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Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating

character-speci�c identities and actions. However, previous T2V models struggle with identity consistency and

controllable motion dynamics, mainly due to limited �ne-grained facial and action-based textual prompts, and datasets

that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an e�cient

and high-�delity human video generation framework designed for identity preservation and �ne-grained motion

control. We introduce an ID-preserving module to maintain identity �delity while allowing �exible attribute

modi�cations, and further integrate ID-consistency and region-aware loss mechanisms, signi�cantly enhancing

identity consistency and detail �delity. Additionally, our approach incorporates a motion control module that prioritizes

action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large

language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize

motion intensity through a single coe�cient, allowing for easy adjustments. Extensive experiments highlight the

e�ectiveness of MotionCharacter, demonstrating signi�cant improvements in ID-preserving, high-quality video

generation.

Corresponding authors: Di Qiu, qiudihk@gmail.com; He Tang, hetang@hust.edu.cn

Qeios

qeios.com doi.org/10.32388/S2EWVR 1

mailto:qiudihk@gmail.com
mailto:hetang@hust.edu.cn
https://www.qeios.com/
https://doi.org/10.32388/S2EWVR


Figure 1. Given a single reference facial image, MotionCharacter can generate identity-consistent video outputs across text

prompts, action phrases, and motion intensities. The upper section demonstrates its capability to accurately follow speci�c

action phrases, while the lower section highlights its �ne-grained motion control achieved by varying user-de�ned motion

intensities.

1. Introduction

High-quality, personalized, and controllable human video generation has gained signi�cant traction, with applications

spanning social media, virtual avatars, and personalized content creation. Recent advancements in text-driven video

generation models[1][2][3][4][5][6][7][8][9][10][11]  have driven substantial progress in this �eld, yet several challenges

remain, particularly in maintaining identity consistency and achieving �ne-grained control over motion instructions. In

response, recent approaches[12][13][14][15][16]  in subject-driven Text-to-Video (T2V) generation have explored ways to

address the challenge of producing high-quality videos that accurately depict speci�c individuals while following motion

instructions consistently.

However, most of these approaches rely on separate training for each identity (ID), limiting their scalability and �exibility

in practical applications. Some works such as ID-Animator[16] have advanced the �eld by enabling identity-speci�c video

generation using any reference facial image without requiring additional �ne-tuning, but it still lacks the ability to �nely

control the intensity of motion, constraining its responsiveness to nuanced motion prompts. This limitation underscores

the need for methods that can o�er both identity preservation and precise motion control in T2V generation. Besides, the

typical prompts provided by users to T2V models include descriptions of the entire video content, encompassing scene

details and human motion. However, text-based prompts alone are often insu�cient to capture �ne-grained motion

dynamics accurately. For example, phrases like “open mouth” or “eyes closed” omit key details such as movement speed
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or intensity, which are essential for nuanced motion dynamics. While a more intuitive approach might be to use motion-

only prompts, current T2V models exhibit limited sensitivity to such concise motion instructions, often failing to re�ect

the intended subtleties in generated videos. In addition, the existing facial text-video datasets such as CelebV-

Text[17]  primarily focus on emotional changes, neglecting essential human attributes and actions, rendering them

inadequate for identity-preserving video generation tasks.

In this paper, we propose MotionCharacter, a human video generation framework speci�cally designed for identity

preservation and �ne-grained motion control. To achieve high-�delity and identity consistency for human video

generation, we introduce an ID-preserving module and employ a combination of face embedding and CLIP[18] embedding,

allowing the model to retain high identity �delity while also being �exible enough to accommodate dynamic modi�cations

of attributes such as expressions or actions based on user prompts. Additionally, we integrate a composite loss function

that incorporates both ID-consistency loss and region-aware loss components that direct the model’s attention to critical

facial regions, addressing common issues like distortion or blurriness in features such as lips and teeth, and enhance

identity consistency and detail �delity in personalized T2V generation.

To enhance the model’s responsiveness to motion instructions, we introduce a specialized motion control module that

prioritizes action-related text cues while preserving identity consistency throughout the video sequence. Complementing

this module, we present a new dataset, Human-Motion, which employs large language models (LLMs) to produce

comprehensive and nuanced motion descriptions tailored for identity-preserving video synthesis. Furthermore, to

facilitate user control over motion dynamics, we introduce a parameterized motion intensity coe�cient, allowing users to

easily adjust the scale of movement during inference. Together, these advancements improve the model’s ability to

accurately follow motion instructions and generate realistic, personalized content. Through extensive experiments, we

present qualitative, quantitative, and user study results that validate the e�ectiveness of our method in terms of identity

consistency and adherence to motion instructions. In summary, our contributions are as follows:

We propose a framework, named MotionCharacter, designed to enhance identity consistency and �ne-grained motion

controllability in human video generation.

We introduce a motion control module that prioritizes action-related text while maintaining subject consistency, which

enables more precise control over motion dynamics and improves the generation of high-quality human videos based

on textual descriptions.

We propose region-aware loss to improve attention to critical facial regions, ensuring high-quality and identity-

preserving video generation while maintaining accurate motion dynamics.

2. Related Work

Text-to-Video Di�usion Model

Recent advancements in di�usion models[19][20][21] have positioned them as a prominent method in generative modeling,

especially in text-to-video (T2V) generation. The Video Di�usion Model[1]  was among the �rst to utilize a space-time-

factored U-Net architecture for unconditional video generation, e�ectively modeling video distributions in pixel space.

Building on this, AnimateDi�[2] advanced the �eld by incorporating a motion module into the Stable Di�usion framework,
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enhancing its ability to generate videos from textual prompts. Subsequent developments included Imagen Video[3]  and

Make-a-Video[4], which introduced sequential models for T2V generation, focusing on pixel-space representations. In

response to the challenges associated with high-dimensional video data, latent video di�usion model[5]  proposed

leveraging latent di�usion models to operate within the latent space of an auto-encoder. This latent approach has gained

traction, leading to a proliferation of methods such as ModelScope[6], LAVIE[7], MagicVideo[8], VideoCrafter[9][10], each

contributing to the ongoing evolution of T2V models and their applications.

Identity-Preserving Image Generation

The task of identity-preserving image generation aims to synthesize visual content that maintains the unique

characteristics of a speci�c individual while allowing for variations in pose, expression, and other attributes. Most

techniques focus on facial images, using methods like texture-based approaches and latent space manipulation to preserve

identity. While �ne-tuning methods such as Low-Rank Adaptation[22], Textual Inversion[23], and DreamBooth[24]  can

customize models for ID-speci�c images, they often require dedicated training for each identity. Recent approaches utilize

embeddings as conditional inputs to guide the generation process, enabling explicit identity control. For example, IP-

Adapter[25]  integrates an adapter module with identity embeddings into a pre-trained model for e�cient identity

preservation. PhotoMaker[26]  stacks multiple images to mitigate identity-irrelevant features. InstantID[27]  allows real-

time, identity-speci�c generation with a lightweight architecture, reducing the need for case-speci�c training.

PuLID[28] employs a multi-stage process to re�ne identity embeddings, enhancing �delity and visual quality.

Subject-Driven Text-to-Video Generation

Subject-driven text-to-video generation aims to incorporate speci�c characters or subjects into synthesized videos while

allowing for text-based control over actions, styles, and sequences. Previous methods such as VideoBooth[12],

DreamVideo[13], MagicMe[14], and CustomCrafter[15] have explored learning-based frameworks to combine visual identity

with motion dynamics. However, these approaches often require separate training for each individual, which can limit

their scalability and �exibility. In contrast, the recent development of ID-Animator[16]  has demonstrated the ability to

achieve zero-shot, training-free capabilities, allowing for identity incorporation without extensive retraining.

Nonetheless, this method still lacks �ne-grained control over motion intensity. Speci�cally, the inability to adjust the

strength of movements can hinder the model’s e�ectiveness in generating realistic and dynamic animations that align

with user speci�cations. In response to these limitations, our approach, MotionCharacter, enables simultaneous control of

both appearance and motion without necessitating retraining during inference, thereby enhancing the usability and

e�ciency of subject-driven video generation.
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Figure 2. Framework overview. Our proposed framework comprises three core components: the ID-Preserving Module, the

Motion Control Module, and a composite loss function. The loss function incorporates a Region-Aware Loss to ensure high

motion �delity and an ID-Consistency Loss to maintain alignment with the reference ID image. During training, motion

intensity   is derived from optical �ow. At inference, human animations are generated based on user-de�ned motion

intensity   and speci�ed action phrases, enabling �ne-grained and controllable video synthesis.

3. Methodology

3.1. Problem Formulation

Personalized human video generation aims to create vivid clips consistent in character identity and motion based on a

reference image and text prompt. To achieve this goal, we propose a novel model named MotionCharacter which accurately

re�ects identity information, captures action-based motion, and maintains smooth visual transitions. Formally, given a

reference ID image  , a text prompt  , an action phrase  , and a motion intensity  , the model   is designed to produce

video   by:

Technically, we elaborately design the structure from two aspects, ID-Preserving Optimization and Motion Control

Enhancement. Besides, we propose a new Human Motion dataset which is specially curated and annotated for training

high-�delity human video generation.

3.2. ID-Preserving Optimization

ID Content Insertion

Since the adopted pretrained text-to-video (T2V) di�usion model[2] lacks identity-preserving capabilities, we �rst intend

to introduce an ID-Preserving Adapter into the backbone to emphasize identity-speci�c regions and reduce irrelevant

M

M

I P A M F

V

V = F(I , P, A, M). (1)
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background interference. As illustrated in Fig. 2, the ID-Preserving Adapter extracts the identity embedding   from the

reference image   and injects the identity embedding   into the di�usion model through cross-attention.

Speci�cally, the face region is �rst isolated from the reference image   to �lter the interference of the background region.

Then the face region image is processed in parallel to a pre-trained CLIP image encoder[18] and a face recognition model

ArcFace[29]  to obtain the broad contextual identity embeddings    and the �ne-grained identity embeddings  ,

respectively. To e�ectively combine global context with �ne-grained identity details, we employ cross-attention to fuse

the CLIP and ArcFace embeddings:

where  ,  , and   are learnable parameters, with   as the query and the combined embedding   as

the key and value. Following cross-attention, a projection layer Proj is applied to align the dimension with the text

embedding, thereby generating the �nal identity embedding   for the reference image  .

Inspired by recent work on image prompt adapters[25][27], the identity embedding   in MotionCharacter is regarded as

an image prompt embedding and is used alongside text prompt embeddings to provide guidance for the di�usion model.

This procedure can be expressed as:

where the parameter    controls the balance between text guidance and identity preservation. Here,    is derived

from the latent representation  , while   and   are identity-speci�c key and value matrices obtained

from the identity embedding   of the reference image  . Similarly,  , and   are the key and value matrices for the text

cross-attention.

ID-Consistency Loss

Current stable di�usion models are usually trained with the MSE loss over each pixel, which is insu�cient to ensure

identity preservation between the reference image and the generated videos. To address this issue, we introduce an ID-

Consistency loss during training phase to maintain the identity information.

Speci�cally, at a speci�c di�usion step  , the di�usion model can estimate the noise-free latent    from a noisy latent 

 by DDIM reversion process. Then, the estimated   is passed to a VAE decoder to reconstruct the frame, denoted as  .

Therefore, the ID-Consistency loss   across the sequence of   frames can be calculated by:

where    denotes the dot product,    denotes the face recognition backbone[29],    and    represent the face

embedding of each generated frame   and the reference identity image  , respectively.

3.3. Motion Control Enhancement

Although text prompt embedding shows control capacity to some degree, it is still insu�cient to capture �ne-grained

motion dynamics. To address this challenge, we propose a spatial-aware motion control module with motion intensity to
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enhance the controllability. Besides, a region-aware loss is employed to enhance spatial coherence and realism in dynamic

regions such as the face.

Motion Control Module

We regard the control capacity of the model as lying in two aspects: one is the faithfulness of the motion description, and

the other is the magnitude of motion intensity. To achieve this goal, we introduce extra action phrase and motion intensity

as the conditions in the proposed model.

We �rst extract the action phrase   from the original text prompt  , for example, “talking” from “a man is talking”. We

resort to MiniGPT[30]  to implement this extraction process automatically. Then the action phrase is fed to CLIP text

encoder[18] to obtain the action embedding   which captures the semantic intent of the motion.

Considering the magnitude of motion intensity is hard to de�ne directly, we employ an optical �ow estimator to extract

the optical �ow magnitude of the video as the motion intensity. Speci�cally, given a video clip  , where   is

the number of frames, we �rst extract the optical �ow of each pixel between two adjacent frames by:

where    denotes the position of each pixel, and    is an optical �ow estimation model. We use RAFT[31]  as    for

e�cient and accurate optical �ow estimation. Then the mean optical �ow value   can be calculated by simply averaging 

. Afterward, we take    as the threshold to produce binary mask  . Speci�cally, when the magnitude of the

optical �ow exceeds  , set the corresponding position in    to 1; otherwise set it to 0. Consequently, the mean

foreground optical �ow value   can be easily obtained by:

where    is the foreground optical �ow at each pixel  .    denotes the number of the foreground pixels. The

motion intensity   of the video is de�ned as follows:

Subsequently, motion intensity   is projected through a multi-layer perceptron (MLP) to generate a motion embedding 

 aligned with the dimensionality of the action embedding  .

As illustrated in Fig. 2, two parallel cross attention modules (Cross Attn and Motion Attn) are adopted in the motion

control module to insert the action embedding    and motion embedding  . The process is formally represented as

follows:

where    is relevant with the output of ID-Preserving Module.  ,    and  ,    are the key-value pairs

derived from the action embedding    and the motion embedding  , respectively. The parameter    balances the

in�uence of motion intensity within the combined attention output  .
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Method Dover Score Motion Smoothness Dynamic Degree CLIP-I CLIP-T Face Similarity

IPA-PlusFace[25] 0.797 0.985 0.325 0.587 0.218 0.480

IPA-FaceID-Portrait[25] 0.849 0.984 0.191 0.545 0.223 0.531

IPA-FaceID-PlusV2[25] 0.813 0.987 0.085 0.575 0.217 0.617

ID-Animator[16] 0.857 0.979 0.433 0.607 0.204 0.546

Ours 0.869 0.998 0.449 0.633 0.227 0.609

Table 1. Comparison of di�erent methods across multiple metrics. Higher values indicate better performance, with the best

scores in bold and the second best in underline. It is important to note that all methods were con�gured with an empty

action phrase and a motion intensity setting of 20 for a more dynamic e�ect.

Region-Aware Loss

The �uency of the generated video heavily relies on the spatial coherence and realism of dynamic regions, e.g. the face

areas. To achieve this goal, we apply a region-aware loss to force the model to focus more on the high-motion regions.

Speci�cally, we normalize the foreground optical �ow    de�ned in Eq. (6) and calculate the optical �ow mask 

:

where    restricts the values into  . The high-motion areas will be assigned a greater value than the low-

motion regions. Then the region-aware loss   across all   frames can be compactly de�ned as:

where   and   denote the target and predicted noise at location  , respectively.   and   correspond to

the resolution of latent.

3.4. Training Paradigm

Human-Motion Dataset

To support high-quality video generation, we constructed a diverse dataset named Human-Motion, comprising 106,292

video clips from various public and private sources. This collection includes VFHQ[32] (1,843 clips), CelebV-Text[17] (52,072

clips), CelebV-HQ[33] (31,004 clips), AAHQ[34] (17,619 clips), and a private dataset, Sing Videos (3,752 clips). Each clip in

the Human-Motion dataset was rigorously �ltered and re-annotated to ensure high-quality identity and motion

information across diverse video formats, resolutions, and styles.
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To enrich the dataset with motion-related information, we used MiniGPT[30]  to automatically generate two types of

captions for all videos: overall descriptions and action phrases. The overall descriptions provide a general summary of the

video’s content, while the action phrases o�er speci�c annotations of facial and body movements present in the clips.

These captions serve as the primary text description   and action phrase   in our framework.

Image-Video Training Strategy

To improve the model’s generalization across di�erent visual styles, we combined image and video data in training. While

realistic videos e�ectively capture human portraits, they struggle with stylized and artistic content, such as anime. To

bridge this gap, we incorporated around 17,619 styled portrait images as static 16-frame videos by replicating each image

to simulate a motionless sequence with a motion intensity of 0. This approach addresses the challenge of generalizing to

stylized portraits by expanding the model’s exposure to a wider spectrum of visual characteristics, including variations in

texture, color, and artistic exaggeration common in non-realistic styles. By training on both static styled images and

dynamic realistic videos, the model learns to preserve identity traits across photorealistic and stylized visual

representations, improving its ability to generalize across di�erent visual styles.

Overall Objective

The total learning objective combines the Region-Aware Loss, which captures dynamic motion in high-activity regions,

and the ID-Consistency Loss, which ensures identity consistency across frames. This dual objective guides the model to

preserve both identity and motion �delity in the generated videos. The total objective function,  , is de�ned as:

where    guides the model to capture dynamic motion in high-activity regions, and    ensures identity consistency

across frames. The hyperparameter   balances the in�uence of identity preservation against motion �delity.

P A

Ltotal

= + β ⋅ ,Ltotal LR Lid (11)

LR Lid

β
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4. Experiments

4.1. Experiment Setup

Figure 3. Qualitative Comparison. Comparison of our method with other approaches across diverse prompts and unseen

reference images, encompassing various identities (male, female, celebrity, non-celebrity). Each column represents a

unique identity and action phrase, with motion intensity �xed at 20 for clarity. “null” indicates a blank action phrase. Key

prompt elements are highlighted in underline to emphasize speci�c actions or descriptors. For other methods, the action

phrase and motion intensity are incorporated with the prompt to guide generation. To simplify notation, we abbreviated

method names on the far left by omitting the common “FaceID” �eld, resulting in labels like IPA-Portrait.
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Implementation Details

Our implementation is built upon a large-scale pre-trained Video Di�usion Model (VDM)[2]. All experiments were

conducted using 8 NVIDIA A100 GPUs (80GB), with the training process taking approximately 24 hours. The batch size was

set to 2 for each GPU. The training data consisted of diverse video clips, which were preprocessed to a resolution of 

 pixels, with 16 frames sampled per video at a frame rate of 4 frames per second. Data augmentation included

random horizontal �ipping, resizing, and center cropping to maintain consistent input dimensions. Moreover, text and

image dropout rates were set to 0.05, with a 50% probability of dropping the CLIP embeddings  . We used the

AdamW[35] optimizer with a learning rate of   and trained the model for 12,000 steps. For the validation, 16-frame

video sequences were generated at a   resolution, applying a guidance scale of 8.0 and 30 steps.

Datasets

For training, we constructed a dataset of 106,292 video clips from various sources. We detail the composition and

annotation process in Sec.  3.4. For evaluation, we used the open-source Unsplash-50 test set[36], which includes 50

portrait images sourced from the Unsplash website. For each reference image, we generated 140 prompts using GPT-4[37],

yielding a total of 7,000 prompt-image pairs for calculating evaluation metrics.

Evaluation Metrics

We assess the quality and consistency of generated videos using six key metrics. The Dover Score[38] assesses overall video

quality, considering technical and aesthetic factors. Motion Smoothness[39] evaluates the continuity of movement between

frames, while Dynamic Degree[39]  indicates the extent of motion diversity in the video. CLIP-I[40][41]  measures visual

similarity to the reference using the CLIP encoder[18], and CLIP-T[40][41]  evaluates the alignment between the video

content and the text description. To assess identity preservation, we calculate Face Similarity[41], which measures the

resemblance between the facial features in the reference image and the generated video.

4.2. Comparison with Baselines

We employ four well-known methods in ID-preserving generation task for comparison, i.e., IPA-PlusFace[25], IPA-

FaceID-Portrait[25], IPA-FaceID-PlusV2[25] and ID-Animator[16]. They all adopt AnimateDi�[2] as the base text-to-video

generation model.

Qualitative Comparisons

We choose six di�erent individuals covering celebrities and common individuals, and produce corresponding text prompts

using GPT-4[37]  to present a fair comparison. As illustrated in Fig. 3, the upper videos are generated with “null” action

phrase while the bottom videos are generated with “smiling”. Obviously, our proposed MotionCharacter yields superior

results in identity consistency and motion control ability. The frames generated by IPA-FaceID-Portrait are less similar to

the reference image, and IPA-PlusFace and IPA-FaceID-PlusV2 cannot maintain the consistency in generated video

frames. Compared to ID-Animator, our method shows better capacity to align the prompt and identity information, while

ID-Animator fails to present “glasses” in the generated videos.

512 × 512

Eclip

1 × 10−5

512 × 512
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Quantitative Comparisons

We also perform quantitative comparison with these ID-persevering methods across key metrics, including Dover Score,

Motion Smoothness, Dynamic Degree, CLIP-I, and CLIP-T. As the results shown in Table 1, IPA-PlusFace performs well in

Motion Smoothness but shows limited motion diversity. While IPA-FaceID-PlusV2 achieves the highest Face Similarity

score, it compromises motion diversity. ID-Animator shows limitations in alignment between the video content and the

text description. In contrast, our method maintains high identity consistency while producing more dynamic motion.

User Study

We recognize that the CLIP score[40][41]  may not consistently align with human perception[42][43]. To address this, we

conducted a user study to compare the quality of videos generated by our model against baselines. Participants viewed clips

generated with varying action phrases and intensity levels, rating the top method on identity consistency, motion

controllability, and overall video quality. We then calculated the percentage distribution across all methods. As shown in

Fig. 4, our method was consistently preferred by users. This feedback aligns with our quantitative results, demonstrating

its superior balance of identity preservation, motion control, and visual �delity compared to baselines.

Figure 4. User study results comparing our method with baselines across three evaluation criteria: identity

consistency, motion controllability, and overall video quality.
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Figure 5. Ablation study on the e�ects of Region-Aware Loss   and ID-Consistency Loss  .

4.3. Ablation Study

Region-Aware Loss

Fig. 5 illustrates the impact of Region-Aware Loss in addressing motion blur and object distortion. In the ”Vanilla” model

(top row) without Region-Aware Loss, high-motion regions like the lower corner of the glasses frame show noticeable

distortion, compromising structural integrity. By adding Region-Aware Loss (middle row), the model better preserves

structure in dynamic areas, resulting in clearer and more stable motion.

ID-Consistency Loss

The bottom row of Fig. 5 demonstrates the e�ect of adding ID-Consistency Loss on top of Region-Aware Loss. This

combination signi�cantly enhances the retention of identity-speci�c features, increasing facial similarity to the reference

ID image. Furthermore, it better preserves facial detail characteristics (e.g., skin tone), resulting in improved overall facial

integrity.

LR Lid
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Figure 6. Ablation study on the e�ects of Motion Control Module.

Motion Control Module

To evaluate the e�ectiveness of the Motion Control Module (MCM), we conducted an ablation study, holding all training

and inference parameters constant while isolating the MCM’s contribution. Speci�cally, we trained models both with and

without the MCM, leaving all other modules unchanged. As shown in Fig. 6, the model with the MCM generates videos that

follow action prompts more precisely, with enhanced clarity and sharper motion details. This improvement demonstrates

that the MCM signi�cantly boosts the model’s ability to capture nuanced action dynamics, achieving smoother transitions

and more lifelike motion �delity in the generated outputs.

5. Limitations

While our framework achieves signi�cant performance in identity-consistent and controllable Text-to-Video (T2V)

generation, it has limitations in handling highly complex or intricate motion sequences, where �ne-grained motion

dynamics may not be captured e�ectively. Additionally, the framework’s performance is inherently dependent on the

capabilities of the underlying T2V base model, which can limit the quality of generated videos. As T2V base models

advance, our approach is designed with potential adaptability in mind; future iterations may leverage more powerful video

foundation models, such as CogVideo-X[44], to enhance generalization and video �delity in increasingly demanding

scenarios.

6. Conclusions

In this paper, we propose a framework named MotionCharacter for human video generation that emphasizes identity

consistency and precise motion control. We introduce the ID-Preserving Module, which ensures stable identity

representation across frames, enhancing identity �delity in the generated video. Additionally, we present the Motion

Control Module, allowing nuanced adjustments of action phrases and motion intensity for �ne-grained motion dynamics.

To further improve model’s performance, we leverage the region-aware loss, which reinforces �delity in high-motion
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regions and achieves improved identity coherence. The Human-Motion dataset with detailed motion annotations

enhances our model’s adaptability to diverse prompts. Comprehensive evaluations con�rm the e�ectiveness of our

method in generating lifelike, personalized videos that accurately capture the speci�ed actions and motion intensities.

Appendix A. Additional Dataset Analysis

To build the Human-Motion dataset, a multi-step pipeline was developed to ensure the collection of high-quality video

clips. The detailed process is illustrated in Fig. I.

A.1. Video Sources

Our data sources comprise video clips from diverse origins, including VFHQ[32], CelebV-Text[17], CelebV-HQ[33], AAHQ[34],

and a private dataset, Sing Videos. Each clip was carefully �ltered and re-annotated to ensure high-quality identity and

motion information across various formats, resolutions, and styles.
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Figure I. The building process of the Human-Motion Dataset.

A.2. Filtering Process

To maintain data quality, a multi-step �ltering process was applied:

Visual Quality Check: We used CLIP Image Quality Assessment[45]  (CLIP-IQA) to evaluate visual quality by sampling

one frame per clip, discarding videos with frames of low quality.

qeios.com doi.org/10.32388/S2EWVR 16

https://www.qeios.com/
https://doi.org/10.32388/S2EWVR


Resolution Filter: Videos with resolutions below 512 pixels were removed to uphold visual standards.

Text Overlay Detection: EasyOCR[46]  was used to detect excessive subtitles or text overlays, �ltering out obstructed

frames.

Face Detection: Videos containing multiple faces or low face detection con�dence were discarded to ensure each video

contains a single, clearly detectable person.

A.3. Captioning

To enrich motion-related data, we utilized MiniGPT[30] to automatically generate two types of captions for each video:

Overall Descriptions  : General summaries of the video content.

Action Phrases  : Detailed annotations of facial and body movements, serving as action phrases   in our framework.

This dual-captioning strategy enhances the dataset by providing both global context and speci�c motion dynamics,

equipping the model to generate identity-consistent human video clips with controllable action phrases.

A.4. Optical Flow Estimation

Optical �ow estimation for video is performed using the RAFT[31]  model on consecutive frames to compute motion

information. The RAFT model calculates the optical �ow �eld, representing pixel displacements between frames. In this

study, we use the extracted optical �ow to obtain motion information for each video segment, enabling accurate motion

modeling and control. These optical �ows are used to compute motion intensity during the training phase and are also

utilized in optimizing the loss function.

A.5. Motion Intensity Resampling

To balance the training dataset, we resampled the videos based on their motion intensity values, measured within a range

of 0 to 20. Speci�cally, we adjusted the sampling to ensure that videos across di�erent motion intensity levels are more

evenly represented within this range, balancing the distribution of videos across varying degrees of motion. For videos

with motion intensity values exceeding 20 (which constitute a minority within the dataset), we capped their motion

intensity at 20. This approach creates a more balanced distribution of motion intensity levels across the dataset.

A.6. The Human-Motion Dataset

The Human-Motion dataset consists of 106,292 video clips sourced from various datasets, including VFHQ[32]  (1,843

clips), CelebV-Text[17] (52,072 clips), CelebV-HQ[33] (31,004 clips), AAHQ[34] (17,619 clips), and a private dataset, Human

Videos (3,752 clips). Each clip was rigorously �ltered and re-annotated to ensure high-quality identity and motion

information across diverse formats, resolutions, and styles.

Notes

Project page: https://motioncharacter.github.io/

Haopeng Fang conducted this work during an internship at Meituan.
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