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Model dif�ng is the study of how �ne-tuning changes a model’s representations and internal

algorithms. Many behaviours of interest are introduced during �ne-tuning, and model dif�ng offers a

promising lens to interpret such behaviors. Crosscoders[1] are a recent model dif�ng method that

learns a shared dictionary of interpretable concepts represented as latent directions in both the base

and �ne-tuned models, allowing us to track how concepts shift or emerge during �ne-tuning. Notably,

prior work has observed concepts with no direction in the base model, and it was hypothesized that

these model-speci�c latents were concepts introduced during �ne-tuning. However, we identify two

issues which stem from the crosscoders L1 training loss that can misattribute concepts as unique to

the �ne-tuned model, when they really exist in both models. We develop Latent Scaling to �ag these

issues by more accurately measuring each latent’s presence across models. In experiments comparing

Gemma 2 2B base and chat models, we observe that the standard crosscoder suffers heavily from these

issues. Building on these insights, we train a crosscoder with BatchTopK loss[2] and show that it

substantially mitigates these issues, �nding more genuinely chat-speci�c and highly interpretable

concepts. We recommend practitioners adopt similar techniques. Using the BatchTopK crosscoder, we

successfully identify a set of genuinely chat-speci�c latents that are both interpretable and causally

effective, representing concepts such as false information and personal question, along with multiple

refusal-related latents that show nuanced preferences for different refusal triggers. Overall, our work

advances best practices for the crosscoder-based methodology for model dif�ng and demonstrates

that it can provide concrete insights into how chat tuning modi�es language model behavior.1

Content Warning: This paper contains examples of harmful language.
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1. Introduction

Classically, the goal of mechanistic interpretability[3][4][5][6][7] research has been to understand either an

entire model[8][9], or to understand speci�c circuits, or algorithms, that are implemented by the model to

solve particular tasks[10]. This is akin to trying to understand the entire source code of a running

computer program, and is challenging. Model dif�ng is a relatively nascent approach that instead

attempts to detect what has changed in a model as a result of �ne-tuning. Given the relatively small

compute used for present-day �ne-tuning compared to pre-training, we expect the changes introduced

to be limited in scope – perhaps akin to a pull request on a large code repository.

Pretraining teaches the model general world knowledge, generic circuitry and skills. These are broadly

useful in a variety of settings. Fine-tuning has little reason to change most of this cognition. It seems

likely the �ne-tuned model will share many representations with the base model, and only speci�c

aspects will change. For instance, the model’s persona, chat speci�c skills that help it follow instructions

and reply to users, and other task speci�c skills more broadly. This argument suggests that the model

dif�ng approach to mechanistic interpretability might be comparatively easier than trying to understand

the full model.

Model dif�ng might also be incredibly useful. The process of �ne-tuning a model is what makes it useful

as a tool or agent. Better understanding the mechanisms that give reasoning models[11][12]  heightened

capabilities as compared to base or chat models might allow us to debug their failures and improve them.

Fine-tuning also often introduces a number of problematic behaviors, for example, sycophancy[13].

Future AI safety and alignment concerns[14][15]  may emerge speci�cally in �ne-tuned models. For

example, long-horizon RL could incentivize models to exploit reward signals and act deceptively, building

on deception concepts already learned during pretraining. It’s possible model dif�ng will be suf�cient to

allow us to detect this.

Prior model dif�ng research has investigated how models change during �ne-tuning[1][16][17][18][19][20][21]

[22][23][24][25][26]. While these studies have hypothesized that �ne-tuning primarily shifts and repurposes

existing capabilities rather than developing entirely new ones, conclusive evidence for this claim remains
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elusive. Model dif�ng remains a nascent �eld that lacks established consensus and mature analytical

tools. Much prior work has leveraged ad-hoc techniques for understanding how models change in

narrow ways (e.g. studying how a particular circuit, algorithm, or representation changes)[17][18][22][25]

[26], or have been on toy models[19][27]. It is unclear whether many prior approaches would scale to

understanding the kinds of �ne-tuning large models actually undergo.

Recently,[1]  introduced a new tool for model dif�ng, the crosscoder, which may overcome the issues

discussed above. Crosscoders build on the popular sparse autoencoder (SAE)[8][28][29], which has shown

promise for interpreting a model’s representations by decomposing activations into a sum of sparsely

activating dictionary elements. There are many variants of crosscoders; the variant we are concerned

with in this paper concatenates the activations of the base and �ne-tuned model residual streams and

trains a shared dictionary across this activation stack. Thus, for each dictionary element (aka "latent",

corresponding to one concept), the crosscoder learns a pair of latent directions - one corresponding to

the base model and one to the �ne-tuned model. Crosscoders can thus potentially identify which latents

are novel to the �ne-tuned model, which are novel to the base-model, and which are shared. We term

these sets chat-only, base-only, and shared respectively.[1]  identify chat-only latents by looking at the

norm of the latent directions – if the latent direction of the base model has zero norm, this indicates that

the latent is chat-only.

In this work, we build directly on[1]. We critically examine the crosscoder, and its ef�cacy for model

dif�ng. Our contributions are as follows:

�. We identify two theoretical limitations of the crosscoder training objective, that may lead to falsely

identi�ed chat-only latents (Section 2.3).

�. Complete Shrinkage: The sparsity loss can force base latent directions to zero norm, even when they

contribute to base model reconstruction, particularly when a latent is more important for the chat

model but still relevant for the base model.

�. Complete Shrinkage: The sparsity loss can force base latent directions to zero norm, even

when they contribute to base model reconstruction, particularly when a latent is more

important for the chat model but still relevant for the base model.

�. Latent Decoupling: The crosscoder may represent a shared concept using a chat-only latent

when it is actually encoded by a different combination of latents in the base model, as the

crosscoder’s sparsity loss treats both representations as equivalent.
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�. We develop an approach called Latent Scaling to detect spurious chat-only latents, inspired

by[30]  (Section 2.3.3). Using this approach, we demonstrate that the above issues occur in practice.

While the norm-based metric from[1] appears to identify a clean trimodal distribution of base-only,

chat-only and shared latents, we show that this is an artifact of the crosscoder loss function rather

than a meaningful distinction. Our conclusion is that the crosscoder loss does not actually have an

inductive bias that helps to learn better model-only latents.

�. Nonetheless, we demonstrate that crosscoders trained with BatchTopK loss[2] exhibit robustness to

the above issues (Section 3.1.1) and identify a larger number of genuine model-speci�c latents.

�. We show that in the BatchTopK crosscoder, the norm-based metric successfully identi�es causally

relevant latents by measuring their ability to reduce the prediction gap between base and chat

model. In contrast, this metric fails in the L1 crosscoder, where Latent Scaling becomes necessary to

identify the truly causally relevant latents. Importantly, when utilizing all available latents, both

crosscoders bridge approximately the same portion of the prediction gap, suggesting they capture

equivalent information despite organizing it differently.

�. We outline that the chat-only latents found by the BatchTopK crosscoder are highly interpretable

(Section 3.1.3), revealing key aspects of chat model behavior such as the role of chat template tokens,

persona-related questions, detection of false information, and various refusal related mechanisms.

Overall, we show that using BatchTopK loss overcomes the described limitations of L1-trained

crosscoders, validating them as a useful tool for understanding �ne-tuning effects in large language

models.

2. Methods

2.1. Crosscoder Architectures

We consider a crosscoder architecture[1] with two separate encoders and decoders, one corresponding to

the base model and one to the chat model. We describe both the original L1 crosscoder from[1] as well as a

BatchTopK[2] variant.

L1 crosscoder. Let   be an input string and   denote the activations at a given layer

at the last token of  . For a dictionary of size  , the latent activation of the    latent 

 is computed as

x (x), (x) ∈hbase hchat
R
d

x D jth

(x), j ∈ J = {1, … ,D}fj
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where    are the corresponding encoder vectors and    is the encoder bias. The

reconstructed activations for both models are then de�ned as:

where   are the   decoder latents and   are the decoder biases. We

de�ne the reconstruction errors for the base and chat models as    and 

. The training loss for the L1 crosscoder is a modi�ed L1 SAE objective:

with   controlling the weight of the sparsity regularization term.2

BatchTopK crosscoder. Let   be a batch of   inputs. Following [2], we compute the

latent activation function differently during training and inference. Let    be the latent activation

function as de�ned in Equation (1). Given the scaled latent activation function 

, the training latent activation function   is given by:

where   represents the set of indices corresponding to the top   values of the

function   across all inputs   and all latents  . We now rede�ne the reconstruction errors and

the training loss for batch   as follows:

The auxiliary loss facilitates the recycling of inactive latents and is de�ned as 

, where    and    represent

reconstructions using only the top-   dead latents. Typically,    is set to 512 and    to  . For

inference, we employ the following latent activation function:

(x) = ReLU( (x) + (x) + )fj ebase
j hbase echat

j hchat benc
j

(1)

, ∈ebase
j echat

j R
d ∈ Rbenc

j

(x)h
~base

(x)h
~chat

= (x) +∑
j

fj dbase
j bdec,base

= (x) +∑
j

fj dchat
j bdec,chat

(2)

(3)

, ∈dbase
j dchat

j R
d jth , ∈bdec,base bdec,chat

R
d

(x) = (x) − (x)εbase hbase h
~base

(x) = (x) − (x)εchat hchat h
~chat

(x) = ∥ ( ) + ∥ ( ) + μ (x)(∥ + ∥ )LL1
1

2
εbase xi ∥2

1

2
εchat xi ∥2 ∑

j

fj dbase
j ∥2 dchat

j ∥2 (4)

μ

X = { , … , }x1 xn |X| = n

( )fj xi

v( , j) = ( )(∥ + ∥ )xi fj xi dbase
j ∥2 dchat

j ∥2 f train
j

( , X) = {f train
j xi

( )fj xi
0

if ( , j) ∈ batchtopk(k, v, X, J )xi
otherwise

(5)

batchtopk(k, v, X, J ) |X| ⋅ k

v ∈ Xxi j ∈ J

X

( , X)εbase xi

( , X)εchat xi

(X)LBatchTopK

= ( ) − ( ( , X) + ) (6)hbase xi ∑
j

f train
j xi dbase

j bdec,base

= ( ) − ( ( , X) + ) (7)hchat xi ∑
j

f train
j xi dchat

j bdec,chat

= ∥ ( , X) + ∥ ( , X) + α ( , X) (8)
1

n
∑
i=1

n 1

2
εbase xi ∥2

1

2
εchat xi ∥2 Laux xi

∥ ( , X) − ( , X) + ∥ ( , X) − ( , X)εbase xi ε̂
base

xi ∥2 εchat xi ε̂
chat

xi ∥2 ε̂
base

ε̂
chat

kaux kaux α 1/32
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where    is a threshold parameter estimated from the training data such that the number of non-zero

latent activations is  .

2.2. Decoder Norm Based Model Dif�ng

Figure 1. Histogram of decoder latent relative norm differences ( ) between base and chat Gemma 2 2B

models[31], as in[1], for both the L1 crosscoder (left) and the BatchTopK crosscoder (right). For a given latent, a

value of   means the decoder vector for the base model is zero, indicating the latent is not useful for the base

model (chat-only latents). Conversely, a value of   means the chat model’s decoder vector has a norm of zero

(base-only latents). Values around   indicate similar decoder norms in both models, suggesting equal utility

in both models (shared latents). We used 0.4-0.6 as the threshold for shared latents per prior work. We observe

larger activation norms in the chat model, which shifts our distribution rightward, revealing that the chat

model ampli�es the norm of representations shared with the base model. We further show for both models

the chat-only latents that are truly chat-speci�c and that are not affected by Complete Shrinkage (  < 0.2)

and Latent Decoupling ( < 0.5) – the chat-speci�c latents. For the original L1 crosscoder, most of the

identi�ed chat-only latents suffer from these issues.

To leverage crosscoders for model dif�ng, [1] posit that we can exploit a key property of the architectures

described above: while latent activations   are shared between models, the decoder vectors   and 

 are unique to each model. When a latent   is functionally important for both models, both   and 

  will have substantial non-zero norms, as each model needs those latents for accurate

( ) = {f inference
j xi

( )fj xi
0

if v( , j) > θxi
otherwise

(9)

θ

k

θ = [ {v( , j) ∣ ( , X) > 0}]EX min
( ,j)∈X×Jxi

xi f train
j xi (10)

Δnorm

1

0

0.5

νε

νr

(x)fj dchat
j

dbase
j j dchat

j

dbase
j
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reconstruction. Conversely, if a latent is unique to the chat model, the optimization will assign a

signi�cant norm to   to minimize the reconstruction error for the chat model. Since the latent is not

used by the base model, the optimization will drive   toward zero, since this feature does not help

to reconstruct the activations of the base model. Such a latent would be a chat-only latent.

We therefore compute the relative difference of decoder latent norms  [1]  between the base and chat

models. For a latent  , the relative norm difference,  , is given by

This metric enables classi�cation of latents based on their model speci�city, as empirically shown in

Figure 1. In practice, we classify latents into three sets based on ranges of their   values: base-only,

chat-only and shared (Table 1).

2.3. Are chat-only latents really chat-speci�c?

We noted in Section 2.2 that if a latent only contributes to one model, the norm of the decoder must tend

to zero for the other model. But is the converse true? Speci�cally, in this section we ask the question: if a

latent has decoder norm zero in the base model, is it necessarily chat-speci�c? We focus on this set, as

this is the most interesting of the three categories described in Section 2.2.

2.3.1. Reasons to doubt chat-only latents

There are reasons to suspect chat-only latents might not be chat-speci�c. Firstly, both qualitative and

quantitative analysis of L1 crosscoder latents reveals a relatively low percentage of interpretable latents

within the chat-only set (See 3.1.3). More worryingly, inspection of the L1 crosscoder loss (Equation (4))

uncovers two theoretical issues that could result in latents  , which are de�ned by their decoder vectors 

 and activation function  , being classi�ed as chat-only, despite their presence in the activations of the

base model:

Complete Shrinkage. The L1 regularization term may force the norm of the base decoder vector   to

be zero, even though it is present in the base activation and could have contributed to the reconstruction

of base activation. This may especially be relevant if the contribution of latent   is non-zero in the base

model, but much smaller than the contribution in the chat model. Consequently, the error   contains

information that can be attributed to latent  .

dchat
j

∥dbase
j ∥2

j Δnorm

(j) = ( + 1)Δnorm
1

2

∥ − ∥dchat
j ∥2 dbase

j ∥2

max(∥ , ∥ )dchat
j ∥2 dbase

j ∥2

(11)

Δnorm

j

dj fj

dbase
j

j

εbase

j
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Latent Decoupling. Latent    ‘appears’ in base activations across a subset of its latent activations but is

instead reconstructed by other base decoder latents. On this subset, the base reconstruction 

 contains information that could be attributed to latent  . To spell this out in more detail, consider

the following set up: a concept C may be represented identically in both models by some direction   but

activate on different non-exclusive data subsets. Let    and    be concept C’s optimal

activation functions in chat and base models, de�ned as    and 

, where   encodes shared activation, while   and   de�ne

model exclusive activations. For interpretability, the crosscoder should ideally learn three latents:

�. A shared latent    representing C when active in both models using    and 

,

�. A chat-only latent    representing C when exclusively active in the chat model using 

 and  , and

�. A base-only latent    representing C when exclusively active in the base model using 

 and  .

However, the L1 crosscoder achieves equivalent loss using just two latents:

�. A chat-only latent    representing C in the chat model using    and 

, and

�. A base-only latent    representing C in the base model using    and 

. In this scenario, the so-called “chat-only” latent is only truly chat-only on a

subset of its activation pattern.

Although whenever   two latents are active instead of one, the sparsity loss is the same because

the sparsity loss includes the decoder vector norms.3

2.3.2. Why BatchTopK crosscoders might �x this.

The BatchTopK crosscoder may address both Complete Shrinkage and Latent Decoupling issues that

affect the L1 crosscoder. The key difference lies in their respective loss functions and optimization

objectives.

For the L1 crosscoder, the loss function in Equation (4) includes an L1 regularization term that directly

penalizes the norm of decoder vectors. This creates pressure to shrink decoder norms toward zero when

a latent’s contribution is minimal, potentially causing Complete Shrinkage even when the latent has

j

h
~base

j

dC

(x)f chat
C (x)f base

C

(x) = (x) + (x)f chat
C fshared fc-excl

(x) = (x) + (x)f base
C fshared fb-excl fshared fb-excl fc-excl

jshared =fjshared fshared

= =dchat dbase dC

jchat

=fjchat fc-excl = , = 0dchat dC dbase

jbase

=fjbase fb-excl = 0, =dchat dbase dC

jchat = +fjchat fc-excl fshared

= , = 0dchat dC dbase

jbase = +fjbase fb-excl fshared

= 0, =dchat dbase dC

> 0fshared
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some explanatory power. In contrast, the BatchTopK crosscoder uses a different sparsity mechanism.

Rather than penalizing all decoder norms, it selects only the top   most active latents per sample during

training. This approach has two important advantages:

i. No direct norm penalty: Without explicit regularization on decoder norms, there’s no optimization

pressure to drive    to zero when the latent has explanatory value for the base model,

reducing Complete Shrinkage.

ii. Competition between latents: The top-  selection creates competition among latents, discouraging

redundant representations. This helps prevent Latent Decoupling by making it inef�cient to

maintain duplicate latents that encode the same information.

The BatchTopK approach thus creates an inductive bias toward learning more genuinely distinct latents,

as the model must ef�ciently allocate its limited "budget" of    active latents per sample. This should

result in fewer falsely identi�ed chat-only latents and a cleaner separation between truly model-speci�c

and shared features. Moreover, the BatchTopK crosscoder actively encourages the three-latent solution

presented in the Latent Decoupling explanation in Section 2.3.1. For the subset of tokens where 

, the three-latent solution will have an L0 sparsity of 1, while the merged two-latent solution

will have an L0 sparsity of 2. Since the BatchTopK crosscoder optimizes for L0 sparsity, it will prefer the

three-latent solution, considering that dictionary capacity will be a limiting factor as this requires more

latents.

2.3.3. Latent Scaling: A method for identifying Complete Shrinkage and Latent Decoupling

To empirically investigate whether Complete Shrinkage and Latent Decoupling occur, we examine how

well a chat-only latent   can explain two quantities: the base error (for Complete Shrinkage) and the base

reconstruction (for Latent Decoupling). We introduce Latent Scaling by adding a scaling factor   for each

chat-only latent and solve:

where    is either error or reconstruction for    for an input  . This least squares

minimization problem has a closed-form solution, detailed in Appendix A.4. For each latent  , we

compute two pairs of scaling factors:

k

∥ ∥dbase
j 2

k

k

> 0fshared

j

βj

∥ ( ) −argminβj
∑
i=0

n

βjfj xi dchat
j ym

i ∥2
2 (12)

ym
i m ∈ {base, chat} xi

j
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�.   and    measure how well the latent explains the reconstructed activations in the base

and chat models, respectively.

�.  and   measure how well it explains the errors (see Appendix A.5 for details). Learning 

  is equivalent to replacing the zero norm    with    and then �ne-tuning a scalar to

reduce the base error.

We then analyze the ratios of these betas:

For a truly chat-speci�c latent with no interference with other latents, we expect   as it should

not explain any base error. Further, we designed the experiment such that   is still contained in

the chat error, therefore we expect    and hence  . The reconstruction ratio    provides

insight into latent interactions; even for chat-speci�c latents, we typically see nonzero values due to

interactions with other latents. To detect Latent Decoupling, we look at shared latents, where we expect

high    and check whether a chat-only latent has a high    similar to the shared latents. A high 

 indicates that, for a given chat-only latent  , there is another very similar latent that has also activated

and contributed to the base reconstruction, which means this could have been a shared latent for this

reconstruction.

3. Results

3.1. Training crosscoders

We replicate the model dif�ng experiments by  [1]  using the open-source Gemma-2-2b (base) and

Gemma-2-2b-it (chat) models from  [31]. Speci�cally, we train both a L1 crosscoder and a BatchTopK

crosscoder with an expansion factor of    on layer 13 (of 26)4  residual stream activations, resulting in 

  latents. We train on both web and chat data. To ensure a fair comparison, we calibrate both

crosscoders to have comparable L0 sparsity on the validation set. Speci�cally, we select the sparsity

weight    for the L1 crosscoder to achieve an L0 of approximately 100 at the end of training. For the

BatchTopK crosscoder, we set  . This results in validation L0 values of 101 and 99.48 for the L1 and

BatchTopK crosscoders, respectively. For further details on the training process, see Appendix A.10.

β
r,base
j β

r,chat
j

β
ε,base
j β

ε,chat
j

β
ε,base
j dbase

j dchat
j

= , =νrj

β
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j

β
r,chat
j

νεj

β
ε,base
j

β
ε,chat
j

(13)

≈ 0β
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j

(x)fj dchat
j

≈ 1β
ε,chat
j ≈ 0νεj νrj

νrj νrj

νrj j

32

73728

μ

k = 100
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In Figure 1, we present the histogram of the relative decoder norm difference ( ) between the base

and chat models for both the L1 and BatchTopK crosscoders. Table 1 shows the count of latents per group

as classi�ed by  . At �rst glance, it appears that the L1 crosscoder identi�es substantially more chat-

only latents than the BatchTopK crosscoder. However, our subsequent analysis reveals that many of these

apparent chat-only latents are actually artifacts of the L1 loss function rather than genuinely chat-speci�c

features. Refer to Appendix A.11 for more empirical details on the crosscoders.

Name

Count

L1 BatchTopK

base-only 0.0-0.1 1,437 5

chat-only 0.9-1.0 3,176 134

shared 0.4-0.6 53,569 62373

Table 1. Classi�cation of latents based on relative decoder norm ratio ( ).

Δnorm

Δnorm

Δnorm

Δnorm
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3.1.1. Demonstrating Complete Shrinkage and Latent Decoupling

Figure 2. We measure how chat-only latents are affected by the issues described in Section 2.3.1. Each point

represents a single latent. The left and middle plots show   distributions for the L1 and BatchTopK

crosscoders, respectively. On the  -axis, reconstruction ratio   reveals Latent Decoupling when high values

overlap with the shareddistribution, indicating redundant encoding. The  -axis shows error ratio  , where

high values indicate Complete Shrinkage – latents forced to zero norm in the base decoder despite being

useful. Low values on both metrics identify truly chat-speci�c latents. Many chat-only latents in the L1

crosscoder appear misidenti�ed, while the BatchTopK crosscoder shows minimal issues. The right plot

compares latent counts below various   thresholds between the 3176 L1 chat-only latents and the top-3176

BatchTopK latents sorted by  .

Latent Scaling in the L1 crosscoder. We train latent scaling coef�cients and compute   and    for all

identi�ed chat-only latents on 50M tokens from both web and chat data on the L1 crosscoder. As a

calibration, we also examine these ratios for shared latents, which should show high values for both 

  and  . We verify that the    values actually correlate with how much the  s improve the

reconstruction objective in Appendix A.6 for the L1 crosscoder. Figure 2 shows that the   distribution for

chat-only latents exhibits notable overlap with shared latents: 18% of chat-only latents fall within the

central 95% of the shared distribution, and 3.5% within its central 50%5. This overlap suggests that many

supposedly chat-speci�c latents may represent information that is already encoded by the base decoder,

potentially indicating Latent Decoupling effects. Additionally, we observe high    values for chat-only

latents (reaching  ), indicating that a signi�cant portion of these latents is affected by Complete

Shrinkage. Our �ndings are robust across implementations, as we observe similar results in the

independent L1 crosscoder implementation by[32], detailed in Appendix A.9.
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Figure 3. Distribution activation divergence over high cosine similarity (chat-only, base-only)

latent pairs. 1 means that latents never have high activations ( ) at the

same time, 0 means that high activations correlate perfectly.

Figure 4. Autointerpretability detection scores (higher is better) across bins based on 

. Lower bins indicate lower   values and more chat-speci�c latents. We

compare the 3176 chat-only latents from the L1 crosscoder with the top-3176 latents by 

 from the BatchTopK crosscoder.

Cosine similarity of coupled latents. As further evidence for Latent Decoupling occuring, we compute

the cosine similarity between    and    revealing 109    pairs where 

. To quantify activation pattern overlap between twins  , we introduce

> 0.7 × max_activation

rank( ) + rank( )νε νr ν

Δnorm

{ , j ∈}dchat
j { , j ∈}dbase

j (j, )jtwin
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an activation divergence score from 0 (always co-activate) to 1 (never co-activate) (see Appendix A.2).

Figure 3 shows the divergence distribution across these pairs, highlighting that 60% of the pairs

primarily activate on different contexts, with some pairs almost exclusively �ring on different contexts

(divergence of 1), while others exhibit substantial overlapping activations. This analysis demonstrates

two important insights:

�. The Latent Decoupling phenomenon described in Section 2.3.1, where the crosscoder learns a base-

only and a chat-onlylatent that partially activate together instead of learning a shared latent, is

empirically observed in practice.

�. Some concepts appear to be represented similarly in both models but occur in completely disjoint

contexts (leading to divergence scores approaching 1), suggesting that the models encode these

concepts in the same way but employ them differently.

Comparing L1 and BatchTopK crosscoders. We also compute the ratios for the BatchTopK crosscoder.

Figure 2b shows a very different picture: the   distribution for chat-only latents shows no overlap with

shared latents, and the   values are all almost 0. This suggests that the BatchTopK crosscoder exhibits

almost no Complete Shrinkage, and a very low degree of Latent Decoupling. In Figure 1 we overlay the

chat-only latents with the ones that are truly chat-speci�c – chat-only latents with   and  .

We see that for the L1 crosscoder, most of the chat-only latents are not chat-speci�c, while for the

BatchTopK crosscoder, most of the chat-only latents are chat-speci�c. To make a more fair comparison of

the total number of latents that are truly chat-speci�c, we compare the 3176 chat-only latents from the L1

crosscoder with the top-3176 latents based on   values from the BatchTopK crosscoder. In Figure 2c

we plot the number of latents from those sets for which both    and    for a range of

thresholds  . We see that no matter what threshold we choose, the BatchTopK crosscoder has far more

chat-speci�c latents than the L1 crosscoder. Furthermore, the   and   metrics show strong pearson

correlation (  and   where  ). We conclude that the   metric in the BatchTopK

crosscoder serves as a valid proxy for chat-speci�city as measured by    and  . Another difference is

that we �nd no pairs of chat-only latent and   latents with a cosine similarity greater than 0.9

in BatchTopK, corroborating the fact that latent decoupling is less an issue in BatchTopK.

3.1.2. Measuring the causality of chat approximations

A natural question to ask is whether we can cheaply transform the base model into the chat model by

leveraging our understanding of which latents are most speci�c to chat model. Such an approach would
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not only validate Latent Scaling as a method for identifying important latents, but also quantify each

latent’s causal contribution to chat behavior and reveal how much of the behavioral difference between

models is captured by our crosscoders. To operationalize this, we intervene on the base model’s

activations by replacing the base model’s representation of speci�c crosscoder concepts with their

corresponding chat model representations. We then use these modi�ed activations as input to the

remaining layers of the chat model and measure the KL divergence between this hybrid model’s output

and the original chat model output. See Figure 5 for a high-level diagram of the method.

More formally, let   denote the chat model’s probability distribution over next tokens given a context 

, and let    and    be the activations from the layer our crosscoder was trained on. To

evaluate an approximation   of the chat activation  , we replace   with   during

the chat model’s forward pass on  , denoting this modi�ed forward pass as  . The KL divergence 

  between    and    then quanti�es how much predictive power is lost by using the

approximation instead of the true chat activations.

For a set    of latents, we approximate chat behavior by adding the chat decoder’s latents to the base

activation while removing the corresponding base decoder’s latents6:

Figure 5. Simpli�ed illustration of our experimental setup for measuring latent causal importance. We patch

speci�c sets of chat-speci�c latents ( ) to the base model activation to approximate the chat model

activation. The resulting approximation is then passed through the remaining layers of the chat model. By

measuring the KL divergence between the output distributions of this approximation and the true chat

model, we can quantify how effectively different sets of latents bridge the gap between base and chat model

behavior.
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Let   and   be two disjoint sets of latents. If the KL divergence   is lower than  , we can conclude

that the latents in   are more important for the behavior of the chat model than the latents in  .

To validate that both   and Latent Scaling identify the most causally important latents, we compare

two groups: those ranking highest versus lowest in chat-speci�city according to both   and Latent

Scaling. For the latter, we rank latents based on the combined sum of their positions in both the   and 

  distributions, allowing us to measure how these differently ranked latent sets affect chat model

behavior. As in the previous section, we compare the    latents identi�ed as chat-only in the L1

crosscoder with the    latents showing the highest    values in the BatchTopK crosscoder. This

matched sample size ensures a fair comparison between the two approaches. For both crosscoders, we

compute   (best 50% latents) and   (worst 50% latents) for both   and Latent Scaling,

expecting the best latents to yield a lower KL divergence than the worst latents.

Baselines. We evaluate those chat-speci�city based interventions against several baselines:

Base activation (None): Using only the base activation, which yields the highest expected KL

divergence. This naturally corresponds to patching no latents:  .

Full Replacement (All): Replacing the set of all latents,  , provides the theoretical minimum KL

divergence achievable with the crosscoder. This is equivalent to the chat reconstruction plus the base

error:

Error Replacement (Error): To assess how much of the behavioral difference between models is

contained in the reconstruction error rather than the latents, we replace the chat model’s

reconstruction with the base model’s reconstruction while keeping the chat model’s error:

This baseline helps quantify how much of the chat model’s behavior is driven by information that the

crosscoder fails to capture in its reconstruction of the chat activation.

Results. In Figure 6, we plot the KL divergence for different experiments on   chat interactions, with

user requests from [33]’s dataset and responses generated by the chat model. We also report results on our

LMSys validation set in Appendix A.7 for L1 and observe the same trends. We report mean results over

both the full response and tokens 2-10 (the nine tokens following the initial token)7. First, we con�rm a

key �nding from [34]: the distributional differences between base and chat models are signi�cantly more

pronounced in the initial completion tokens than across the full response. We observe a KL divergence of
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1.69 between base and chat models on the �rst 9 tokens, compared to just 0.482 across all tokens – a

more than three-fold difference. This concentration of behavioral differences in early tokens is re�ected

consistently across our interventions, with the None baseline yielding a KL of 1.047 for the �rst 9 tokens

versus 0.282 for all tokens when compared to the chat model distribution.

Figure 6. Comparison of KL divergence between different approximations of chat model activations. We

establish baselines by replacing either None or All of the latents. We then evaluate the Latent Scaling metric

against the relative norm difference ( ) by comparing the effects of replacing the highest 50% (red bars)

versus lowest 50% (green bars) of latents ranked by each metric. We show the 95% con�dence intervals for all

measurements. Note the different  -axis scales - the right panel shows generally much higher values. Our

results reveal a critical difference between the crosscoders: while   fails to identify causally important

latents in the L1 crosscoder, it successfully does so in the BatchTopK crosscoder. This con�rms our hypothesis

that   is a meaningful metric in BatchTopK but merely a training artifact in L1. Using Latent Scaling, we

successfully identi�es the more causal latents in L1, which is particularly evident in the �rst 9 tokens where it

almost matches BatchTopK.

Our analysis reveals clear differences in how the two crosscoder variants organize information, despite

similar effectiveness in capturing the behavioral difference between base and chat models.

When applying the full replacement intervention (All), we observe that both crosscoders achieve almost

identical KL divergence reductions—59% over all tokens and 78% for the �rst 9 tokens compared to the

baseline, as shown in Figure 6. A perfect reconstruction would yield zero KL divergence; these substantial

but incomplete reductions indicate that L1 and BatchTopK architectures have comparable ability to

capture behavioral differences.

Examining the reconstruction error replacement intervention (Error) in Figure 6 reveals important

nuances in what crosscoders capture. For full responses, replacing with just the chat error term achieves

Δnorm

y

Δnorm

Δnorm
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slightly better KL reduction than using the chat reconstruction for both models. This aligns with

previous �ndings by [35] that highlighted the causal importance of the error term on output distributions.

However, for the �rst 9 tokens, this pattern reverses dramatically: the error term performs more than

twice as poorly as replacement all latents for both crosscoders. This contrast demonstrates that

crosscoders excel speci�cally at capturing crucial early-token behavior that establishes response

framing, while struggling more with long-range content generation. Notably, the BatchTopK error

contains slightly less information than the L1 error on the �rst 9 tokens (45% decrease versus 52% for L1),

suggesting that it captures more of the difference in its latent representation.

Although both architectures capture similar information content overall, they differ markedly in how

they organize this information. For the BatchTopK crosscoder, the relative norm difference ( )

successfully identi�es causally important latents, with the top 50% of latents by    score showing

signi�cantly lower KL divergence than the bottom 50% (0.230 versus 0.267). This effect is reinforced for

the �rst 9 tokens, where the top latents achieve a 50% KL reduction compared to just 6% for the bottom

latents. In contrast, for the L1 crosscoder, the   metric fails entirely as a signal of causal importance:

latents with the highest and lowest   values perform virtually identically (0.241 versus 0.242) for all

tokens, with the lowest-ranked latents actually outperforming the highest-ranked ones on the �rst 9

tokens (0.740 versus 0.619). Our Latent Scaling approach successfully addresses this limitation,

identifying a set of causally important latents in the L1 crosscoder that nearly match the performance of

the BatchTopK’s top latents. This con�rms that Latent Scaling effectively identi�es truly chat-speci�c

features that are buried among noisy latents introduced by Complete Shrinkage and Latent Decoupling in

the L1 crosscoder.

For additional validation, we present causality experiments conducted on a larger dataset of chat

interactions not generated by Gemma in Appendix A.7.
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3.1.3. Observations about BatchTopK chat-only latents

Figure 7. Four chat-only latents (BatchTopK) related to refusal behavior, with example prompts for each. Color

gradients show relative latent activation strength across the dataset.

Figure 8. Latent 38009 (BatchTopK) activates after the model has refused to answer a user input.

missing information, rewriting requests, joke detection, response length measurement, summarization

request, knowledge boundary, requests for detailed information

Interpretability. We observe that the chat-only set of the BatchTopK crosscoder – which is basically equal

to the chat-speci�c set – is highly interpretable and encodes meaningful chat-related concepts. In Figure 7
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we show 4 latents that are all connected to model refusal behavior, but exhibit different nuances of

refusal triggers. In Figure 8 we show a latent that detects refusal behavior in the model. In Figure 9 we

show examples from two latents that are connected to personal experiences and emotions of the model,

as well as a false information detector. Other interesting latents are related to various chat-speci�c

functions: user instructions to summarize, detection of missing information in user requests, providing

detailed information, joke detection, rephrasing and rewriting, more false information detection but on

different tokens, knowledge boundaries, and latents that measure the response length requested. We

refer to Appendix A.14 for examples.8

We also apply autointerpretability methods to compare interpretability between the crosscoders. In

Figure 4, we compare the autointerpretability scores for the 3176 chat-only latents from the L1 crosscoder

with the    latents showing the highest    values in the BatchTopK crosscoder, grouped by 

. We observe two key trends: i) In the L1 crosscoder, the chat-only latents least

impacted by both Complete Shrinkage and Latent Decoupling (as measured by low    and    values)

demonstrate signi�cantly higher interpretability. ii) The BatchTopK crosscoder shows no such

correlation, with all latents exhibiting approximately equal interpretability. These �ndings indicate that

latents affected by Complete Shrinkage and Latent Decoupling are less interpretable. Conversely, latents

least affected by these phenomena maintain comparable interpretability across both crosscoders. We

further con�rm this pattern through qualitative examination of chat-onlylatents from the L1 crosscoder

with low   and   values in Appendix A.14.
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Figure 9. Examples of interpretable chat-only latents in the BatchTopK crosscoder. The intensity of red

background coloring corresponds to activation strength.

Chat speci�c latents often �re on chat template tokens. Template tokens are special tokens that

structure chat interactions by delimiting user messages from model responses. In the Gemma 2

conversation below, the highlighted template tokens mark the boundaries between different parts of the

dialogue.

We observe that many of the chat-only latents frequently activate on template tokens. Speci�cally, 40% of

the chat-onlylatents predominantly activate on template tokens, and for 67% of the chat-only latents, at

least one-third of all activations occur on template tokens. This pattern suggests that template tokens

play a crucial role in shaping chat model behavior, which aligns with the �ndings of[36]. To verify this, we

repeat a variant of the causality experiments from Section 3.1.2 by only targeting the template tokens.

Speci�cally, we de�ne an approximation of the chat activation    that equals the chat

activation    if the last token of the input string    is a template token and otherwise equals 

. This results in a KL divergence   of   and   for the full response and the �rst 9

tokens9, respectively. This is equal to or slightly better than our results with the 50% most chat-speci�c

( )htemplate xi

( )hchat xi xi

( )hbase xi Dhtemplate 0.239 0.507
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latents, providing further evidence that much of the chat behavior is concentrated in the template tokens.

However, this is not the complete picture, as there remains a non-negligible amount of KL difference that

is not recovered.

4. Related Work

SAEs and Crosscoders. The crosscoder architecture[1] builds upon the SAE literature[37][38][9][39][40][41][28]

[29] to enable direct comparisons between different models or layers within the same model. At its core,

sparse dictionary learning attempt to decompose model representations into more atomic units. They

make two assumptions:

�. The linear subspace hypothesis[42][43][44] – the idea that neural networks encode concepts as low-

dimensional linear subspaces within their representations.

�. The superposition hypothesis[9]  – that models that leverage linear representations can represent

many more features than they have dimensions, provided each feature only activates sparsely, on a

small number of inputs.

Effects of �ne-tuning on model representations. The crosscoder’s ability to compare models parallels

broader efforts to understand how �ne-tuning affects pretrained representations. Multiple studies

indicate that �ne-tuning typically modulates existing capabilities rather than creating new ones. For

example,  [19]  �nd that �ne-tuning acts as a “wrapper” that reweights existing components,

while  [22]  show that instruction tuning primarily strengthens models’ ability to recognize and follow

instructions while preserving pretrained knowledge. Similarly,  [24]  and  [23]  observe that �ne-tuning

mainly affects top layers, and  [17]  provide evidence that �ne-tuning enhances existing circuits rather

than creating new ones. Additionally, representation-space similarity analyses (e.g., using CKA or SVCCA)

con�rm that lower-layer representations remain largely intact while most changes occur in upper

layers[24][23][45][46].

Quantitative analyses further reveal that �ne-tuned models remain close to their pretrained versions in

parameter space[47], corroborating the low intrinsic dimension for �ne-tuning[48]. In addition,  [49],  [50],

and  [51]  suggest that causal directions in activation space remain stable across base and instruction-

tuned models, indicating that fundamental representational structures persist throughout �ne-tuning.
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The role of template tokens. In Section 3.1.3, we observed that the template tokens appear to play an

important role in the chat model. Recent work con�rms this �nding - template tokens serve as essential

computational anchors in chat models, structuring dialogue and encoding critical summarization

information[52][53][54]. Beginning-of-sequence and role markers function as attention focal points and

computational reset signals. Studies of instruction tuning reveal how these tokens reshape attention

patterns, where even subtle modi�cations can bypass model safeguards[55][56]. Most relevantly, the

concurrent work of[36]  shows that template tokens play a crucial role in safety mechanisms,

demonstrating that model refusal capabilities primarily rely on aggregated information from these

tokens. As[57]  established, such template-like meta tokens are fundamental to language model

information processing.

5. Discussion

Our research demonstrates that while crosscoders serve as powerful tools for model dif�ng, the L1

sparsity loss can lead to misclassi�cation of latents as unique to the chat model through two key artifacts:

Complete Shrinkage and Latent Decoupling. To address this issue, we developed a novel technique called

Latent Scaling that effectively identi�es these artifacts. Using this approach, we show that BatchTopK

crosscoders exhibit almost none of these artifacts, thereby revealing a set of highly causal and

interpretable chat-only latents. Although the L1 crosscoder initially appears to identify more chat-only

latents, after �ltering out those affected by artifacts, the BatchTopK crosscoder actually uncovers more

genuine chat-only latents. Importantly, we �nd that many of these latents predominantly activate on

template tokens, suggesting that the chat model’s distinctive behavior is largely structured around these

specialized tokens.

5.1. Limitations and future work

Our work has several important limitations. First, we focused our analysis on a single small model

(Gemma-2-2b). While our theoretical �ndings about crosscoders should generalize to larger models, we

cannot make de�nitive claims about the causality and interpretability of latents identi�ed in such

settings. Although larger models likely face similar issues, this remains to be empirically veri�ed.

Second, we primarily focused on chat-only latents, leaving the base-only and shared latents relatively

unexplored. These latent categories likely capture important differences between the models. In

particular, as shown in Figure 15, the latents classi�ed as neither of the classes exhibit lower cosine
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similarity, suggesting they encode similar concepts differently across the two models, which is de�nitely

a difference between the two models, that is worth investigating.

Another key limitation is that while BatchTopK crosscoders seems to better represent the model

difference in their dictionary, Figure 6 shows that their error term still contain a lot of information about

the chat model behavior.

Finally, a signi�cant limitation is our inability to distinguish between truly novel latents learned during

chat-tuning and existing latents that have merely shifted their activation patterns, as the crosscoder

architecture does not provide a mechanism to make this distinction. This remains an open challenge for

future work.

To summarise, future work could focus on three high-level directions: improving crosscoder architecture

and training objective to address the identi�ed issues; understanding the mechanisms behind template

tokens’ importance and their potential role in optimizing training; and extending this analysis to larger

models and diverse �ne-tuning objectives.

Appendix

The Appendix is available for download in the Supplementary Data section at the top of the page and via

this link.

The following references are only available in the appendix: [58][59][60][61][62][63][64][65].
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Footnotes

1 We open-source our models and data at https://huggingface.co/science-of-�netuning. Our library to

train croscoders is available at https://github.com/jkminder/dictionary_learning. The code to reproduce

our results will be released at a later date.

2 While similar to training an SAE on concatenated activations, the crosscoder’s sparsity loss uniquely

promotes decoder norm differences (see Appendix A.1).

3 In the simplest case where  , there exists a base-only latent    with 

  and identical activation function that reconstructs the information of    in the base

model. The sparsity loss equals that of a single shared latent (see Appendix A.3 for a detailed example).

4 model.layers[13]

5 We �lter out latents with negative    values (46 in reconstruction and 1 in error). These latents

typically have low maximum activations and show a small improvement in MSE. We hypothesize that

these are artifacts arising from complex latent interactions.

6 Note that for chat-only latents, the base decoder’s latents have almost zero norm, so this is almost

equivalent to just adding the chat decoder’s latents to the base activation.

7 We excluded the very �rst generated token (token 1) from our analysis to ensure fair comparison with

the template intervention, introduced later in the paper.

8 In all plots, we abbreviate <start_of_turn> and <end_of_turn> as <sot> and <eot>.

9 Note that we ignore the �rst token of the response to make this a fair comparison, as the KL on the �rst

token with   would always be almost zero.
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