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Abstract

A characteristic feature of real-world applications is the occurrence of dataset class imbalance in the output class

distribution common in practical business applications such as spam filtering and fraud detection. Predictive modeling

contributions from the minority or underrepresented class are overlooked by most learning algorithms. Addressing this

challenge includes applying re-sampling techniques that eliminate class distribution imbalance for a more balanced

output class distribution in the training examples. Random sampling techniques such as random over-sampling of the

minority class duplicates the minority class examples to achieve a more balanced distribution or random under-

sampling to delete training examples in the majority class for a balanced distribution to eliminate class imbalance in the

dataset and finally Synthetic minority over-sampling technique which is designed to generate synthetic examples for the

minority class to address class imbalance. The usefulness of these random sampling techniques has received attention

in several research studies, particularly for binary classifications in two-class or multi-classification problems. This

application to many is aimed at achieving equal class distribution meant to determine optimal model performance. This

comparative assessment of random sampling optimization show significant difference in model performance on applied

random sampling technique use and also confirms that even with poor performance in false alarms, high prediction

accuracy score and roc_auc score can be achieved.
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1. Introduction

Common among real-world applications is the occurrence of unequal class distribution in target labels. In supervised

learning, variables are labeled for identification. Output class may consist of two or more classes for predictive

classification modeling. Predictive modeling techniques that are capable of correctly identifying predominantly higher

number of target classes define its performance potency. However, the challenge of predictive modeling techniques

making biased predictions with skewed class distribution persists and continues to attract research interest. This

phenomenon leads to a situation in which minority class contribution, effect and impact are ignored by learning algorithms.

Meanwhile, in many real-world applications such as healthcare systems, fraud detections etc., minority class contributions

are particularly of paramount interest. For example, the detection of fraudulent transactions in a banking system, spam

email detection system etc., may reveal an exceedingly higher number of normal transactions than fraudulent ones, but

for which the detection of fraudulent transactions is of utmost priority. Similarly, the prediction of infectious diseases(Yang

et al., 2020)(Santangelo et al., 2023)(Ray & Reich, 2018) among patients could also show that the majority of patients

who may not have the disease but knowledge of patient minority with the disease is of paramount importance to contain

any potential spread or large scale outbreak and any devastating impact on public health. Additionally, risk assessment of

default by patients to disease treatment(Gichuhi et al., 2023)(Korneev et al., 2022) and other risk assessments for default

may also encounter class distribution imbalance. Addressing dataset class imbalance to improve prediction accuracy

scores continues to gain attention in many related research works. Solutions to dataset imbalance range from using

sampling techniques that address class imbalance through over-sampling the minority class or under-sampling the

majority class to other optimization techniques, such as applying class weight optimization to penalize the minority class

for each prediction error made or using synthetic minority oversampling technique designed to generate synthetic

samples for the minority class. A key concern for addressing class imbalance is why and for what purpose and to what

benefit and for what impact? This legitimate concern arises because a characteristic feature of real-world applications is

the phenomenon of dataset class imbalance. Assessing potential impact on model performance to determine benefits of

applied techniques that includes pre-sampling performance evaluation creates an in-depth understanding of its use.

1.1. Research Objectives

The potential benefits of applied random sampling techniques for predictive modeling is to determine model performance

benefits and to assess its impact through a rigorous evaluation process that includes model generalization concepts on

such datasets with minority class involvement common in practical business applications. Research focus includes

extensive impact assessment to determine potential benefits of other evaluation metrics such as model prediction

accuracy score, balanced accuracy score, false alarms (true negative rates-TNR, false negative rates-FNR, true positive

rates-TPR, false positive rates-FPR), model generalization that explains model behavior on acceptable number of training

examples with five most commonly used predictive models. This key challenge has received little attention in related

research works concerning practical business applications such as healthcare systems where the effect of incorrect

prediction on disease treatment management process could result in significant damage to patient-healthcare personnel

relationship including unfavorable treatment outcome. Impact of patient age on treatment is examined to estimate whether
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particular age group is associated with treatment default for target intervention.

1.2. Research significance

Predictive modeling offers great insight into patterns of change necessary for decision making. Its application in healthcare

and other practical business applications offer greater opportunity for better insight that facilitates faster, safer, accurate

and timely decision making in critical situations. Applied model learning curves in settings where repetitive task is

performed as in healthcare has the potential to generate insight into how limited resources could be applied more

efficiently to improve job performance. Comparative assessment of model performance using under-sampling, over-

sampling and synthetic minority over-sampling techniques creates a better understanding of impact assessment to

determine best model evaluation approach. By using five distinct classification algorithms, this study offers detailed, well

rounded comprehensive assessment of model performance in this scenario providing insight into how feature evaluation

of model performance in such practical business applications with dataset class imbalance could be enhanced.

Additionally, the use of machine learning curves could also help in the selection of future model techniques for similar

tasks.

1.3. Related Works

In this section, a preview of related research works showcasing random sampling technique use is examined for

emphasis. Using transaction details of customers, the application of random sampling techniques showed high over-

sampling technique performance over under-sampling (Mohammed et al., 2020). Applied over-sampling techniques on

large datasets to address challenges associated with class imbalance drew conclusions about its efficiency against other

sampling techniques (Rodríguez-Torres et al., 2022). Similarly, a comparative study of several re-sampling techniques to

determine efficiency also concluded that over-sampling is an efficient sampling approach (Overview, 2014). Improving

prediction accuracy in instance method selection (Hernandez et al., 2013) with over-sampling and under-sampling

techniques showed accuracy improvements in minority class prediction. Understanding superior differences in

performance of over and under-sampling techniques with an exploration of dataset inner structure (García et al., 2020) to

explain the superior performance of over-sampling technique. A new approach (Lee & Kim, 2021) for determining the

required over-sample size, which is less than the required sample for achieving class balance, has been evaluated to

conclude that this approach improves classification performance when used with over-sampling. Comparative analysis of

over-sampling and under-sampling influence on physical activities with ensemble machine learning techniques determines

that under-sampling with refined features addresses class imbalance more effectively(Jeong et al., 2022). Another

approach to effectively address class imbalance includes the use of synthetic minority over-sampling (Sowjanya &

Mrudula, 2023).A combination of three sampling techniques – over-sampling, under-sampling and combi-sampling (Saul &

Rostami, 2022) – on healthcare datasets with artificial neural networks showed varying performance for different re-

sampling techniques, including varying performance on different datasets by ANN. The consequence of misclassification

of abnormal example as normal is considered higher than the reverse as indicated by (Chawla et al., 2002) which

concludes that the combination of over-sampling and under-sampling improves receiver operating characteristic curve
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score. The occurrence of dataset class imbalance is seen by machine learning models as deterrence to achieving

satisfactory performance results. Effectiveness of applying these methods based on Deep neural and Convolutional

neural networks as investigated (Joloudari et al., 2023) showed that using mixed Synthetic Minority Oversampling

Technique (SMOTE) outperforms different methodologies to achieve 99.08% accuracy score. The application of SMOTE

in sentiment analysis of hotel reservation service using classifiers such as Naïve Bayes (NB), Logistic Regression (LR),

and Support Vector Machine (SVM) classification algorithms concluded that the use of SMOTE was effective in improving

classification performance when dataset was imbalanced (Satriaji & Kusumaningrum, 2018). The performance of SMOTE-

CD in compositional data operations using tested regressors such as Gradient Boosting tree, Neural Networks and

Dirichlet regressor on real datasets assess predictive performance in areas such as prediction accuracy, cross-entropy,

F1- score, R2 score and Root Mean Squared Error demonstrated result improvements for all metrics. However, the impact

of applied over-sampling on model performance varied depending on model and the data used. Oversampling in some

instances led to a decrease in performance for the majority class. This is in sharp contrast to best performance achieved

when real data is used (Nguyen et al., 2023). Oversampling the minority class examples near the borderline with two

SMOTE methods (borderline SMOTE1 and borderline SMOTE2) resulted in improvements in true positive values and F-

values better than SMOTE and over-sampling (de Carvalho & Prati, 2020). Applied extreme gradient boosting technique

with SMOTE on bond issuers to determine bond defaulters showed its effectiveness in applied imbalanced dataset

situations (Zhang & Chen, 2021).

2. Methods

To address the challenge of minority class use in predictive modeling, we adopt two approaches. One is to perform

predictive modeling using healthcare context-based datasets with extreme class imbalance without sampling techniques

to evaluate model performance on prediction accuracy score, model generalization and model behavior regarding training

examples with five (5) classification models. The second approach is to use the same dataset with class imbalance with

two sampling techniques (over-sampling the minority class and under-sampling the majority class for comparative

evaluation analysis to determine the impact of addressing dataset class imbalance. For this purpose, we adopt a real-

world electronic healthcare dataset from a district hospital in Ghana noted for its long-standing involvement in managing

chronic diseases. Identifiable features, such as patient names, were blocked from the records for privacy protection.

Records obtained showed biological data, clinical notes, patient visits and performance metrics for prescriber evaluation.

Records with no relevancy to this research were excluded in the collection process, and some of these were body

temperature readings, clinical notes on eye treatments, dental notes, obstetric notes etc. Gold standards used for feature

labeling include patient attendance records and clinical note descriptions without identifiable patient features to address

patient privacy concerns. We applied five classification-based machine learning techniques: Gradient boosting, extreme

gradient boosting, Logistic regression, Support vector machines and Random forest classifiers on three random sampling

techniques for all predictive modeling.

Ethical approval and Consent: Real-world electronic healthcare record dataset obtained with approval notice referenced
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DCS/S.1/VOL.1 on 30th march, 2022 from the management of Kwahu Government hospital in Ghana.

2.1. Exploratory dataset analysis

Dataset exploration for age, gender and target class patterns is displayed in Fig 1 which has three graphs. First graph is a

display of age distribution from the sampled dataset and can be described as normal or with a Gaussian distribution. The

second graph is the sampled gender distribution which shows the distribution of female and male patients. This graph

shows a higher number of female patients than males in the sampled dataset. The last graph (third graph) shows the

distribution of the target or output class (patients described as defaulters of treatment default and those who are

described as non-defaulters).The distribution of female numbers in the sampled population was 4,312, constituting

80.86%, and 1,021 males made up 19.14% of the entire sampled population, bringing the total sample population to

5,333. Fig 1 third graph is the presentation of target class distribution. Output class distribution shown in Fig 1 (third graph

from left) indicates unequal class distribution between defaulting and non-defaulting patients which is displayed in Fig 2

visualization. Probability of patient default by age is also presented in Fig 30.

2.2. Data preprocessing stages

Predictive data modeling involves data preprocessing steps as shown in Fig 3. Some of these steps include problem

definition necessary to identify data collection types. Preprocessing involves other sub-processes such as removal of

redundant and duplicate data, addressing dataset variable outliers, addressing null values (removal of null value cells),

data scaling and formatting, addressing dataset dimensionality issues (dimensionality reduction or addition), label

encoding etc. These are important preprocessing steps necessary to ensure smooth predictive modeling.

2.3. Supervised learning types

Fig 4 shows supervised model selection types for each problem definition with learning application choices for each

problem domain. Supervised learning has two main branches of use, classification and regression. Each selection choice

has predefined model selections applicable in each problem domain.

2.4. Simplified model building process

Simplified model process display in Fig 5 shows how data modeling occurs. It has an input process in the form of data

given to a machine learning (supervised) algorithm with computational functions to train for predictions as an output label.

One of the key advantages of Supervised modeling use is the prediction of an output based on prior experience for which

knowledge of dataset class use is required.

3. Results

The presentation of results is in two parts. The first part deals with a display of results without random sampling
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techniques and covers performance metrics such as receiver operating characteristics and learning curves with cross-

validation, true positive rates, true negative rates, false positives, false negatives, positive predicted values, negative

predicted values and the second part deals with the display of results obtained from applied random sampling techniques.

3.1. Evaluation metrics

Results obtained from pre-sampling evaluation and those obtained after performing over-sampling, under-sampling and

applied synthetic minority oversampling technique is presented in tables 3.0, 3.1, 3.2 and 3.3. Evaluated metrics for each

model choice include base prediction accuracy score, percentage share of positive results truly positive (TPR), true

negative rates (TNR), positive predicted values (PPV), negative predicted values (NPV), false alarm metrics (False

positive rates- FPR and False negative rates- FNR), average prediction accuracy score (balanced accuracy) and area

under the receiver operating characteristic curve score (auc_roc score). Graphical visualization of roc_auc score values

obtained by each modeling technique using pre-sampling or base model is displayed in Fig 6, applied over-sampling

results in Fig 7, under-sampling in Fig 8 and applied SMOTE over-sampling in Fig 24. Additionally, learning curves useful

to determine model performance behavior against training examples over a period for each random technique applied is

recorded as follows; over-sampling, under-sampling, pre-sampling and SMOTE oversampling (extreme gradientboosting

classifier Fig 9, Fig 14, Fig 19 and Fig 25, logistic regression Fig 10, Fig 15, Fig 20 and Fig 28, random forest Fig 11, Fig

16, Fig 21 and Fig 27, gradientboosting classifier Fig 12, Fig 17, Fig 22 and Fig 29 and support vector machine Fig 13,

Fig 18, Fig 23 and Fig 26) respectively. Each of these graphs show model performance prediction accuracy behavior on

training example over a period. It also represents how well these predictive models would perform on unseen datasets

and the extent to which these models can converge and be generalized as validation criteria to determine performance

behavior over training examples.

Model FNR(%) TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)
AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 0.13 9.09 90.91 98.75 50 99.87 97.00 99.00 55.00

XGBC 0.51 13.64 86.36 98.80 27.27 99.49 99.00 98.00 57.00

Logistic regression 0.06 13.64 86.36 98.81 75 99.94 94.00 99.00 57.00

Random forest 0.57 9.09 90.91 98.74 20.16 99.25 97.00 98.00 54.00

SupportVector
machine

0.00 0.00 100 98.62 66.67 100 89.00 99.00 57.00

Table 3. Sensitivity and Specificity evaluation results (pre-sampling)

Table 3.1. Sensitivity and Specificity results (Over-sampling)
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Model FNR(%) TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)
AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 20.84 98.91 1.09 98.67 82.19 79.16 95.00 88.90 89.03

XGBC 2.38 100 0.00 100 97.61 97.62 100.00 98.79 98.81

Logistic regression 17.46 94.59 5.41 94.01 84.04 82.54 93.00 87.84 88.57

Random forest 1.81 100 0.00 100 98.17 98.19 100.00 99.08 99.09

SupportVector
machine

20.53 91.63 8.37 90.71 81.28 79.47 91.00 85.47 85.55

Model FNR(%) TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)
AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 11.25 98.26 1.74 98.00 90.06 88.75 98.00 93.59 93.5

XGBC 2.13 100.00 0.00 100.00 97.99 97.87 100.00 98.97 98.93

Logistic regression 16.61 94.58 5.42 93.68 85.52 83.39 93.00 89.09 88.98

Random forest 1.29 100 0.00 100.00 98.77 98.71 100.00 99.37 99.35

SupportVector
machine

18.55 91.15 8.85 89.87 83.6 81.45 92.00 86.39 86.3

Table 3.2. Sensitivity and Specificity evaluation results (Under-sampling)

Model FNR(%) TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)
AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 11.61 97.69 2.31 97.51 89.16 88.39 97.00 93.37 93.04

XGBC 4.96 98.84 1.16 98.83 95.12 95.04 99.00 96.92 96.94

Logistic regression 14.68 92.43 7.57 92.02 86.02 85.32 94.00 89.85 88.87

Random forest 4.14 98.52 1.48 98.52 95.88 95.86 99.00 97.46 97.19

SupportVector
machine

22.9 91.46 8.54 90.23 79.61 77.1 92.00 85.98 84.28

Table 3.3. Sensitivity and Specificity evaluation results (SMOTE- Synthetic minority oversampling technique)

Discussions

In this section, research results obtained and its implications are presented. In Fig 1 three graphs represent the dataset

distribution of patient age, gender and target class. These are represented as first graph- age distribution, the second

graph- distribution by gender and the third graph is represented by target or output distribution. The mean age is

approximated 64 years, the minimum age is 18 years, and the maximum age is 111. The distribution of age, as shown in

Fig 1 (first graph) follows a normal Gaussian distribution. Effect of age on treatment default outcome as shown in Fig 30

indicate a high concentration of default patients between the ages of 20-40 years and above 80 years. The distribution of

gender, as shown in the second graph, indicate an unequal distribution between female and male. Output class

distribution, as indicated (third graph) show imbalance output class distribution which is confirmed in Fig 2 visualization

plot. Evaluation metrics and predictive performance results presented in Table 3.0, 3.1, 3.2 and 3.3 show model
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performance on truly positive, truly negative and other misclassifications; positive predictions wrongly predicted as

negative and negative predictions predicted as positive that raises false alarm (false positives, false negatives) under all

optimization techniques. Determining the impact and potential benefits of applied optimization techniques on imbalance

class distribution dataset in this scenario, a comprehensive assessment of performance using pre-sampling, over-

sampling, under-sampling and SMOTE oversampling strategies was adopted. Table 3.0 showcases results obtained

before applying random sampling techniques (pre-sampling) with poor performance on the classification of both true

negative and false positive examples for all models used. Ironically, recorded high prediction accuracy score and roc_auc

score values and average balanced accuracy scores are indicated. Table 3.1 on over-sampling show improved model

performance on prediction accuracy score, roc_auc score and balanced accuracy. It also shows superior model

performance exhibited by extreme gradient boosting classifier and random forest classifier on FNR, TNR and FPR. Table

3.2 on under-sampling also indicate better performance on prediction accuracy, roc_auc score, balanced accuracy, TNR,

FNR and FPR for which extreme gradient boosting and random forest classifiers show a much improved FNR scores

reducing from 2.38 in over-sampling for extreme gradient boosting to 2.13 in under-sampling and from 1.81 in over-

sampling for random forest to 1.29 in under-sampling. Using SMOTE oversampling approach (Table 3.3) as compared to

over-sampling results obtained in table 3.1, SMOTE oversampling showed similar scores much lower than what was

obtained in under-sampling as shown in table 3.2

Evaluation of performance with area under the curve (auc_roc) for pre-sampling (Table 3.0), over-sampling (Table 3.1),

under-sampling (Table 3.2) and SMOTE oversampling show relatively high performance in prediction accuracy, auc_roc

score and balanced accuracy score for over-sampling, under-sampling and SMOTE oversampling. High auc_roc score

and prediction accuracy score in pre-sampling show limited impact on overall model performance even with recorded poor

performance in TNR, NPV and FPR. This therefore confirms that relying on prediction accuracy or roc_auc score as

justification for model performance in real-world applications with skewed class distribution may not be beneficial and

could lead to undesirable outcome for critical decision making in specialized areas such as healthcare. However, as

recorded in Table 3.1, 3.2 and 3.3, better and improved performance for all models in areas such as FNR, TNR, FPR and

improved balanced accuracy score from over-sampling, under-sampling and SMOTE oversampling show statistically

significant impact of its use.

Evaluating model performance behavior with Learning curves indicates that for SMOTE oversampling, all models except

random forest show improvements in performance accuracy score and convergence with increasing training examples. In

over-sampling, gradient boosting classifier show consistent improvements in performance with additional training

examples over time as indicated in Fig 12. Continuous performance improvement by gradient boosting classifier is

replicated in under-sampling as shown in Fig 17, creating the best possible convergence with additional training

examples.

Similar performance behavior by all models is observed in over-sampling, under-sampling and SMOTE oversampling.

Significant difference in performance exits in applied random sampling and pre-sampling. Overall performance of gradient

boosting classifier shows continuous improvements over time with more training examples in over-sampling, under-

sampling and SMOTE oversampling. It generalizes well on unseen datasets on cross-validation in applied random
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sampling techniques. It is significant to indicate that random forest classifier show extreme divergence with additional

training examples in SMOTE oversampling as indicated in Fig 27. High prediction accuracy and roc_auc scores recorded

in pre-sampling and in (over-sampling, under-sampling and SMOTE oversampling) show minimal impact of random

sampling on model performance. Further assessment of patient age on treatment default as shown in Fig 30 indicate that

treatment default is predominant among the ages 20 to 40 years and from 80 years above. The most compliant age group

is identified to be between 41-60 years.

Conclusions

This comprehensive evaluation of model performance with applied random sampling (over-sampling, under-sampling and

SMOTE oversampling) techniques, show that under-sampling the majority class in an imbalance dataset leads to

improvements in model performance far more than over-sampling and SMOTE for gradient boosting classifier including

better performance in reducing false alarms (FNR and FPR). This research has demonstrated how certain age grouping is

associated with treatment default together with the identification of the most compliant age grouping. Model evaluation

with learning curves demonstrates model convergence, generalization and performance on unseen datasets, effect of

performance with increasing training examples and how this can be applied in settings with repetitive tasks.

Research application and Recommendation

Performance evaluation metrics used can be replicated in similar settings with class imbalance. Practical business

applications can benefit from the comprehensive assessment of model performance to determine model of choice in

similar scenarios. Learning curves can be used to assess resource utilization and to justify the need for less or additional

resource in a given task. Given the high prediction accuracy score and roc_auc score recorded in both pre-sampling and

applied sampling scenarios, future model evaluation for performance can benefit from study to determine its

appropriateness.

Figures
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Fig 1. Class distributions . Caption: age, gender and target class distribution graphs. Age distribution among sampled gender together with target

class distribution is illustrated by the individual graphs showed in Fig 1.

Fig 2. Dataset class imbalancevisualization. Caption: Target class distribution visualization. This graph captures target

class distribution in a visualization that best explains minority and majority class examples.
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Fig 3. Data modelingflowchart. Caption: Data pre-processing and machine learning modeling stages to describe how data

cleaning is achieved.

Fig 4. Supervised learning types : Caption. Supervised model selection categories listing classification and regression technique types. Each

supervised category shows applied techniques listed under it.

Fig 5. Modeling process : Caption. Simplified modeling process to indicate predictive modeling stages to show input,
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processing and output formations is shown.

Fig 6. Pre-sampling receiver operating curve : Caption. Initial model performance before sampling was applied. Roc_auc scores for the individual

models is indicated in this graph.
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Fig 7. Over-sampling receiver operating curve : Caption. Roc_auc score obtained by each model in applied over-sampling.
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Fig 8. Under-sampling receiver operating characteristic curve : Caption. Applied under-sampling model performance curve.
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Fig 9. Learning curve graph : Caption. Extreme grading boosting performance in over-sampling to estimate model generalization and prediction

accuracy score on unseen dataset.
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Fig 10. Learning curve graph: Caption. Logistic regression performance in over-sampling
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Fig 11. Learning curve graph: Caption. Random forest classifier performance in over-sampling
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Fig 12. Learning curve graph. Caption. Gradientboosting classifier performance learning curve graph.
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Fig 13. Learning curve graph. Caption. Support vector machine performance learning curve graph.
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Fig 14. Learning curve graph: Caption. Extreme gradient boosting classifier under-sampling learning curve graph.
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Fig 15. Learning curve graph: Caption. Logistic regression under-sampling learning curve graph.
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Fig 16. Learning curve graph: Caption. Random forest under-sampling learning curve graph.
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Fig 17. Learning curve graph: Caption. Gradient boosting classifier under-sampling learning curve graph.
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Fig 18. Learning curve graph: Caption. Support vector machine under-sampling learning curve
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Fig 19. Learning curve graph. Caption. Extreme gradient boosting pre-sampling learning curve graph.
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Fig 20. Learning curve graph: Caption. Logistic regression pre-sampling learning curve.
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Fig 21. Learning curve graph: Caption. Random forest pre-sampling learning curve
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Fig 22. Learning curve graph: Caption. Gradient boosting classifier pre-sampling learning curve
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Fig 23. Learning curve graph: Caption. Support vector machine pre-sampling learning curve
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Fig 24. SMOTE over-sampling: Caption. Applied SMOTE roc_auc score curve for over-sampling.
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Fig 25. SMOTE over-sampling: Caption. Extreme gradient boosting classifier performance in applied SMOTE over-sampling.
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Fig 26. SMOTE over-sampling: Caption. Support vector machine classifier performance in applied SMOTE over-sampling
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Fig 27. SMOTE over-sampling: Caption. Random forest classifier performance in applied SMOTE over-sampling
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Fig 28. SMOTE over-sampling: Caption. Logistic regression performance in applied SMOTE over-sampling
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Fig 29. SMOTE over-sampling: Caption. Gradient boosting classifier performance in applied SMOTE over-sampling
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Fig 30. Patient default by age: Caption. Probability of patient default by age.
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