x2 < 0

(19)

The (19) define at the same time s(x1, x2) and the equations to determine its parameters. The minus
signs in the (19) is to take into account that we are in a sector with one of the two dxi negative and
therefore the angle to consider in the metrics is the one between dx1 and dx2 positive which is equal
to π minus the angle of the relevant polyhedron face for that sector. Since cos(π − x) = −cos(x) a
minus sign is needed.

Figure 2: Step discontinuous metric of a polyhedron vertex

As far as vertices with 3 concurrent edges are concerned, we can apply the same procedure by
adding a 4th face with angle between edges equal to ε and then take the limit for ε → 0. This is
equivalent to cut the surface along one of the edges, open the surface on the plane so that each face
corresponds to a sector of the axis (x1, x2) while the 4th sector remains uncovered and, finally, assign
a null metric to that sector (i.e. s(x1, x2) = 1). This obviously will lead to an infinite inverse metric
in the sector. This is not a problem since we are mainly interested in evaluating the curvature in the
vertex (i.e. the discontinuity) and not the curvature on faces and edges (which we know to vanish).

An infinite inverse metric will lead to a function f(x, y), of proposition 2 above, which is contin-
uous in A =]a, b[×]c, d[ and that goes to infinity in one of the point of the border of A (the corner
related to the null metric). Since proposition 2 works also for this kind of functions, as long as the
function is integrable, this is not really an issue.

5 Vertex curvature and deficency angle formula

Given the metric of a vertex defined as for the previous paragraph, we will see now how to evaluate
its curvature by means of proposition 2. To do that, we will evaluate all the classical differential
parameters, and eventually the curvature, as distributions. First of all we evaluate the gi,j . From
the (18) we have:

gij =
1

1− s2

(
1 −s
−s 1

)
(20)

The derivatives of the metric are:

∆1 =
∂g12
∂x1

=
∂g21
∂x1

= (b− a)δ(x1)s2(x2) (21)
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∆2 =
∂g12
∂x2

=
∂g21
∂x2

= (d− c)s1(x1)δ(x2) (22)

all other derivatives vanish. We proceed by evaluating the Christoffel symbol of the first kind. We
have (see Eq. (58) in Appendix A.4):

Γ112 =
1

2
(−0 + ∆1 + ∆1) = (b− a)δ(x1)s2(x2) (23)

Γ221 =
1

2
(−0 + ∆2 + ∆2) = (d− c)s1(x1)δ(x2) (24)

all other coefficients of the Christoffel symbol of the first kind vanish. For our purpose we need to
evaluate only one of the coefficients of the Christoffel symbol of the second kind (see Eq. (59) in
Appendix A.4):

Γ2
22 = g21Γ221 + g22Γ222 = − (d− c)s

1− s2
s1(x1)δ(x2) (25)

We have now all the elements we need to evaluate the Riemann tensor (see Eq. (60) in Appendix
A.4):

R1212 =
(b− a)(d− c)

1− s2
(1− s2 + s s1s2)δ(x1, x2) (26)

for surfaces and given the Riemann tensor, a classical formula for evaluating the curvature is the
following (see Eq. (61) in Appendix A.4):

k =
R1212

g11g22 − g12g21
=
R1212

1− s2
(27)

as expected the curvature is a Dirac delta function in (0,0). This means that the vertex carries
a discrete curvature while the curvature on edges and faces vanishes. The total curvature can be
evaluated by integrating the curvature on S:

kT =

∫∫
S

k
√

1− s2dx1dx2 =

∫∫
S

R1212

√
1− s2

1− s2
dx1dx2 (28)

= (b− a)(d− c)
∫∫
S

(1− s2 + s s1s2)(1− s2)−
3
2 δ(x1, x2)dx1dx2

since the integrand is impulsive, it is clear that the total curvature is equal to the amplitude of the
impulse, which can be evaluated using proposition 2. We have:

s1(x1) = x; s2(x2) = y; s(x1, x2) = s0 + xy; (29)

by using the (29) in the (12) we get the final expression for the total curvature:

kT =

∫ b

a

dy

∫ d

c

(1− s20 − s0xy)
[
1− s20 − 2s0xy − x2y2

]− 3
2 dx (30)

integrating, first with respect of x and then with respect of y, we obtain the primitive F (x, y):

F (x, y) = arctan

(
s0 + xy√

1− (s0 + xy)2

)
(31)

Let us see how to use the (31) by checking, for example, the value of F (x, y) in (b, d). Given the
(19) we have:

F (b, d) = arctan

(
s0 + bd√

1− (s0 + bd)2

)
= arctan

(cosα

sinα

)
=
π

2
− α (32)

where we have used the plus sign of the square root. The minus sign corresponds to the case where
we swap all the signs in the (19). This is equivalent to choosing a different mapping, between faces
and sectors, of the surface on (x1, x2). From the (30) we evaluate our final results:

kT = F (b, d)− F (a, d)− F (b, c) + F (a, c) = 2π − α− β − γ − θ (33)
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which is, as expected, the deficiency angle formula. It is remarkable that, by means of proposition
2, we have derived the deficiency angle formula, in a non-differentiable point, by using the tools of
differential geometry.

Taking the limit for one of the angles going to zero, we get the example, mentioned at the end
of the previous paragraph, of a null metric and an infinite inverse metric in a sector. As anticipated
above, in this case the function f(x, y) of proposition 2 goes to infinity (compare with the integrand
of (30) above) in a point of the integration set. However, the function is still integrable as clearly
shown by the (31) where the primitive is finite in the same point.

Appendix

A.1 Relationship between the (7) and Colombeau theory

We show now the relationship between the (7) and the Colombeau theory. What follows cannot be
taken as a formal proof of the (7) for two main reasons:

• The relation (34) below is not true with equality in the Colombeau algebra, but only in the
sense of association.

• It is not possible to find a well defined notion of convergence for the series (35) below.

For simplicity, we will use g(x) = u(x), the Heaviside function, and f ∈ C∞.

Colombeau coefficients are defined as follows (see [1] §3.3):

un(x)δ(x) =
1

n+ 1
δ(x) (34)

we have:

f(u(x))δ(x) =

∞∑
n=0

f (n)(0)

n!
un(x)δ(x) =

∞∑
n=0

f (n)(0)

n!(n+ 1)
δ(x) (35)

where we have used the (34). With the substitution k = n+ 1 we have:

f(u(x))δ(x) =

∞∑
k=1

f (k−1)(0)

k!
δ(x) =

∞∑
k=1

F (k)(0)

k!
δ(x) (36)

where F is the primitive of f . We have eventually:

f(u(x))δ(x) =

[
−F (0) +

∞∑
k=0

F (k)(0)

k!
(1)k

]
δ(x) = [F (1)− F (0)]δ(x) (37)

A.2 Formal prove of Proposition 1

Proposition 1. Let g(x) be a function defined as follows:

g(x) =

{
a for x < 0
b for x > 0

(38)

Also let (b− a)δ(x) be the derivative of g(x). Then:

f(g(x))δ(x) =

(
1

b− a

∫ b

a

f(x)dx

)
δ(x) (39)

with a, b ∈ R, and f(x) any locally integrable function in A ⊇ [a, b] (or [b, a] if b < a).

Proof. The proof is given for a < b only, changes to the proof, for the case b < a, are trivial.
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We start choosing any sequence gn such that:

1) gn(x) ∈ C1 ∀n ∈ N
2) limn→∞ gn(x) = g(x)
3) limx→−∞ gn(x) = a ∀n ∈ N
4) limx→+∞ gn(x) = b ∀n ∈ N
5) gn(x) is monotonic ∀n ∈ N

(40)

Moreover we want also each gn(x) such that, if gn(x) is constant in any ]α, β[ and equal to k, then
f(x) is continuous in k.

Given the above sequence of functions, the product in Eq. (39) can to be intended as:

f(g(x))δ(x) =
1

b− a
lim
n→∞

f(gn(x))g′n(x) (41)

We note immediately that, given the (40), the gn(x) are bounded and converge to g(x). For the
dominated convergence theorem, gn(x) converges in L1

loc and therefore in D′. Also g′n converges to
(b− a)δ(x) in D′.

First, we prove two useful equations. For any f ∈ L1
loc(A), for any gn(x) having the characteristics

(40) and given any α, β ∈ R we have:∫ β

α

f(gn(x))g′n(x)dx =

∫ β

α

d

dx
F (gn(x))dx = F (gn(β))− F (gn(α)) (42)

where F (x) is the primitive of f(x).
Now, limα→−∞ gn(α) = a and limβ→+∞ gn(β) = b and therefore we have:∫ +∞

−∞
f(gn(x))g′n(x)dx =

∫ b

a

f(x)dx (43)

The (43) does not depend from the function gn(x) since it depends only on f(x), a and b.
Also, let [α, β] be any interval. Given the (40), g′n ≥ 0. We write

f(x) = f+(x)− f−(x) as the sum of its positive and negative part. Note that f+(x) and f−(x) are
locally integrable on A. We have:∫ β

α

|f(gn(x))g′n(x)|dx =

∫ β

α

f+(gn(x))g′n(x)dx+

∫ β

α

f−(gn(x))g′n(x)dx

=

∫ gn(β)

gn(α)

f+(x)dx+

∫ gn(β)

gn(α)

f−(x)dx

=

∫ gn(β)

gn(α)

|f(x)|dx

≤
∫ b

a

|f(x)|dx = M > 0 (44)

Now we can prove the proposition. Let φ(x) be a test function, taking into account the (43) it
is possible to write: ∣∣∣∣∣

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx−

(∫ b

a

f(x)dx

)
φ(0)

∣∣∣∣∣
=

∣∣∣∣∫ +∞

−∞
f(gn(x))g′n(x)[φ(x)− φ(0)]dx

∣∣∣∣
≤ Im1 + Im2 + Im3 (45)

where m is any positive integer and:

Im1 =

∫ −1/m
−∞

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (46)
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Im2 =

∫ +1/m

−1/m
|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (47)

Im3 =

∫ +∞

+1/m

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (48)

Since φ is a test function, it is continuous at x = 0. Given any ε > 0, it is possible to find δ > 0 such
that, whenever |x| < δ, |φ(x)− φ(0)| < ε. So, given any m > 1

δ , if we choose any n > m, we have:

Im2 =

∫ +1/m

−1/m
|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx

≤ ε

∫ +1/m

−1/m
|f(gn(x))g′n(x)|dx ≤Mε (49)

Where we have used the (44).
Now, φ is a continuous function with compact support S and therefore it is bounded. We can

find L > 0 such that |φ(x)− φ(0)| < L. We have:

Im1 =

∫ −1/m
−∞

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx

≤
∫
S

Ldx

∫ −1/m
−∞

|f(gn(x))g′n(x)|dx

= N

∫ gn(−1/m)

a

|f(x)|dx (50)

where we have used the (44) and N > 0 is the integral of the constant  L on S. Since gn(−1/m)
converge to a and given the ε above, it is possible to find k such that, whenever n > k then Im1 < Nε.
Applying the same argument to Im3 we find that, it is also possible to find k such that, whenever
n > k then Im3 < Nε.

To conclude, given the (45) and given any ε > 0, it is possible to find first m and then k such
that, whenever we choose n > k > m we have:∣∣∣∣∣

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx−

(∫ b

a

f(x)dx

)
φ(0)

∣∣∣∣∣ ≤ (M + 2N)ε (51)

This proves that:

lim
n→∞

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx =

(∫ b

a

f(x)dx

)
φ(0) (52)

Now, if we call (b− a)f(g(x))δ(x) the limit of the sequence of distributions f(gn(x))g′n(x), the (52)
proves the following:

• the limit exists

• the limit is a Dirac delta function

• the amplitude of the delta function is given by the (39)

We also note that the constrains (40) used to prove proposition 1 are too stringent and that, in
practical calculations, it is possible to relax them (see appendix A.3).

A.3 Formal prove of Proposition 2

Proposition 2. Let g1(x) and g2(y) be two functions defined as follows:

g1(x) =

{
a for x < 0
b for x > 0

(53)
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g2(y) =

{
c for y < 0
d for y > 0

(54)

with a, b, c, d ∈ R and let f(x, y) be any function locally integrable in A ⊇ [a, b] × [c, d] (if b < a
and/or d < c the definition of A has to be changed accordingly). Also let (b− a)(d− c)δ(x, y) be the
product of the derivatives of g1(x) and g2(y). Then:

f(g1(x), g2(y))δ(x, y) =

(
1

(b− a)(d− c)

∫ d

c

dy

∫ b

a

f(x, y)dx

)
δ(x, y) (55)

As for proposition 1, in order to prove the above proposition, we first need to prove some useful
equations. As an example, we will prove the equivalent of the (43). Let g1n(x), g2n(y) be any two
function having characteristics (40) and let F (x, y) be a function such that Fxy = Fyx = f(x, y).
We have: ∫ +∞

−∞
dy

∫ +∞

−∞
f(g1n(x), g2n(y))g′1n(x)g′2n(y)dx

=

∫ +∞

−∞
dy

∂

∂y

∫ +∞

−∞

∂

∂x
F (g1n(x), g2n(y))dx

= F (b, d)− F (a, d)− F (b, c) + F (a, c) (56)

where, to prove the (56), we have taken the symbol ∂
∂y inside the integral (for the linearity of

integrals) and applied the definition of F (x, y). The (56) is independent from g1n, g2n and depends
only on f(x, y), a, b, c, d. Proposition 2 will not be proven in this paper. However, it is possible to
prove it by following similar steps to the ones used for proving proposition 1.

A.4 Tensor Formulas

The tensor calculus formulas used in this article, for evaluating Christoffel Symbols and Riemann
Tensors, are not the most standard ones but they are consistent and the most convenient for the
calculation in place. A reference to those formulas can be found in ([7]).

Given the surface:
S =

(
x1(x1, x2), x2(x1, x2), x3(x1, x2)

)
(57)

having metric tensor gij(x
1, x2), we have:

for Christoffel Symbols (see [7] §6.1 Eq. 6.1a pag. 68):

Γijk =
1

2

(
−∂gij
∂xk

+
∂gjk
∂xi

+
∂gki
∂xj

)
(58)

and (see [7] §6.3 Eq. 6.4 pag. 70):
Γijk = girΓjkr (59)

for the Riemann Tensor (see [7] §8.2 Eq. 8.4 pag. 101):

Rijkl =
∂Γjli
∂xk

− ∂Γjki
∂xl

+ ΓilrΓ
r
jk − ΓikrΓ

r
jl (60)

For a two dimensional manifold the curvature k is equal to (see [7] §8.3 Eq. 8.11 pag. 105):

k =
R1212

g
(61)

where g = det(gij).
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A.5 Discrete Curvature on a Line

We will give below an example where we evaluate the discrete curvature carried by a line. For
simplicity we have chosen an example with a continuous metric which is not differentiable on a
line. In this case, product of step and delta function are not present in the various differential
parameters. However, the same approach can be used for the more general case where the metric is
step discontinuous on a line and therefore the use of proposition 1 is required. Let us consider the
following surface:

We want to evaluate the discrete curvature carried by C. We evaluate the discrete curvature of
the vertex V . To do that, we cut the cone on one side and we unfold it on a plane so that we can
use the deficiency angle formula. We find out easily that the total discrete curvature of the vertex
V is:

kT (V ) = 2π

(
a− r
a

)
(62)

We know that the curve C carries a negative discrete curvature, per unit length that compensates
exactly the curvature of the vertex:

kT (C) = −kT (V ) = 2πr k(C) (63)

where kT (C) is the total curvature of C and k(C) is the curvature for unit length on C (constant).
We have:

k(C) = −
(
a− r
ar

)
(64)

which completes our calculation.

Figure 3: Cone on a Plane

Now, we want to find the same result by using the methods of differential geometry. We define
a polar coordinate system (ρ, θ) on the surface of fig. 3 with the centre on the vertex V , where the
coordinate ρ > 0 is the distance of the point (ρ, θ) from V evaluated on a minimum distance path
(i.e. a ray) and θ is a pseudo-angle covering the whole surface for θ ∈ [0, 2π]. In this coordinate
system, the metric of the surface is:

ds2 =

{
dρ2 +

(
r
aρ
)2
dθ2 for 0 < ρ < a

dρ2 + (ρ− a+ r)
2
dθ2 for ρ > a

(65)

which is a continuous but not differentiable function and it is not defined for ρ = 0.
We define ν(x) to be a continuous function such that ν′(x) = u(x), the Heaviside function, and

ν(0) = 0. By using the following notation:

x1 = ρ
x2 = θ
α0 = r

a
α1 = 1− r

a

m(x1) =
[
α0x

1 + α1ν(x1 − a)
]2

(66)
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we have:

gij =

(
1 0
0 m(x1)

)
(67)

gij =

(
1 0
0 1

m(x1)

)
(68)

From now on, we proceed as we did in paragraph 5:

∆ =
∂g22
∂x1

= 2
[
α0x

1 + α1ν(x1 − a)
] [
α0 + α1u(x1 − a)

]
(69)

Γ221 = −1

2
∆ (70)

Γ212 = Γ122 =
1

2
∆ (71)

all other coefficients of the Christoffel symbol of the first kind vanish.

Γ2
21 = g21Γ211 + g22Γ212 =

∆

2m
(72)

and finally, if we do not write the terms that vanish, we have:

R1212 =
∂Γ221

∂x1
+ Γ122Γ2

21 (73)

= −1

2

∂∆

∂x1
+

∆2

4m
(74)

= −α0α1x
1δ(x1 − a)− (α1)2ν(x1 − a)δ(x1 − a) (75)

The curvature of the surface is:

k =
R1212

g11g22 − g12g21
=
R1212

m
(76)

Let ε be any number such that 0 < ε < a, the total curvature of the surface can be evaluated as:

kT =

∫∫
S

k
√
mdx1dx2 (77)

=

∫ ∞
ε

∫ 2π

0

R1212m
− 1

2 dx1dx2 (78)

= −2πα1

∫ ∞
ε

δ(x1 − a)dx1 (79)

= −2π

(
a− r
a

)
= kT (C) (80)

as expected. This example is quite trivial. However, the same method can be extended to generic
curves where a direct geometrical approach, as the one used at the beginning of this paragraph,
cannot be used.

A.6 Examples of Products of Steps and Delta Functions

Example 1:

∫ +∞

−∞

d

dx
u2(x)dx =

[
u2(x)

]+∞
−∞ = 1 = 2

∫ +∞

−∞
u(x)δ(x)dx (81)

from which we have:

u(x)δ(x) =
1

2
δ(x) (82)
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in agreement with proposition 1.

Example 2:

Given

δ(x) =
1

2

d

dx
sign(x) (83)

and

1(x) = −1 +
1

1− 1
2sign

2(x)
(84)

by using proposition 1 we have:

1(x)δ(x) =
1

2

[∫ +1

−1

x2

2− x2
dx

]
δ(x) =

[√
2

2
ln

(
2 +
√

2

2−
√

2

)
− 1

]
δ(x) (85)

Note that 1(x) in D′ is the constant function 1 and therefore it has not even a step discontinuity.
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