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Abstract 

In this paper, we present a brief version of a “slight generalization” of de Finetti-Ramsey’s 
subjective probability theory, in order to arrive at contemporary decision-making theory as an 
immediate consequence of our interpretation. In a final section, we take up the case of some 
“Paradoxes in Expected Utility Theory” and try to reconcile them with the help of subjective 
probabilities. 

1. Introduction: Frank Ramsey ([8], [9])and Bruno de Finetti ([1], [2], [3]) independently defined 
the probability of an event assessed by an individual as the price in money units the individual is 
willing to pay (without being vulnerable to “sure loss”), for a lottery ticket that would yield 1 unit 
of money to the individual if the event did occur and nothing otherwise, the price of the ticket itself 
being non-refundable. Critiques and “doubting Thomases” of the probability theory due to de 
Finetti and Ramsey are advised to read and benefit from the paper by Velupillai [10]. 

Money by itself does not provide satisfaction, but has “person specific use value”, when it is used 
by individuals as an “instrument” to derive satisfaction from the consumption of goods and 
services on which they spend this money. We refer to the unit of measurement of this “person 
specific use value” as “util”. Having done so, we define the probability of an event as assessed by 
an individual as the price in utils the individual is willing to pay for a lottery ticket that yields 1 util 
to the individual if the event occurs and nothing otherwise, the price of the ticket itself being non-
refundable, such that the expected net gain to the individual from the transaction is zero. Util could 
be money units as in ([1], [2], [3], [8], [9]) or any other that is used to measure something that is 
desirable to the individual, so long as it is the unit of measurement of the “use value” of monetary 
gains and losses. The individual specific strictly increasing function that assigns to each amount of 
gain (negative implying loss), its use value to the individual and assigning zero utils to zero gains, 
is called the “utility function for monetary gains” of the individual.  

For the purpose of our definition of probability, the major characteristic of “utils” that is used for 
transactions involving lottery tickets, i.e., prices and stakes in a lottery, is that if an individual is 
willing to pay ‘x’ utils for a lottery ticket, the same individual would be willing to pay ‘nx’ utils for 
‘n’ such lottery tickets. We may refer to this defining characteristic as the “linearity criterion”. 



For our theory to be applicable to an individual, it is imperative that the “linearity criterion” holds. 
If we insist on prices and stakes for “for a lottery ticket that would yield 1 unit to the individual if 
the event did occur and nothing otherwise” to be measured in money units as in ([1], [2], [3], [8], 
[9]), then the definition of the subjective probability of an event would coincide with the one in de 
Finetti and Ramsey. However, that would imply using the “utility of expected monetary gain” for 
the purpose of defining subjective probability, while at the same time using “expected utility of 
monetary gains” for the purpose of evaluating uncertain prospects in the context of decision 
making under uncertainty. Personally, I prefer to remain neutral about this “apparent” 
inconsistency.      

Thus, probability is a personal assessment based on a “thought experiment” prone to subjectivity. 
This subjective probability which forms the cornerstone of our discussion here is formally 
presented beginning with the next section. (See [7] for an interesting discussion of the concept). 
Our approach is different, though mathematically equivalent to the approach of de Finetti and 
Ramsey. Unlike de Finetti and Ramsey we assume the existence of a (mathematical) probability 
measure (in the sense of Kolmogrov) which is used to calculate “mathematical expectations” and 
then show that such a probability measure assigns the subjective probabilities to the events under 
consideration. The underlying mathematics is simpler and considerably more compact than in the 
work of de Finetti and Ramsey. The purpose of the calculus presented here is largely pedagogical, 
and our goal for this is to eventually arrive at an explanation/interpretation of the concept of 
expected utility for graduate or upper-level undergraduate students in Economics and Management, 
using no more than the “unitary method of arithmetic” that one usually learns in primary school.  

Subsequently, we show that for individuals whose preferences over a set of alternatives, each of 
which are random returns of monetary gains and losses (i.e. an uncertain prospect) can be 
numerically represented by a “von Neumann Morgenstern utility function” as well as the function 
that assigns to each alternative the expected utility of monetary gains and losses, it must be the case 
that the Bernoulli utility function of gains and losses whose expectation is the von-Neumann 
Morgenstern utility function, is a strictly increasing and linear transformation of the “utility 
function of monetary gains and losses”. To the best of my knowledge, the earliest use of the word 
“prospect” in the theory of decision making under uncertainty occurs in a March 1973 discussion 
paper of the University of Minnesota (Number 20), by Professor Clifford Hildreth, entitled 
“Ventures, Bets and Initial Prospects”, which is a revised version of a manuscript dated August 
1972. 

It is important to note that while difference in the nomenclature of the two utility functions is that 
one of the two explicitly mentions “monetary”, whereas the other does not, the expected utility of 
monetary gains and losses of an uncertain prospect measures the “use value” of an uncertain 
prospect (i.e., UV of an uncertain prospect), while the von Neumann Morgenstern utility function 
is simply a mathematical entity, with no specific economic interpretation implied by it. It makes 
eminent sense to talk about the “use value of an uncertain prospect”, since not being a consumable 
an uncertain prospect does provide satisfaction, although it can be used as an instrument to derive 
satisfaction from consumable goods and services.  



In the final section of this paper, we take up the case of “Paradoxes in Expected Utility Theory” 
whose starting point is the critique of “Expected Monetary Value” posed by the St. Petersburg 
paradox. Our position is that such paradoxes arise because of unwarranted “mathematical liberties” 
that are taken while describing the behaviour of individuals facing uncertain monetary prospects. 
We do not question the robust validity of expected utility theory as opposed to a theory that argues 
for expected monetary value and no further. We only insist that the reasons for claiming the 
superiority of one theory over another should be right and not incorrect. We try to reconcile the 
“apparent inconsistencies” by using subjective probabilities. 

2. The framework of analysis: Let S be a non-empty set, subsets of which are events. 

An event is a state of nature that is of concern to us, the status of its occurrence (which may be 
either “true” or “false”) being unknown in the current state. 

An event E occurs if the status of its occurrence is true. The non-occurrence of E is also a state of 
nature and is denoted by Ec. In such a situation we say that Ec occurs. 

We consider an individual who chooses to measure his/her personal assessment of the price and 
stakes of lottery tickets in “utils”. 

A finite lottery ticket is a pair ({E1,...,En}, ), where {E1,...,En} is a finite partition for some 

positive integer ‘n’, each member of which is an event and a pay-off function :{E1,...,En}ℝ , 

where for each i{1,...,n}, (Ei) is the pay-off to a buyer of the lottery in the current state, if the 
event Ei occurs. We do not specify the unit of measurement of the pay-offs. 

It is easy to see that if n = 2, then (E1)c = E2 and (E2)c = E1. 

Hereafter, we will refer to a finite lottery ticket, as a “lottery ticket”.  

If the pay-offs are in utils, then we call the lottery ticket a “utilitarian lottery ticket”. 

If the pay-offs are in money units we call the lottery ticket an “uncertain prospect”. 

3. The calculus of subjective probability: In this section all prices and returns are measured in 
utils. 

A non-empty subset 𝔅 of 2S (i.e., power set of S) is said to be a Boolean algebra (of subsets of S) 
if and only if it satisfies the following properties: 

(a) S 𝔅 and 𝔅; 

(b) If E𝔅, then Ec 𝔅; 

(c) If E,F𝔅, then EF𝔅. 

A member of 𝔅 is said to be an event. 

Since for all E,F𝔅, EF = (EcFc)c, it must be the case that EF 𝔅. 



In particular, if for some positive integer n, (E1,...,En) is a partition of S, then the set 𝔅(E1,...,En) 
comprising of all unions in the partition (E1,...,En) and the null (empty) set, is said to be the 
Boolean algebra generated by (E1,...,En).  

A simple bet on an event E is (i) if Ec, an utilitarian lottery ticket ({E, Ec}, ) with (E) = 1 util 

and (Ec) = 0; and (ii) if Ec = , in which case E = S, the lottery ticket ({S}, ) with (S) = 1 util. 

Let P(E) a real number denote the price of a simple bet on an event E.  

If an agent buys a simple bet on an event E at a price P(E) then the agent gains 1-P(E) if the state 
of nature E occurs and gains –P(E) (i.e., loses P(E)) if the event E does not occur. 

A function P:𝔅ℝ which associates with each simple bet on an event E the price P(E) is called a 
price function. 

A function : 𝔅ℝ is said to be a (finitely additive) probability measure if the following 
conditions are satisfied: 

(i) (E)[0,1] for all E𝔅; 

(ii) (S) = 1, () = 0; 

(iii) For all E,F 𝔅 with EF = , it is the case that (EF) = (E) + (F). 

From (i) and (iii) it follows that for E,F𝔅, E  F implies (F) = (E) + (F\E). 

It follows from (iii) of the definition of a probability measure that for all E,F 𝔅 it is the case that 

(EF) = (E) + (F)-(EF). 

The reasoning is as follows: EF = E(F\E) where E(F\E) =  and F = (EF)(F\E) where 

(EF)(F\E) = . Thus, (EF) = (E) + (F\E) and (F) = (EF) + (F\E). Substituting for 

(F\E) from the second equation to the first we get, (EF) = (E) + (F)-(EF).  

A function X:Sℝ is said to be a random variable.  

For sS, X(s) is the realization of the random variable X at s. 

A random variable X is said to be finitely generated if there exists a finite partition {E1,…,En} if 

for all j{1,…,n} and s, s'Ej: X(s) = X(s') (= xk say). 

It is very easy to establish the following result. 

If X is a finitely generated random variable, then its mathematical expectation (in the sense of 

Kolmogorov) with respect to the probability measure  is given by ℇ(X) = ∑ x୨(E୨)
୬
୨ୀଵ . 

A price function P is said to be a de Finetti price function if there exists a probability measure 
such that for every event E the mathematical expectation of the gains from the simple bet on E is 
zero.  



Theorem 1: Every de Finetti price function is a finitely additive probability measure. 

Proof: Let P be a de Finetti price function. Then there exists a probability measure : 𝔅ℝ , such 
that for every event E if P(E) is the price of the simple bet on E, the expected gain in utils to the 
buyer of this simple bet is 0. 

Let X be the random variable such that X(s) = 1-P(E) if sE and X(s) = -P(E) if sEc. 

Thus, ℇ(X) = (E)(1-P(E)) + (1-(E)(-P(E)) = 0, i.e. P(E) =(E). 

This proves the theorem. Q.E.D. 

Thus, if P is a de Finetti price function, then P is said to be a subjective probability measure and 
for each event E, P(E) is said to be the subjective probability of E.  

Note that for each event E, P(E) is the “expectation with respect to P” of the simple bet on E 
interpreted as a random variable measured in utils. 

If ({E1,...,En}, ) is an utilitarian lottery ticket, then ℇ() is simply the expected return from the 
lottery ticket and may thus be interpreted as the price (according to de Finetti) of the utilitarian 

lottery ticket ({E1,...,En}, ) corresponding to the pricing function P. This interpretation requires no 

more than an application of the unitary method, since if for i{1,…,n}, P(Ei) is the price of a 
lottery ticket that yields 1 util if Ei occurs and nothing otherwise, then by the “linearity condition” 

(Ei)P(Ei) is the price of a lottery ticket that yields (Ei) utils if Ei occurs and nothing otherwise, 

and the utilitarian lottery ticket ({E1,...,En}, ) is simply a collection of ‘n’ such utilitarian lottery 
tickets.    

Given a subjective probability measure P and events G and E, since G is a disjoint union of GE 

and GEc, we know that P(G) = P(GE) + P(GEc). 

Thus, if P(G) > 0, then 1 = 
(ୋ)

(ୋ)
 + 

(ౙୋ)

(ୋ)
 

Given a subjective probability measure P and an event G with P(G) > 0, a function P(|G):𝔅ℝ is 
said to be a price function conditional on G and consistent with P if, for each event E, P(E|G)= 

ℇ(X(E|G)) with respect to P, where X(E|G)(s) = 1 if sEG, X(E|G) = 0 if sEcG and X(E|G) 

= P(E|G) if sGc. 

Since, ℇ(X(E|G)) = P(EG) + P(E|G)(1-P(G)), E(X(E|G)) = P(E|G) implies P(E|G) = 
(ୋ)

(ୋ)
.  

4.. Relationship between “utility function” for money and “Bernoulli utility function” 

Recall that the “utility function of monetary gains and losses” is a strictly increasing function of 
gains that assigns to each amount of gain of money its “use value” measured in utils and satisfies 
the property that the use value of zero monetary gains is zero utils. In this sense, as mentioned in 
the Introduction, utility is simply “use value”.  



Thus, consider an individual with initial monetary wealth w > 0 and suppose that the maximum 
gain that is possible for the individual is M > 0. Hence the set of possible gains for the individual is 
the closed interval [-w,M], where a negative gain denotes loss.  

Let : [-w,M] ℝ be a strictly increasing function satisfying (0) = 0 that denotes the “utility 
function of monetary gains and losses” the values of which are measured in “utils”.  

Consider the uncertain prospect ({E,Ec}, ), where (E) = (a monetary gain of ) x units, (Ec) = (a 
monetary gain of ) y. 

Given a subjective probability measure P, the use value (UV) of the uncertain prospect ({E,Ec}, ) 

is simply (x)P(E) + (y)(1-P(E)). 

Thus, expected utility of monetary gains and losses of an uncertain prospect ({E,Ec}, ), measures 
its use value. 

Given preferences over the set of alternatives, each of which are uncertain prospects, in [6] we 
provide a theorem, using a small number of very reasonable assumptions which are sufficient for 
the existence of a “von Neumann Morgenstern utility function” over the set of alternatives, that 
numerically represents the preferences. A von Neumann Morgenstern utility function over the set 
of all random returns of monetary gains and losses, assigns to each alternative the expectation- 
determined by it- of a “Bernoulli utility function of money”, the latter being a strictly increasing 
function of monetary gains and losses that assigns 0 to “zero gains”.  

There is the extremely realistic example related to portfolio diversification discussed in Section 1.1 
of the book by Eeckhoudt, Gollier and Schlesinger [4] which compels us to conclude that a 
“Bernoulli utility function of money”, may not always be a linear function of money with positive 
slope. In fact, the only interpretation of “expected monetary value” that is unconditionally 
justifiable in our framework, is that of the expectation of a “Bernoulli utility function of money” of 
a “hypothetical individual” whose utility function for money is linear and has a positive slope. 

In this section we establish a relationship between “the utility function of monetary gains and 
losses” and a “Bernoulli utility function of money” for individuals whose preferences over a set of 
alternatives, each of which are random returns of monetary gains and losses can be numerically 
represented by a function that assigns the “use value” for each alternative in the set as well as a 
“von Neumann Morgenstern utility function”. We call the former “UV representation” and the 
latter “von Neumann Morgenstern utility representation”.   

Let u: [-w,M] ℝ be a strictly increasing function satisfying u(0) = 0 be a “Bernoulli utility 

function of money”. Thus, if p[0,1] is the (subjective) probability of an event E occurring, then 

the expected Bernoulli utility (i.e., the “von Neumann Morgenstern utility”) of gaining x[-w,M] 

units of money if event E occurs and y[-w,M] otherwise, is pu(x) + (1-p)u(y). Similarly, if 

q[0,1] is the probability of an event F occurring, then the “von Neumann Morgenstern utility” of 

gaining z[-w,M] units of money if event F occurs and r[-w,M] is qu(z) + (1-q)u(r).  



Given two such alternatives, according to the “von-Neumann Morgenstern utility representation” 

the first alternative is “at least as good” as the second if and only if pu(x) + (1-p)u(y)  qu(z) + (1-
q)u(r). the first is “no different from” the second if and only if pu(x) + (1-p)u(y) = qu(z) + (1-q)u(r) 
and the first is “strictly preferred to” the second if and only if pu(x) + (1-p)u(y) > qu(z) + (1-q)u(r). 

On the other hand, according to the “UV representation”, the first alternative is “at least as good” 

as the second if and only if p(x) + (1-p)(y)  q(z) + (1-q)(r). the first is “no different from” 

the second if and only if p(x) + (1-p)(y) = q(z) + (1-q)(r) and the first is “strictly preferred to” 

the second if and only if p(x) + (1-p)(y) > q(z) + (1-q)(r). 

Suppose the preferences have a “von-Neumann Morgenstern utility representation” with Bernoulli 
utility function u, as well as a “UV representation”. 

Let x(0,M]. 

Then since  is a strictly increasing function satisfying (0) = 0, there exists (x)(0,1] such that  

(x) = (x)(M) + (1-(x))(0) = (x)(M). 

Thus (x) = 
(௫)

(ெ)
 

Thus, the UV of the prospect of gaining x units of money for sure is the same as the UV of the 

uncertain prospect of gaining M with probability (x) and nothing otherwise. Hence the prospect of 
gaining x units of money for sure “is no different from” the uncertain prospect of gaining M with 

probability (x) and nothing otherwise.  

Since we have assumed that the preferences have a “von Neumann Morgenstern utility 

representation”, it must be the case that u(x) = (x)u(M) = (x) 
௨(ெ)

(ெ)
. 

Let  = 
௨(ெ)

 (ெ)
 > 0. 

Thus, u(x) = (x) for all x[0,M].  

Now let x[-w,0). 

By a reasoning like the one above we get u(x) = (x) 
௨(ି௪)

௨௧ (ି௪)
. 

Let  = 
௨(ି௪)

 (ି௪)
 > 0. 

Thus, u(x) = (x) for all x[-w,0]. 

Towards a contradiction suppose   . 

Let x(0,M) and y[-w,0). Thus, x > 0 > y and hence (x) > 0 > (y). 

Let p = - 
(௬)

(௫)ି(௬)
. Clearly p(x) + (1-p) (y) = 0. 



Thus, according to the “UV representation”, the uncertain prospect which yields a gain of x if an 
event whose probability of occurrence is p, occurs and a loss of -y if the event does not occur is 
“no different from” the prospect that yields “zero gains” with probability 1. 

Thus, by our assumption the von Neumann Morgenstern utility of the uncertain prospect should 
also be ‘0’ (= u(0)), i.e., pu(x) + (1-p)u(y) = 0. 

However, pu(x) + (1-p)u(y) = p(x) + (1-p)(y) which combined with p(x) + (1-p)(y) = 0 
implies  

(a) pu(x) + (1-p)u(y) = p(x) + (1-p)(y) > 0 if  > ; 

(b) pu(x) + (1-p)u(y) = p(x) + (1-p)(y) < 0 if  < . 

If  > , then the uncertain prospect which yields a gain of x if an event whose probability of 
occurrence is p, occurs and a loss of -y if the event does not occur is “strictly preferred to” the 
prospect that yields “zero gains” with probability 1. 

If  < ,  the prospect that yields “zero gains” with probability 1 is “strictly preferred to” the 
uncertain prospect which yields a gain of x if an event whose probability of occurrence is p, occurs 
and a loss of -y if the event does not occur. 

In either case our earlier conclusion that the uncertain prospect which yields a gain of x if an event 
whose probability of occurrence is p, occurs and a loss of -y if the event does not occur is “no 
different from” the prospect that yields “zero gains” with probability 1.is violated. 

Hence, it must be the case that  = , i.e., the “Bernoulli utility function” is a linear and strictly 
increasing transformation of the utility function of monetary gains and losses.  

 5. Explanation of Paradoxical Behavior 

In this section, we will provide scenarios which have either been misunderstood or misrepresented, 
to justify the use of expected (monetary or Bernoulli) utility of gains and losses, instead of 
expected monetary values, in decision analysis. However, the very realistic example (considerably 
more realistic than the St. Petersburg Paradox) about a hypothetical individual by the name of 
Sempronius in section 1.1 of [4], shows that more non-linearity of the Bernouli utility function 
(and consequently the utility function for monetary gains and losses), are required for explaining 
the preference for a more diversified portfolio of assets over a less diversified one, than what is 
required simply for the purpose of explaining “loss aversion”.  

A major concern is about the frequent observation that a potential buyer of a fair bet may refuse to 
buy it, in the sense that the potential buyer may attach a negative price to such a lottery ticket. 
Why? 
The reason for this appears to us to be an asymmetry in the roles of the buyers and sellers. True to 
his word, the seller of a fair bet foresees the real possibility of an equal number of gains and losses 
on the utilitarian lottery tickets that he sells, whereas this is not the case with the buyer who may 
buy just one such ticket. A simple example may help to illustrate what we are trying to suggest. 



Consider a seller of lottery tickets, each of which yields its buyer a “gain” of $1/- if the toss of an 
unbiased coin shows up heads and the buyer incurs a “loss” of $1/- if the toss of the same coin 
shows up tails. As far as the seller is concerned the coin is an unbiased one and not loaded in 
favour of any outcome. Hence it would not be unreasonable for him to assume that he would gain 
$1 almost as many times as he would lose $1 and thus his net gain from selling such lottery tickets 
is zero. But how about a buyer of the lottery ticket who gets the opportunity to lose or gain from a 
toss of the unbiased coin exactly once? What the outcome of “that particular toss” is going to be is 
neither implied nor does it have any implications for the kind of observations that one would 
expect from multiple repetitions of the toss. The perspective of the buyer is completely different 
from that of the seller, since the question that confronts the buyer is: will the outcome of this toss 
be among the approximately 50% times “heads” show up or will the outcome of this toss be among 
the approximately 50% times “tails” show up? The price the buyer would be willing to pay for the 
lottery ticket would very likely depend on whether the buyer is an optimist or a pessimist, or what 
his mood is at the time of buying the ticket. While there may be definite results in physics which 
could determine the outcome of a coin toss on the basis of force, spin etc. of the toss, rarely are 
such considerations invoked when one has to decide on buying a lottery ticket or not – even if the 
potential buyer is a professional physicist. It is quite possible that the buyer may be feeling 
pessimistic at the moment, and seek a non-refundable compensation from the seller of the lottery 
ticket in case he did agree to participate in the lottery. Of course, it is important to note, that while 
the seller of the lottery ticket considers the two possible outcomes of the toss of the coin as heads 
and tails, the same is not true for the potential buyer. The potential buyer would very likely be 
viewing the two possible outcomes as lucky and unlucky or as a good day and a bad day or 
elements in the set {$1, $(-1)}. More formally, the potential buyer views the two outcomes as 
elements in the set {this particular toss is among the approximately 50% times “heads” show up, 
this particular toss is among the approximately 50% times “tails” show up}. It is precisely for this 
reason, that the subjective price or the de Finetti price of the event “less than or equal to zero” may 

be greater than 
ଵ

ଶ
, the latter being the de Finetti price of the event to the seller. 

 

A well-known but not well-recognized red-herring in decision-making theory is the so-called St. 
Petersburg paradox which led to Bernoulli utility functions and expected utility maximization. The 
experiment consists of repeated trials of an unbiased coin till the first head shows up. If the first 
head shows up on the nth toss, then the participant in this game gets $2n. How much should a 
person be willing to pay to play this game? While no reasonable person would be willing to pay 
more than a couple of dollars for it, apparently an expected monetary value maximiser should be 
willing to pay an unbounded sum of money to play the game, provided one believes the coin is fair 
and not loaded in favour of showing either heads or tails. However, the conclusion that a person 
would be willing to stake any amount of money that is conceivable, to participate in such a game, 
rests crucially on the assumption that simply because the person initially started off by believing 
that the coin under consideration is fair and unbiased continues to do so after no head has appeared 
till ‘n’ tosses, however large ‘n’ may be. Hence after observing a string of one million consecutive 
tails showing up – if that was humanly possible to endure – one would continue to abide by one’s 
initial belief that heads and tails would show up almost equally often. That clearly requires a 
“Giant Leap of Faith” – and absolutely nothing less. In fact, that such a game is on offer would 



make one suspect, whether the coin is “fair”, i.e., the two sides are indeed head and tail and/or the 
engineering behind the coin has not favoured any one side to show up more often than another.  
The approach using Kolmogorov (mathematical) probability on which the St. Petersburg paradox is 
based, is that there is no justification required for assuming an infinite sequence of independent and 
identically distributed (IID) random variables. It is perfectly consistent with mathematical 
probability to assume a sequence of randomizations to be IID even if such an assumption is 
inconsistent with science and/or empirical observations and it is the assumption of IID random 
outcomes of an unbiased coin in the St. Petersburg paradox which leads to the conclusion that the 

probability of the first head appearing after ‘n’ tails is (
ଵ

ଶ
)n+1 for all positive integers ‘n’. It is 

precisely this assumption that leads to expected monetary value being + of this so-called paradox 
proposed by Nicolas Bernoulli, who first stated it in a letter to Pierre Raymond de Montmort on 
September 9, 1713. However it was not he, but his cousin Daniel Bernoulli who is considered to be 
the pioneer of Expected Utility Theory with his arguments in the Commentaries of the Imperial 
Academy of Science of Saint Petersburg (1738) in favour of strictly increasing and bounded utility 
functions of money whose expectation rather than the expected monetary value he suggested as a 
criterion for choosing uncertain prospects. It is perfectly fine for us if the Bernoulli brothers or 
whoever else subscribes to the kind of probability theory that finds nothing unreasonable about the 

probability of the first head appearing after ‘n’ tails to be (
ଵ

ଶ
)n+1 for all positive integers denoted 

generically by ‘n’. The approach of subjective probability theory we subscribe to, unlike the 
approach adopted above, would allow the conditional probability of a head on the (n+1)th toss 

given tails on the previous ‘n’ toss, to be equal to 
ଵ

ଶ
 for n= 0,1,2, equal to 

ଵ

ସ
 for n = 3, 

ଵ

଼
 for n = 4 and 

the same to be equal to 0 for n ≥ 5. While expected utility maximization with an increasing and 
bounded utility function and IID Bernoulli random variables would theoretically accommodate the 
“mathematical madness” of the type that confused Nicolas Bernoulli, the subjective probability of 
the kind that leads to our more sober (gu-)es(s)timates, would recommend updating and evaluating 
probabilities and then using expected monetary value to evaluate lotteries/uncertain monetary 
prospects. In fact, we would be inclined to view the St. Petersburg paradox as an example against 
thoughtless invocation in social science of an infinite sequence of IID random variables with a 
well-behaved probability distribution, rather than a reason for expected utility theory. By this, we 
do not wish to cast aspersions on or deny “the possibly immense significance” of expected utility 
theory. Not at all. We simply do not view the St. Petersburg paradox as a valid argument against 
using expected monetary value as a reasonable evaluator of uncertain prospects, wherever it is 
applicable. 
For the uncertain prospect in the St. Petersburg paradox, the rational decision would be to offer no 
more than a dollar or two and that too for the sake of some entertainment, which is what most 
people would do. 
On the other hand, a very realistic example (considerably more realistic than the St. Petersburg 
Paradox) about a hypothetical individual by the name of Sempronius in section 1.1 of [4], shows 
the need for using expected utility instead of expected monetary value to evaluate the worth of 
uncertain monetary prospects. 
An apparent violation of expected utility that may challenge the confidence of mathematicians in 
“mathematical probabilities” but can be easily explained using subjective probabilities is available 



in [5], where we consider the example of a uniformly distributed random variable on the closed 
interval [0,1]. The first alternative on offer is a “huge” monetary loss if the random variable 
realises a rational number and a comparatively small monetary gain otherwise. For the same 
random, there is another alternative available which yields a modest monetary gain less than 
“comparatively small monetary gain” mentioned earlier if the random variable realises an irrational 
number and nothing otherwise. How such a random variable could be operationalised is also 
discussed in [5]. In fact, operationalizing a random variable which is uniformly distributed on the 
closed interval [0,1], may turn out to be easier than operationalizing an unending sequence of IID 
tosses of an “unbiased coin”.  
Most individuals- including mathematicians- rejected the first alternative considering it to be too 
risky, although the mathematical expectation associated with the first alternative was a positive 
gain greater than the mathematical expectation associated with the second alternative. The 
comparatively less mathematically trained individuals confessed that they were associating a 
probability of 1/2 to each of the two outcomes, thereby ending up with a huge expected loss for the 
first alternative as opposed to a positive expected gain for the second. Clearly, such probabilities 
disagree with those prescribed by the uniform probability distribution on [0,1], according to which 
the probability of realizing a rational number is ‘0’. Even mathematicians preferred to use 
subjective probabilities that were different from the mathematically “objective” probabilities, in the 
context of the experiment discussed in [5]. 

Acknowledgment: 

I am immensely grateful to Professor Kumaraswamy (Vela) Velupillai for sharing his paper (i.e., 
[10]) with me and for related comments. Many thanks for comments received from and discussions 
with Itzhak Gilboa and Professor Prasanta Pattanaik on an earlier version of the paper entitled 
“Subjective probability, risk aversion, expected value and utility of money”. I wish to thank M. 
Zheng and Klaus Kultti for their comments pointing to insufficient justification for an earlier 
version of the paper, which has hopefully been addressed now and to the latter for pointing out 
several typos (thank you so much!) as well as expressing discomfort about the discussion on the St. 
Petersburg Paradox in the last section of the paper. This paper is concerned with an “interpretation” 
of subjective probability, which makes its application meaningful in the context of some decision-
making problems under uncertainty and helps to explain some paradoxes in expected utility theory. 
I am grateful to Changhua Hu for this very concise and precise summary of the work presented 
here. All that I can say in defence of the “uncomfortable discussion” on St. Petersburg Paradox in 
the paper is, that when I don’t have much to lose by appealing to “common sense”, I prefer to do so 
than “just mindlessly fall in line”. H Bai (Shanxi University) raised concerns about lack of 
experimental evidence in this paper about the validity of expected utility theory. Such issues are 
discussed threadbare in [6]. A big and warm thank you to Rana Barua for being a constant source 
of encouragement and support in my mathematical (mis-?) adventures right from 1979 and much 
gratitude to Shovan Lal Kundu (till I lost contact with the latter) for the same.  

References 



[1] de Finetti, B. 1937: La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri 
Poincaré 7, 1-68. Translation reprinted in H.E. Kyburg and H.E. Smokler (eds.) (1980), Studies in 
Subjective Probability, 2nd edn (pp. 53-118). New York: Robert Krieger. 

[2] de Finetti, B. 1974: Theory of Probability, Vol. 1. New York: John Wiley and Sons. 

[3] de Finetti, B. 2017: Theory of Probability: A Critical Introductory Treatment. (Translated by 
Antonio Machi and Adrian Smith). Chichester, UK. John Wiley and Sons Ltd. 

[4] Eeckhoudt, L., C. Gollier and H. Schlesinger 2005: Economic and Financial Decisions Under 
Risk. Princeton University Press, NJ. 

[5] Lahiri, S. and S. Sikdar 2020: Choice procedures for uncertain prospects incorporating loss 
aversion. Mathematical Forum, Vol. 28, No. 2, Pages 29-35. 

[6] Lahiri, S. 2023: Expected Utility For Probabilistic Prospects And The Common Ratio Property. 
(Forthcoming in) Yugoslav Journal of Operations Research. 

[7] Nau, R. F. 2001: De Finetti Was Right: Probability Does Not Exist. Theory and Decision, Vol. 
51, Pages 89-124. 

[8] Ramsey, F. 1931: Truth and Probability. (In) The Foundations of Mathematics and Other 
Logical Essays, R.B. Braithwaite (ed.). London: Kegan Paul, Trench, Trubner, & Co. 

[9] Ramsey, F. 1980: Truth and Probability. (Reprinted in Studies in Subjective Probability, H. E. 
Kyburg, Jr. and H. E. Smokler (eds.), 2nd edition, New York: R. E. Krieger Publishing Company, 
pages 23–52). 

[10] Velupillai, K, 2015: de Finetti’s Theory of Probability and its Jayensian Critique. Economia 
Politica, Vol. 32, Pages  


