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ABSTRACT 

Spatial dynamics are important in ecology because they provide insights into a myriad of spatial 

phenomena. Factor of these phenomena include the significant impact of habitat architecture 

and environmental variability on animal species survival, persistence, and harmony. To 

describe these complex spatial patterns, researchers are increasingly turning to reaction-

diffusion systems as a valuable tool. One especially intriguing aspect of ecological research is 

understanding how the spatial implications of diffusion influence the dynamics of Hantavirus 

infection, with a particular emphasis on its interaction with alien predators and rodent species 

within a confined environment. When the diffusion constant, D and the spatial distance, x are 

taken into account, the relationship between diffusion and Hantavirus infection dynamics 

becomes very fascinating. When both D and x are relatively small, a remarkable phenomenon 

emerges: Hantavirus infection tends to reduce or even disappear within the ecosystem. This 

complex interaction of geographical dissemination and infection dynamics highlights the 

fragile balance that governs species coexistence within shared habitats. This research helps 

develop effective conservation strategies and provides critical knowledge for disease 

management and mitigation efforts, resulting in a more peaceful coexistence of humans, 

wildlife, and their ecosystems. 
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INTRODUCTION 

Hemorrhagic Fever Syndromes (HFRS and HPS) are illnesses triggered by Hantaviruses which 

are a borne zoonotic agents carried by rodents Hantaviruses are harbored by various   of rodent 

species and worldwide without causing harm to harm hosts.  

According to data from 2000, HFRS caused by the Hantaan virus had a mortality rate 

ranging from approximately 5% to 15%, while HPS resulting from the Sin Nombre virus was 

estimated to have a fatality rate exceeding 45% [1]. From 2005 to 2010, the most substantial   

occurrences human hantavirus infections were   documented in Finland, Sweden, and Germany, 

reaching respectively peaks of 3259, 2195, and 1688 cases [2]. Abramson and Kenkre [3] 

introduced a basic mathematical model that considers rodent population decay due to mortality, 

population growth through births, and the impact of environmental factors to maintain 

population stability. The simulation outcomes of Abramson and Kenkre [3] mathematical 

framework can replicate two experienced characteristic of hantavirus affiliation in the field. 

The infection can vanish entirely from the rodent population in cases of unfriendly 

environmental situations, re-emerging only when these situations boost. Additionally, there is 

a spatial aspect, manifesting as localized infection "refugia" within the rodent population. These 

refugia have the capacity to either expand or contract, ultimately have an effect on the 

transmission of the infection to different regions [3]. The modeling for hantavirus has been 

explored by various researchers including [4]–[13] 

            Barbera et al. [14], Kumar et al. [15], and Kumar et al. [16] analyzed the Abramson and 

Kenkre model with spatial components. Kumar et al. [15] investigated the Allee phenomenon, 

with a focus on subcritical pitchfork bifurcation rather than the critical transition in infectious 

disease propagation. As the system under study is not symmetric under reflection, they state 

that the bifurcation is imperfect. The results revealed environmental spatial patterns 

(modulations) in homogeneities. The bifurcation they discovered was more evident when 

computing the average population densities, providing a linkage between the landscape 

structure of species’ resource habitats and the surrounding matrix [15]. They demonstrated the 

presence of a critical spatial modulation wave number, at which point the system's behavior 

undergoes a profound shift, exhibiting bistable behavior contingent upon the initial conditions. 

In Kumar et al.’s [16] explores of infection, they concentrating on issues related to spatially 

dependent environmental component. Their research determined to establish   a mathematical 

concept for understanding the reactions and behaviors of rodents with hantavirus interaction 

through time. 
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Barbera et al. [14] studied a hyperbolic reaction-diffusion paradigm to analyze the 

dynamics of hantavirus infection within the rodent populations of. They proposed this 

hyperbolic reaction-diffusion model to describe the hantavirus contagion in the rodent 

population and analyzed the steady value solutions for both structured and unstructured 

perturbations.  The results of numerical simulation showed that the transmission of hantavirus 

pathogen is closely linked to an environmental parameter that characterizes the medium's 

capacity to sustain the rodent population.  

 In a natural ecosystem, rodents will usually need to share with others species that shall 

be called predator species. The populations of rodent and predator move from one spatial 

location to another to find the necessary resources (food, water, temperature, light, shelter). 

Consequently, the range of the rodents and predators are broad, comprising a various landscape 

by a diversity of habitats.  

 Reaction-diffusion equations were first introduced into the field of Ecology by [17]. 

According to Mohd [18], a reaction-diffusion system is defined as a spatial model that treats 

space as a continuum and depicts the population densities of interacting species over time. It 

arises naturally in systems consisting of many interacting components and is extensively used 

to illustrate pattern-formation phenomena in an assortment of chemical, physical, and biological 

systems. Mohd and Abu Hasan [19] stated that the existence of a diffusion mechanism in 

predator-prey interplay can change the attributes of the complete model. 

Mohd and Abu Hasan [19] studied the spatial effect of diffusion and boundary on the 

extinction and persistence phenomena of species, using energy estimates. By using the classical 

energy method, it was shown that the occurrence of energy decays exponentially in the long 

run through the construction of the invariant region of the model. The results showed that the 

extinction of prey and predator populations occurs. When, .Meanwhile  both 

populations persist. For additional studies of the diffusion prey-predator models considered 

here, see [20-22].  

Reaction-diffusion modeling has widespread applications across divers fields, 

extending beyond biology. The equations are in the form of semi-linear parabolic differential 

equations, which emphasize their versatility in solving problems in chemistry, physics, and 

social sciences. McCarthy et al. [23] investigated the stability of long-term gene regulation in 

an early Drosophila embryo using a simple reaction-diffusion model. They incorporated 

transcription rate, mRNA diffusion and decay rate, translation rate, and protein diffusion and 

decay rate within the model. Gnerucci et al. [24] published results on the scratch assay 

.12p
>D 2

1
p

<<D



 4 

microscopy used in the ‘in vitro’ technique applying the reaction-diffusion equation for 

common data and instruments. They are taking this approach to bridge the gap between simpler 

modeling and complex approaches. Galochkina et al. [25] studied the reaction-diffusion waves 

in blood coagulation employing a simplified one-equation method. Li and Sun [26] explored 

the dynamical behavior of a river network employing a reaction-diffusion model for one 

dimension, with two branches having the water flow at a constant speed. Zhao [27] investigated 

the application of reaction-advection-diffusion modeling on a one-dimensional urban crime 

system. Reaction-diffusion modeling is extensively studied in various fields, including biology 

[28-29], imaging [30], and computer viruses [31]. 

In this paper, reaction-diffusion systems are employed to investigate spatial effects, 

including the movement of rodent and alien (as predator) populations between different spatial 

locations within a finite habitat. The work of Peixoto and Abramsons [5] on the biodiversity 

model is extended to study the impact of aliens as predators and spatial incidences of diffusion 

where the movement of the rodent and predator can be taken into account. According to 

Mackean [32], a host is an organism in which pathogens exists and propagate. Spatial effects 

mean that it includes the consequences of habitat outlay and heterogeneity of the atmosphere 

on the extinction, survival, and coexistence of species. 

Predators are highly regarded for their capacity to control prey and, as an outcome, to 

maintain maximum positions of biodiversity [33]. The focus of this research has been to 

investigate the effects of the diffusion mechanism, especially the diffusion stiffness D, on the 

preservation and persistence aspects of the improved model through exact and approximate 

experiments. 

 

MODEL DERIVATION 

In the scenario where a commonly rodent species does not move from one spatial domain to 

another, the fundamental Abramson and Kenkre model can be expressed as 

  

 .    

Distinguished by their respective symbols, the susceptible  rodent ( ),  the  infected  rodents     

( ), and the total community of rodents ( ) are denoted. As for the variables, 

we represent the birth rate as 'b,' the natural mortality rate as 'c,' the transmission rate responsible 
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for infection (also referred to as the aggression parameter) as 'a,' and the environmental 

parameter as k. According to the research conducted by Abramson and Kenkre  [3], the infection 

diminishes for [ ] and flourishes under [ ]. For further insights into this topic, refer 

to Yusof et al. [8]. 

 The model can be spatially extended to incorporate the movement of rodents in a single 

dimension by adding a diffusive term. The equation describing the movement of rodents in the 

model is as follows 

  

  

The symbols and correspond to the second partial derivatives of the populations of 

susceptible and infected rodents , respectively. These derivatives, and  , are now 

functions of both x and t. According to Kumar et al. [16],  corresponds to the one-

dimensional Laplacian, i.e., . Yates et al. [34] have asserted that the Abramson and Kenkre 

model is characterized by key features shared with any population that acts as a reservoir for 

infectious diseases. The diffusion constant, denoted as D, is measured in m2 per day. D 

represents the rate at which susceptible and infected rodents transfer across the terrain. 

Abramson et al. [35]	define diffusion as a process that typically involves a transition from more 

coherent motion to intermittent scattering events. This description is particularly applicable 

when scattering events occur with high frequency. 

Abramson and Kenkre [3] utilized numerical methods to investigate a one-dimensional 

spatial landscape. This landscape featured a central region with a high environmental parameter 

 surrounded by a larger region characterized by a lower environmental parameter 

 . In their simulations, a steady state was reached where the infected population 

concentrated at the high-k central spot, starting from arbitrary initial population conditions. 

When the diffusion coefficient had small to moderate values, the infected population 

only persisted in regions with a high environmental parameter, k, while going extinct in other 

areas. These pockets of infection served as reservoirs for the virus, presenting the highest risk 

for human exposure and transmission. This observation aligns with the findings reported by [3]. 

Expanding upon the AK model, Peixoto and Abramson [5] incorporated an alien 

population into the equation. The variables r and z represent the host and alien populations, 

ckk < ckk >

( ) ,
 ,

2
sis

s
s

s rDrar
txk
rr

crbr
t
r

Ñ+---=
¶
¶

( )   .
 ,

2
iis

i
i

i rDrar
txk
rr

cr
t
r

Ñ++--=
¶
¶

sr
2Ñ ir

2Ñ sr ir

2Ñ

2

2

x¶
¶

( )ckk >

( )ckk <



 6 

respectively. Consequently, the competition dynamics model proposed by Peixoto and 

Abramson can be elucidated through the following set of ordinary differential equations: 

   

where, all parameters are constants with positive values. The Peixoto and Abramson model 

includes the following parameter definitions: The model assigns specific labels and definitions 

to various parameters for both the host and alien populations: For the host population: The 

natural mortality rate is represented by c, the birth rate is denoted as b and the transmission rate, 

known as the aggression parameter, is labelled a. In the absence of the alien population, the 

environmental parameter is identified as k, while the influence of the alien community is 

quantified by q. Regarding the alien population: The environmental parameter is referred to as 

𝜅, 𝛽,	𝛾	and	𝜀	 are utilized to characterize resource acquisition from other species.  

Peixoto and Abramson [5]    have proposed that when the competitor population exceeds 

a certain threshold, it becomes greater than the minimum required to drive the infected 

subpopulation to extinction. At this point, the system exhibits a positive prevalence of infection 

when certain conditions are met, and a specific point in the parameter space constitutes a critical 

point of the system. This critical point demarcates two distinct behaviors in terms of the stability 

of the equilibrium of the infected population. In cases where the intensity of interacting 

competition is not excessively high (when certain conditions are met), coexistence remains 

stable. However, when competition becomes strong enough (under specific conditions), 

biostability can occur, and the final outcome may depend on the initial conditions. Finally, in 

scenarios where particular conditions are met, only the strong competitor survives. For more 

in-depth discussions on this topic, please refer to Yusof et al. [9]. The fundamental model, 

which is based on the Lotka-Volterra predator-prey model introduced by Lotka and Volterra, is 

presented below 

 

In these above equations, the population of prey is represented as r and the population of 

predators is represented as z at time t. Within this model, 'a' signifies the intrinsic growth rate 

of the prey, 'b' denotes the per-capita rate of predation by the predator, 'c' represents the product 

of the per-capita rate of predation and the rate of conversion from prey to predator, and 'd' stands 
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for the death rate of the predator. It is important to note that all these parameters are considered 

positive constants, as indicated by Guo and Chen [36].  

In the absence of predation 𝑎𝑟, the prey's population grows indefinitely in a Malthusian 

manner, leading to exponential growth over time. This is due to the absence of predators that 

would otherwise reduce the prey's per-capita −𝑏𝑟𝑧  growth rate by a factor related to the 

populations of both prey and predators. Additionally, the parameter 𝑐𝑟𝑧 signifies the prey's 

contribution to the predator's growth rate, which is proportional to the available prey and the 

size of the predator population. In the absence of prey for sustenance −𝑑𝑟, the predator's death 

rate results in exponential decline. 

Mohd and Abu Hasan [19] utilized the Lotka-Volterra predator-prey model as a 

foundation. They assumed specific parameter values and introduced a one-dimensional spatial 

dimension into the model, extending it to encompass the community dynamics of two species 

with diffusion. The resulting model can be described as follows: 

                                   

       

where, the prey population is represented by r and the predator population is denoted by z at 

the time, t.  are the diffusion terms for both prey and predator populations. In an 

ecosystem, the presence of a diffusion process tends to result in a homogenized distribution of 

population density across space. It functions to enhance stability within a system comprising 

diverse populations and resources, as stated by Okubo and Levin [37].  

According to Mohd and Abu Hasan [19], there is a diffusion constant  that 

division between two distinct regimes., whereby if the diffusion constant D is greater than 

, the population densities of the prey and predator go to extinction in one ecosystem. If the 

diffusion constant D is extremely small i.e., , meaning that it approaches zero, the 

populations of prey and predators will flourish. 
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DIFFUSION ONE RODENT ONE ALIEN (PREDATOR) 

Our model is derived from the ordinary differential equations of the Lotka-Volterra predator-

prey model initially presented by Mohd and Abu Hasan [19]. It is represented as follows: 

        

       

where, r and z are the populations of the prey and predator at the time t, respectively.  and

 are the second partial derivatives of the populations of prey and predator populations, 

respectively, where r and z are now function of both x and t additionally the parameter D is 

diffusion constant. 

In here, r and z represent the community of the prey and predator at time "t," 

consistently. The symbols and denote the second partial derivatives of the prey and 

predator populations, respectively. Notably, these derivatives are now functions of both r and z 

and the parameter D represents the diffusion constant. 

            Peixoto and Abramson [5] introduced an alternative mathematical model using ordinary 

nonlinear differential equations to analyze the outbreak of hantavirus infection. This model 

provides a structured framework for examining the competitive dynamics between two species: 

      

       

In this specific model, the host population is represented as r and the alien population is 

denoted as z. For the host population, b represents the birth rate, c is the natural mortality rate, 

k is the environmental parameter when there is no presence of the alien population, and q 

signifies the impact of the alien population. On the other hand, for the alien population, the 

parameters  𝛽, 𝛾	and	𝜀 are associated with obtaining resources from the other species, while 𝜅 

represents the environmental parameter. 

Now, we can proceed to create a combined model for the diffusion of one rodent and 

one alien (acting as a predator), incorporating elements from both the Mohd and Abu Hasan 

[19] model and the Peixoto and Abramson [5] model. In the Peixoto and Abramson model, we 

adjust the host population by introducing the diffusion term, D. Additionally, we modify the 

alien population by including the diffusion term, D, and replacing it with the predator 
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population represented by the variable z. As a result, the diffusion one rodent, one alien (as a 

predator) model is presented below: 

           … (1) 

In this above equation r represents the host population, z stands for the predator 

population, and D signifies the diffusion constant. The symbols and  represent the 

second partial derivatives of the host and predator populations, respectively. Importantly, both 

r and z are now functions of both space (x) and time (t). Regarding the predator population, 	𝛽  

and 	𝛾 are parameters associated with acquiring resources from other species, while 	𝜀 

represents the product of the per-capita rate of predation and the rate of conversion of rodents 

into predator offspring. 

Assume an internal categorization of the rodent model is implemented, wherein 𝑟! 

denotes the susceptible rodents, 𝑟" represents the infected rodents, and "r" stands for the overall 

rodent population, 

                                        . 

Hence, the model for the diffusion of one rodent and one alien (acting as a predator) is as 

follows: 

                   … (2) 

where,  represents the population of susceptible rodents, stands for infected rodents, and z 

signifies the predator population denotes the total rodent population. The 

parameter a denotes the transmission rate of the infection, b represents the birth rate, and c 

corresponds to the natural death rate. The parameter k is a time-dependent environmental 

parameter, while q measures the impact of the predator population. D represents the diffusion 

constant. The symbols , and represent the second partial derivatives of the 

populations of susceptible rodents, infected rodents, and predators, respectively. It's important 

to note that  ,  and z are now functions of both space (x) and time (t). For the predator 

populations,  and are the corresponding parameters for acquiring resources from other 
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species, while  represents the product of the per-capita rate of predation and the rate of 

conversion of consumed rodents into predator offspring.                                                                               

 
 
LOCAL STABILITY ANALYSIS 

In this paper, the stability of the model of diffusion organisms (i.e., single rodent and single 

alien as a predator) around the equilibrium is determined by studying the corresponding 

characteristic equations.  

 This analysis is carried out based on the approach of Murray [38]. Firstly, the local 

stability analysis of model (1) around each fixed point is investigated. The steady value 

solutions of model (1) do not depend on time but satisfy, 

      

And rewriting as 

   

In consequence, the phase plane representing the solutions is given by   

      

 To compute the equilibrium points, we solve and . So, the model (1) has 

two equilibriums: namely  and .   

The linearization of model (1) about is  

  . 
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when,  then the Jacobian matrix as follows 

   

Hence, the characteristic equation for   is 

   . 

At the equilibrium , we find the eigenvalues  and .  

Thus, at this equilibrium  it becomes saddle point. 

 

At the equilibrium, the Jacobian matrix,  is given by 

   

The characteristic equation for the equilibrium of  is:    

      

where around the equilibrium . 

The eigenvalues are  and .  

In this case the equilibrium  is called an unstable node.   

The steady-state roots of approach (2) are time independent on time and satisfy  
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Now, all the equations in consequence, the phase plane as solutions is given by 

      

To compute the equilibrium point, we solve as follows:  

                                 ,   and   . 

There are three equilibrium points in the dynamical model (2):  
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                  . 

 
The general Jacobian matrix of model (2) at any state variable as follows: 

 

                                                                  … (3) 

The corresponding characteristic equation is  

   

where, ,  
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Following the work of Bairagi et al. [39], the predator free equilibrium  is locally 

asymptotically stable if all roots of characteristic equation of model (2) have negative real parts. 

If we choose ,  and , then the inner equilibrium point  is locally 

asymptotically steady. Now,  implies  and implies

. So, for 

 and  

 instability  may occur. Secondly,  with  may cause instability 

around . The selection of the values, a, b, c, k, q, , ,  and D influence the steps of rodent 

population at which this equilibrium is achieved.   

When the trivial equilibrium , then the Jacobian matrix as follows  

   

Hence, the properties equation of  is 

   . 

The eigenvalues of the corresponding properties equation to equilibrium  are

,  and . Clearly,  and  always have two negative 

eigenvalues and  will be negative if,𝑐 > 0 hence, the trivial equilibrium  is locally 

asymptotically stable. 

 The Jacobian matrix (3) evaluated at  as follows  

where  , . 

The eigenvalues of the Jacobian matrix around are the solutions of the following equation: 
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The corresponding properties equation to equilibrium  has three eigenvalues. An eigenvalue 

  has negative real part.  

 Solving the quadratic equation yields the other two eigenvalues 

  

where,  

          . 

Both roots of this quadratic equation have negative real parts if and only if its coefficients are 

positive . So,	all of the eigenvalues of the characteristic equation are negative 

real parts. Therefore, the predator free equilibrium at  of the model (2) is locally 

asymptotically stable. 

 

NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS 

In this study, a numerical simulation of a reaction-diffusion model is refugium conducted using 

the standard finite-difference approach. Two scenarios will be considered; each  characterized 

by different values of the parameter ,  and diffusion constant, D for diffusion organisms 

model i.e. , , and . The values of  𝑎 =

0.1, 𝑏 = 1.0, 𝑐 = 0.6, 𝛽 = 1.0	and	𝛾 = 0.5, are utilized as they were utilized by Peixoto and 

Abramson [5]. In our model, we've selected the same parameter q value for both the susceptible 

and infected rodent populations to ensure their equal competitiveness against the predator's 

population. We assume that the rodents and the alien species (acting as predators) diffuse at 

similar rates, with the goal of preventing the emergence of diffusion-driven instability. In the 

attendance of any minor fluctuation, diffusion-driven instability, as defined by Huang et al. 

[40], is the propensity of the uniform positions of a system to spontaneously develop patterns. 
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Hence,   represents the critical environmental condition, while signifies a 

favorable environmental condition. As a results the infection is rapidly spreading in the basic 

AK model. The duration of approximate simulation is 20 years.  

 
(a)      (d) 

 
(b)      (e) 

 
(c)      (f) 

Figure 1: presents a three-dimensional plot illustrating the relationships between distance, time, 
and the populations of (a) susceptible rodents, (b) infected rodents, and (c) predators, with a 
focus on their respective effects on the community of (d) susceptible rodents, (e) infected 
rodents, and (f) predator in the refugium for .  

25=ck 150=k

001.0=D
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Figure 1 shows the organisms (i.e. single rodent and alien a as predator) community for the case 

of and  diffusion constant,  when diffusion organisms (i.e. 

single rodent and alien a as predator) model is answered, using the various parameters  of 

distances, x in meter , ,  and the similar 

starting parameters   for ,  and z  . 

 The positive solution shown in the graphs (a), (b), and (c) of Figure 1 is contained in the 

numerical design developed for the model (2). It shows the results of the numerical simulations 

taken at steady state when the diffusion mechanism is very small . 

Meanwhile, the graph of organisms depends on the period, t with  is as given in 

Figures 1(d), 1(e), and 1(f). These Figures demonstrate the susceptible rodent, infected rodent 

and alien (as predator) remain stable for various values of distance, x through solutions reach 

to zero for a smaller value of distance, x.  In a broader sense, with the increase of the time, the 

peak value of alien (as predator) population z decreases exponentially for the model. Both 

populations of rodents are found to be zero after one year (Figures 1(d) and 1(e)). After one to 

10 years, z shows a symmetric dome-shaped patch (Figure 1(f)). The position of the patch 

remains fixed and the shape of the patch changes with time. After one year, the extinction of 

rodent population occurs when the diffusion mechanism is very small . The 

alien population (as predator) will increase in response to an abundance of resources such as 

food (rodents). As a result, the rodent’s population decreases. This allows the alien (as predator) 

to eat and kill the rodent population due to the slow movement of the rodent population over 

the terrain and diversity of the landscape when the diffusion coefficient D is very small. 

Eventually, the rodent population going extinct in a short period of time. If x  is too 

large, the infection is thrived with the absence of the alien (as predator) community. This could 
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be attributed to the unrestricted movement of the rodent population, while the alien species 

(acting as predators) experience natural mortality and continue to reproduce. As a result, the 

diffusion coefficient, D and the distance x have stabilization effect and may aid to remove the 

intensity of the hantavirus contagion. When the diffusion mechanism is too small, the reaction-

diffusion hantavirus infection model can be approximated over the long-term using a scheme 

of ordinary differential equations. 

 We have changed distance (x) throughout our numerical experiment. For the values

, finally leads to trivial equilibrium  in the solution of model (2). As 

demonstrated in Figures 1(d), 1(e), and 1(f), in the appearance of the infected rodents, the 

population dynamic is stable around the interior equilibrium point  when .  

The trivial equilibrium point and the interior equilibrium point  of the model 

(2) are globally asymptotically stable as shown in Figures 1(d), 1(e), and 1(f). Therefore, we 

can finalize the whole scenarios of the domain. All populations become extinct if 

  

 
(a)      (d) 

50 and 10 ,5 ,1=x ( )0 ,0 ,0

( )50 ,05 ,50 100=x

( )0 ,0 ,0 ( )50 ,05 ,50

.50 and  10 ,5 ,1=x
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(b)      (e) 

 
(c)      (f) 

Figure 2: presents a three-dimensional plot illustrating the relationships between distance, time, 
and the populations of (a) susceptible rodents, (b) infected rodents, and (c) predators, with a 
focus on their respective effects on the community of (d) susceptible rodents, (e) infected 
rodents, and (f) predator in the refugium for .  
 

Figure 2 shows the species ( rodents and alien) community for the case of and 

increasing the diffusion constant D, i.e. , when diffusion single  rodent single 

alien (as predator) method is answered, using the various parameters of distances, x in meter 

 and , . Results in a similar three-

dimensional plot of the solutions are derived for the cases and  based on 

Figures 1(a), 1(b), 1(c) and Figures 2(a), 2(b), 2(c). In all cases at an early stage of the dynamics 

model (2) (for ), the population of alien (as predator) z shows the symmetric dome-shaped 

patch being formed. Meanwhile the populations of rodents are found to be drop after one year. 

The peak value of alien (as predator) population is higher than the peak value of rodent 

populations. For , the populations of rodents go extinct after one year while the peak 
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value of z decreases exponentially when increases the value of time. When the mobility of the 

rodent’s community throughout the terrain and heterogeneity is moderate, an increase in the 

population of alien species (acting as predators) within the ecosystem will lead to a decline in 

the rodent population, eventually resulting in extinction. The aliens' (as predator) population 

tends to decrease because the population of rodents cannot survive, that is food for alien (as 

predator) is lacking. Finally, all the populations become extinct. The reason is that the alien (as 

predator) consumes all the rodents’ community. As a result, the diffusion factor, D and the 

distance x have stabilization effect and may aid to thrive the intensity of the hantavirus infection. 

Model (2) has four interior equilibrium:

,  and with the distances, 

, respectively. For , the solution converges to a trivial equilibrium  

eventually. The trivial equilibrium point  and the interior equilibrium points 

, , , 

 of the model (2) are globally asymptotically stable as shown in Figures 2(d), 2(e), 

and 2(f). Therefore, we can obtain the conclusion: all populations survive if . 

 All the populations become extinct within a short time for the diffusion constant D is 

very small case compared with the diffusion constant D is moderate. 

 

CONCLUSION 
 
We demonstrated that the diffusion in a single rodent single alien (as predator) approach with 

the reaction-diffusion effect for the alien as predator resulted in a similar pattern of species 

spread as observed in the spread of hantavirus. We studied the propagation of competition 

among the susceptible and exposed rodents’ populations, along with the alien (acting as a 

predator) in a reaction-diffusion model when higher available resources. The inclusion of 

diffusion constant D and distance x in this model played an important role in pattern formation. 

A similar pattern is produced when   varying   the diffusion constant D and distance x values. 

Investigations have been conducted to assess the local stability of the equilibrium points in the 

reaction-diffusion hantavirus infection approach.  

 Using numerical experiments, we demonstrated the occurrences of extinction and 

persistence phenomena. The peak value of alien (acting as a predator) population is 

continuously advanced than the peak rate of rodent populations when (  and ), the 
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distance, x is 50, the diffusion constant D is very small  and it is moderate

. It is observed that the populations of rodents and alien (as predator) decline 

towards the end of the simulations and eventually become extinct when we choose a very small 

diffusion constant D   for the distance, x are 1, 5, 10 and, 50 and (  

and ). However, when the diffusion constant D is moderate  and the 

distance, x are 1, 5, 10 and 100 and (  and ), The rodent and predator population have 

survived. What is important to note here is that the infection will die away when the rates of 

diffusion constant D is very minor or moderate and the distance, x less than 10 meter.  

 

( ) ÷
ø
ö

ç
è
æ <<= 2

1001.0
p

D

( ) ÷
ø
ö

ç
è
æ >= 2

120
p

D

( ) ÷
ø
ö

ç
è
æ <<= 2

1001.0
p

D 1<q

1<e ( ) ÷
ø
ö

ç
è
æ >= 2

120
p

D

1<q 1<e



 22 

REFENCES 

[1]  M. Faulde, D., Sobe, P. Kimming, J. Scharninghausen, Renal failure and hantavirus  
infection in Europe Nephrol Dial Transplant, 15 (6) (2000) 751-753. 

 
[2]    M. Oldal, V. Németh, M. Madai, G. Kemenesi, B. Dallos, Z. Péterfi, J. Sebők, I. Wittmann,  

K. Bányai, F. Jakab, Identification of hantavirus infection by Western blot assay and 
TaqMan PCR in patients hospitalized with acute kidney injury, Diagnostic Microbiology 
and Infectious Disease 79(2) (2014) 166-170. 

 
[3]    G. Abramson, V. M. Kenkre, Spatiotemporal patterns in the hantavirus infection, Physical 

Review E - Statistical, Nonlinear, and Soft Matter Physics 66(1) (2002) 011912-1-5. 
 
[4]    L. Giuggioli, V. M., Kenkre, G.Abramson, G. Camelo-Neto, (2006) Theory of hantavirus  

infection spread incorporating localized adult and itinerant juvenile mice, European 
Physical Journal B 55(4) (2006) 461- 470. 

 
[5]     I. D. Peixotu, G. Abramson, The effect of biodiversity on the hantavirus epizootic, Ecology  

87(4) (2006) 873-879. 
 
[6]   M. F. Abdul Karim, A. I. Ismail, H. B. Ching, Cellular automata modeling of 

 hantavirus infection, Chaos, Solitons & Fractals, 41(5) (2009) 2847-2853. 
 
[7]    S. M. Goh, A. I. M. Ismail, M. S. M. Noorani, I. Hashim, Dynamics of the hantavirus 

infection through variational iteration method (VIM), Nonlinear Analysis: Real World 
Applications 10(4) (2009) 2171-2176. 

 
[8]    F. M. Yusof, A. I. M. Ismail, N. M. Ali, Modeling population harvesting of rodents for 

the control of hantavirus infection, Sains Malaysiana 39(6) (2010) 935-940. 
 
[9]    F. M. Yusof, A. I. M. Ismail, N. M. Ali, Effect of predators on the spread of  hantavirus 

infection, Sains Malaysiana. 43(7) (2014) 1045-1051.  
 
[10] F. M. Yusof, A. I. M. Ismail, Y. Abu Hasan, Implication of predator  interaction of the 

spread of Hantavirus Infection, MATEMATIKA 34(2) (2018) 205–226. 
 
[11]  F. M. Yusof, F. A. Abdullah, A. I. M. Ismail, Modeling and optimal control on  the spread 

of Hantavirus infection, Mathematics 7(2019) 1–11. 
 
[12]  F. M. Yusof, A. I. M. Ismail, Modeling the Transmission Dynamics on the Spread of 

Hantavirus Infection, Menemui Matematik (Discovering Mathematics), 41(2) (2019) 96 - 
111 

 
[13]  F. M. Yusof, M. F. Farayola, Modeling the transmission dynamics of Hantavirus infection 

under the effect of vaccination and other optimal controls, Menemui Matematik 
(Discovering Mathematics), 45(1) (2023) 56 -75 

 
[14]  E. Barbera, C. Currò, G. Valenti, A hyperbolic reaction-diffusion model for the  hantavirus 

infection, Mathematical Methods in the Applied Sciences 31 (2008)  481-499. 
 



 23 

[15] N. Kumar, M. N. Kuperman, V. M. Kenkre, Theory of possible effects of the Allee 
phenomenon on the population of an epidemic reservoir, Physical Review E - Statistical, 
Nonlinear, and Soft Matter Physics 79(4) (2009) 041902. 

 
[16] N. Kumar, R. R. Parmenter, V. M.  Kenkre, Extinction of refugia of hantavirus infection 

in a spatially heterogeneous environment, Physical Review E - Statistical,  Nonlinear, 
and Soft Matter Physics 82(1) (2010) 011920. 

 
[17] J. G. Skellam, Random dispersal in theoretical populations, Biometrik 38(1-2) (1951)   

196-218. 
 
[18] M. H. Mohd, Numerical simulations study in a diffusive prey-predator model, Master 

thesis, University Sains Malaysia (2012). 
 
[19]  M. H. Mohd, Y.Abu Hasan, On the Decay of Energy in a Diffusive Prey-Predator Model,   

Journal of Applied Science 12(21) (2012) 2252-2258. 
 
[20]  J. D. Murray, Mathematical Biology, II: Spatial Models and Biomedical Applications    

(3rd edition), Springer-Verlag (2003). 
 

  [21] J. M. Dunn, T. D. Wentzel, S. Schreider, L. McArthu, Numerical examination of 
competitive and predatory behaviour for the Lotka-Volterra equations with diffusion 
based on the maximum-minimum theorem and the one-sided maximum principle. In: 
Proceedings of the 18th World IMACS Congress and MODSIM09 International  
Congress on Modelling and Simulation, 13-17 July 2009, Cairns, Australia. Modelling 
and Simulation Society of Australia (2009) 218-224. 

 
[22] D. G. McCarthy, R. A. Drewell, J. M. Dresch, Analyzing the stability of gene expression 

using a simple reaction-diffusion model in an early Drosophila embryo. Mathematical 
Biosciences 316 (2019) 108239. 

 
[24] A. Gnerucci, P.  Faraoni, E. Sereni, F. Ranaldi, Scratch assay microscopy: A reaction–

diffusion equation approach for common instruments and data, Mathematical Biosciences 
330 (2020) 108482. 

 
[25] T. Galochkina, A. Bouchnita, P. Kurbatova, V. Volpert, Reaction-diffusion waves of blood 

coagulation, Mathematical Biosciences 288 (2017) 130–139. 
 
[26] J. Li, N. Sun, Dynamical behavior of solutions of a reaction–diffusion model in river  

network, Nonlinear Analysis: Real World Applications 75 (2024) 103989. 
 
[27] X. Zhao, Boundedness and asymptotic behavior of solutions to one-dimensional urban 

crime system with nonlinear diffusion, Nonlinear Analysis: Real World Applications 74 
(2023) 103946. 

 
[28]  P. Mishra, D. Wrzosek, Pursuit-evasion	dynamics	 for	Bazykin-type predator-prey	

model	 with	 indirect	 predator	 taxis,	 Journal	 of	 Differential	 Equations	 361	 (2023)		
391–416.	

	



 24 

[29]	F. J. Ni, G. B. Arhonditsis, Examination of the effects of toxicity and nutrition on a two-
prey one-predator system with a metabolomics-inspired model, Ecological Informatics 73 
(2023) 101905. 

 
[30] J. Yuan, L. Liu, Q. Hu, Mathematical modeling of brain glioma growth using modified 

reaction–diffusion equation on brain MR images, Computers in Biology and Medicine 43 
(2013) 2007–2013. 

 
[31] N. Shahid, M. A. Rehman, A. Khalid, U. Fatima, T. S. Shaikh, N. Ahmed, H. Alotaibi,  M. 

Rafiq, I. Khan, K. S. Nisar, Mathematical analysis and numerical investigation of 
advection-reaction-diffusion computer virus model, Results in Physics 26 (2021) 104294. 

 
[32]  D. G. Mackean, Gcse Biology, 2nd ed., John Murray (1995). 
 
[33] B. Sahoo, S. Poria, Effects of additional food in a delayed predator–prey model,  

Mathematical Biosciences 261 (2015) 62-73. 
 
[34]  T. L. Yates, J. N. Mills, C. A. Parmenter, T. G. Ksiazek, R. R. Parmenter, J.  R. Vande 

Castle, C. H. Calisher, S. T. Nichol, K. D. Abbott, J. C. Young, M. L. Morrison, B. J. 
Beaty, J. L. Dunnum, R. J. Baker, J. Salazar-Bravo, C.J. Peters, The ecology and 
evolutionary history of an emergent disease: hantavirus pulmonary syndrome,  
BioScience 52(11) (2002) 989-998. 

 
 [35]		G.	Abramson, A. R.  Bishop, V. M. Kenkre, Effects of transport memory and nonlinear 

damping in a generalized Fisher’s equation, Physical Review E - Statistical, Nonlinear, 
and Soft Matter Physics 64(6 ll) (2001) 066615.  

 
[36]  H. Guo, L. Chen, Time-limited pest control of a Lotka-Volterra model with  impulsive  

harvest, Nonlinear Analysis: Real World Applications 10(2) (2009) 840-848. 
 
 [37] A. Okubo, S. A.  Levin, Diffusion and Ecological Problems: Modern Perspective 

 (2nd edition). Springer-Verlag (2001). 
 

  [38] J. D. Murray, Mathematical Biology, I: An Introduction (3rd edition), Springer, 2002. 
 
  [39]  N. Bairagi, S. Chaudhuri, J. Chattopadhyay, Harvesting as a disease control measure in 

an eco-epidemiological system - A theoretical study, Mathematical Biosciences 217(2) 
(2009) 134-144. 

 
 [40]  J. G. Huang, J. M. Christian, G. S. McDonald, P. Chamorro-Posada, Turing instability: 

a universal route to spontaneous fractal patterns. In: Proceedings of National Photonics 
Conference, Photon 08, 26-29 August 2008, Heriot-Watt University, Edinburgh, UK 
(2008). 

 

http://ezproxy.usm.my:2061/science/article/pii/S1468121807002246
http://ezproxy.usm.my:2061/science/article/pii/S1468121807002246
http://scholar.google.com.my/citations?user=7PeekG0AAAAJ&hl=en&oi=sra

