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Abstract

We present a novel model of culture that directly relates biological evolution with modern aspects of cultural evolution.

The model considers the high rate of error in communication and builds on structural and evolutionary similarities

between biological molecules and written language. Firstly, both written language and biological molecules are

modular. Within RNA and polypeptide molecules there are structural domains that may be recombined while

maintaining their function. Likewise, sentences are structured as combinations of clauses, in which each clause

contains a domain of information. The clausal structure permits the recombination of information to adopt different

meanings, while allowing each unit to retain its identity. Secondly, we show that some, but not all, aspects of

communicated culture have a high error rate, ensuring that information exists as rapidly evolving clouds within the

population. Through their intrinsically high rate of mutation, clouds of cultural information are analogous to viral

quasispecies and may be modelled as such. We then integrate these ideas with the application of Shannon Diversity

Index to produce a more holistic view of culture that is centered on the evolution of information. Re-imagining culture, as

evolving clouds of information, unifies the mode in which information is stored culturally and biologically, and opens up

new avenues of comparative analysis.
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Cultural evolution has a rich history, extending back to Charles Darwin (reviewed in [1]). While the mechanisms of cultural

evolution have been discussed and contended extensively [1][2][3][4][5][6][7][8][9], there has been a tendency of the

community to split into Darwinist and non-Darwinist camps, with the latter citing alleged differences in the manner in which

cultural information spreads as a negation of the underlying mechanism [3][10]. For example, Claidière et al. [2] contend that

a student copying a lecture and correcting the lecturer’s mistake partly invalidates straightforward analogies between

biological and cultural evolution. However, this is untrue. Firstly, in reading and transcribing the lecture notes, the student

is producing an internal copy: the information has reproduced.

However, critically, the information has also undergone what we can call “error-prone repair” using another, accurate copy

of the information held in the student’s memory. In biological, error-prone repair of DNA a stock template is used in one or

more ways to provide, erroneously, a copy which replaces a damaged section of information [11]. In the case of the

student, it is more likely that they will erroneously copy a lecture note, thereby, generating a mutant copy of the original

information. Moreover, as we are aware of multiple “possible”, if erroneous, spellings of some words, our memories have

or can generate a population of possible spellings. Finally, the internal cognitive systems of the student must select, then

express, the correct copy of the information, thereby, producing another verbal or written copy. Therefore, in every sense,

the flow of cultural information is analogous to that observed in biological systems.

Smith (2011) was one of the first to quantify the error rate in human communication. His, and later work (Methods) shows

that the rate of error commonly exceeds that in RNA viral replication. As such, the term “quasispecies” is applicable when

describing the evolution of communicated information. Quasispecies was initially coined to describe populations of

molecules in solution. In 1971 Eigen applied the term to describe populations of closely-related RNA

molecules [12][13][14][15][16][17]. A quasispecies has some fundamental features that make it applicable to the study of

areas as diverse as bacterial populations [18], language evolution [9][19] and, here, as a component of a cultural evolution

model.

The critical feature of the quasispecies model is that sequences experience a high error rate in replication, so that any

particular sequence of information (allele) may be recreated at non-trivial rates by mutation from other, related sequences.

That means that all sequences exist as a fast-evolving cloud of related sequences. Sequences evolve to form a landscape

of iterations of varying “fitness”, with the fittest replicating at the highest rates. In the viral quasispecies, mutation rates are

sufficiently high that the rate of forward and backward creation of sequences by mutation are comparable. Rather than

discrete peaks in the fitness landscape, clouds of the fittest sequences form broader plateaus [12][16][19][20]. The observed

pattern of fitness is often colloquially referred to as “survival of the flattest” [12]. In viral quasispecies, the fittest variants

can, therefore, emerge rapidly and be selected by the environment, so that, for example, drug-resistant variants rapidly

come to dominate populations. Likewise, in aspects of culture, where there is rapid replication of information, coupled to a

high underlying rate of mutation, variants can arise readily which will come to dominate that subcultural population’s

language, given appropriate selection. In the absence of selection, the large pool of variants may reasonably be described

as a cultural pangenome [21].
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Here, we show that the continuity of mutation rates from zero to the high rates seen in social media (below), alters the

spread of that information. We quantify many of the key variables necessary for the comparison and discuss the

relationship between our model and pragmatic models of information [22][23][24][25]. Finally, we discuss how the manner in

the way information is structured facilitates its evolution coupled to a growth in Shannon entropy [26].

2. Methodology: identification of key variables in social evolution of text

2.1. Mutation rates

Underpinning the quasispecies model is a high rate of mutation. Here, we obtain error rates in communication from a

variety of different sources: task completion (Smith, 2011); Tweets [27][28]; Facebook [29]; Texting [30][31]; and finally,

second language learning [32].

Error Type
Error Frequency Per
Task

Read Errors

Read analogue display wrongly 0.005 (0.5%)

Read digital display wrongly 0.006 (0.6%)

Read checklist incorrectly 0.001 (0.1%)

Read 10-digit number incorrectly 0.006 (0.6%)

Read alphanumeric (single character)
incorrectly

0.0002 (0.02%)

Read (clear) 5-letter word incorrectly 0.0003 (0.03%)

Read (unclear) 5-letter word incorrectly 0.03 (3%)

Write-Errors

Record information wrongly 0.01 (1%)

Type a character wrongly 0.01 (1%)

Enter 10 digits in calculator incorrectly 0.05 (5%)

Dial 10 digits incorrectly 0.06 (6%)

Response Errors

Fail to respond to annunciation 0.0001 (0.01%)

Wrongly carry out visual inspection 0.003 (0.3%)

Fail to act after 1 minute in an emergency 0.9 (90%)

Table 1. A synopsis of the error frequency and type reproduced from

Smith [33].

 

If the mutation (error) rate is significant, then the frequency of errors should be proportional to the lexicon size (our

language’s “genome”), as follows:

Qeios, CC-BY 4.0   ·   Article, April 4, 2023

Qeios ID: S8VD03   ·   https://doi.org/10.32388/S8VD03 3/30



L < 1(1 − q) (1)

Here, L is the size of the lexicon and q is the probability of an error arising in its replication. The size of an organism’s

genome may be no greater than the reciprocal of the mutation rate of information contained in it. [19][34].

2.2. Replication rates of information

Reproduction of information occurs through internal duplication of information during thought processes and external

duplication in media as diverse as speech, printed written works, and on various social media platforms, to name a few. In

the former, different pieces of information held in memory may be duplicated and recombined – as well as becoming

scrambled or deleted over time [35]. Quantifying the number of internal replications is difficult, but will depend on how

frequently information is recalled.

External replication is more readily quantifiable and will vary from 101 copies per year for some books and printed works

of art, to several 106 for viral Tweets [27][36]. Rates of reproduction (per year) will, therefore, fall in the range 101-

107/annum.

2.3. Sentences modularity, relationship with biomolecules and effect on mutation viability

Biological units of inheritance are alleles. Here, we employ the term cultural alleles to discuss the idea of units of cultural

information. As with biological information, cultural alleles can be envisaged as descriptors of cultural items or processes,

analogous to a functional gene that encodes a polypeptide or functional RNA [37][38][39][40]. As with genes, the sequence

of information in sentence may be sub-divided into units, clauses, each of which encodes a domain of information.

Clauses can be exchanged between sentences and retain their meaning, as long as they do not disrupt the grammatical

structure of that sentence [26]. However, such recombination can alter the meaning of the sentence as a whole. Each

clause will be subject to its own selection pressures, determining how likely that variant will be retained. Moreover, these

distinct structural features can interact with one another in a manner analogous to social networks [40][41].

2.4. Sentence length and Hamming Distance

The Hamming Distance is the number of differences between related sequences of information and, in effect, conveys

how easy it is to change one sequence to another [16]. For the work presented, here, we use one of the following

determinations of Hamming Distance: either each word difference or each clause difference (per sentence) has a

Hamming Distance of one. An alternative but related measure is the Levenshtein Distance (Holman et al., 2011;

Wichmann and Holman, 2022). The Hamming distance is a more general measure of variation; however, the model could

be adapted to include the alternative.

The following pair of related words illustrates the difference in the output when using Hamming Distance and Levenshtein

Distance: flaw and lawn. Here, the Levenshtein distance (LD) equals two, because there are two-character differences (f

versus n), between each of the two words. However, the Hamming distance is four because the letters at each position in
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the four-letter word are different to the corresponding letter in the other member of the pair.

Sentences may have any length, as long as they follow certain grammatical structures: typically, one noun and one verb

and some connectives and descriptives. Sentences that are less than 10 words in length sound very clunky. Conversely,

sentences longer than 35 words are demanding of memory and interpretation [42][43]. Therefore, while variation in

sentence length leads to more interesting and readable text, typically the average sentence, in any body of text, consists

of the order of 20 words [44]. For the purposes of this work, we assume a mean sentence length of 20 words (L = 20),

comprising two clauses. Table 2 gives some examples.

Initial sentence Plausible variants with the same meaning
Plausible variants with an alternative
meaning

The cat sat on the matt, purring
contentedly.

 

The dog ate the ice cream and was sick.

The cat lay on the matt, purring contentedly.

 

The dog consumed the ice cream and was
sick.

The cat sat on the matt, hissing angrily.

 

The dog ate the ice cream and was happy.

Table 2. Two, simple examples of diversity affecting sentence meaning by changing one clause within it.

 

In terms of Hamming Distance, each of the variants in columns two and three (Table 1), has a difference of one clause,

with the variants in column 2 having also a single word variant; while column three has two words differences. Depending

on what unit we are judging the Hamming Distance is one or two, relative to the original sentences.

2.5. Selection

Selection coefficients describe the effect of the environment on the relative fitness of an organism, its phenotype or

specific genic sequences (alleles) within it [45][46]. Here, we consider selection coefficients as describing the propensity of

a sequence of cultural information to replicate [46].

There is a substantial body of literature describing the identification of selection pressures and their effects in culture

(e.g., [47][48]). Therefore, in order to avoid further expansion of the current work, we only note that selection coefficients

may be included in quasispecies models [20] and that there are a number of different methodologies available to

determine the value of these coefficients in behavioral settings [35][49][50][51][52] or in literature reviews [53].

In Latané’s work (1981; refs [49][50][51]), the scaling constant, t, would have a value less than 11. Rewriting Latané’s

equation, we assume that the base response to emulate an act is its fitness. These changes give us equation 5a, and its

linear equivalent, 5b, as follows:

I = cNs (2a)

lnI = slnN + lnC (2b)
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In the converse situation, where we wish to measure the impact of one person’s actions or words on a group, the equation

can be rearranged as follows:

I =

c
Ns

(3a)

lnI = lnc − slnN (3b)

While we are not pursuing this approach further, here, we wish to note its functionality for in subsequent analysis, where

observational data is available.

Selection of information may be expected to depend on a number of factors, including, but not limited to: the presence of

pre-existing schemas; the health and well-being of the person; the cultural availability of information and the availability of

free-energy [54][55][56][57]. Selection of information (based on its usefulness) then determines in part, whether received

information will be retained or forgotten [58].

The subsequent decision to express information will strongly depend on external selection pressures, most likely whether

expression will result in positive feedback from those in the surrounding peer-group (s) or wider culture (conformity and

other forms of positive social pressure); but also, where there is an absence of negative feedback, or negative

selection [52].

In a cultural setting, rather than through examination of the retention, replication of elimination of cultural information, we

may derive fitness and/or selection from the relationship between the number of stimuli required to elicit a response and

the strength of that response: effectively, conformity. Biological selection of information reflects the release of various

neurotransmitters in recipients in response to stimuli [59][60][61][62]. We suggest that, while not examined here, analysis of

neurological activity would provide a useful window on biological selection of information in future work.

2.6. Application of the quasispecies model with variables

The following equations describe the quasispecies model:

wij = Ajqij (4)

Here, wij is the expected fraction of i and j variants that arise in replication as the product of the replication rate, Aj of

sequence j and the mutation probability qij that sequence j will mutate to sequence i. Here, wij describes the propensity to

replicate and, therefore, (potentially) survive. In the following equation, the mutation rate per bit is μ; (standardized, in

terms of character, μ from p in Wilke, 2005). The difference between sequences (the Hamming distance, Hij) is described

above; while L is the overall length of the sequence in question: L could describe a sentence, Tweet or other length of

discourse. Therefore, qij gives the probability of change, per length of information sequence and is dependent on the

number of differences between the starting and finishing sequence: i.e.:

qij = μHij(1 − μ)L−Hij (5)
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If we wish to determine population size, n, of an information variant at time, t, the following quasispecies equation, may be

used:

dxi
dt =

n

∑
j=1 ajqijxj − ϕxi (6)

The “death function” ϕxi is inserted to maintain a fixed population size and represents the removal of sequences that are

in excess of a prescribed limit, so that dxi/dt (ẋi) is the population of allele xi present at a point in time. In our model, this

function may be viewed as the cap in numbers imposed by the local carrying capacity [63], so that ẋi is less than or equal

to the carrying capacity, k and ẋi is the population size, N (t), of xi at a specified time, t, [64].

Substituting equation 4 into equation 6 gives us:

ẋ
i =

n

∑
j=1 ajμ

Hij(1 − μ)L−Hijxj − ϕxi (7)

Where “x-dot” is the differential dx/dt, in equation 6. The quasispecies equation determines the population size of alleles

xi, and its derivative through mutation, xj. From the methods, the mutation rate is 10-2 to 10-4; the length, L, of a typical

sentence as 20 words, with two clauses; the Hamming Distance, H, set at one and the replication rate, a, set in the range

102-106 per cycle.

Wilke (2005) illustrates how the quasispecies model is analogous to aspects of population genetics as follows. If we

consider a single locus with two alleles, a and A, then in the absence of mutation, μ, but presence of selection, the

following equation can be derived from the quasispecies model (derived from equations 1 and 3 in Wilke [20]):

xA = sxA(t) 1 − xA(t) (8a)

This version of the logistic function is analogous to [65]:

xn+1 = rxn(1 − xn) (8b)

Where x is a fraction of the maximum value. Then xn is the population in one year and xn+1 is the population in the next

time interval.

The family of equations (8a, b) is the standard logistic function, describing the growth of a beneficial allele to fixation in a

population, in the absence of mutation but in the presence of selection.

Solving the quasispecies equation in the presence of mutations, μ, and selection, s, allows us to determine the

instantaneous value of xi with the following function (equation 6; Wilke, 2005):

xi = 0.5 1 − μ −

2μ
s + 1 − μ −

2μ
s 2

+

4μ
s (9a)

[ ]

[ √(( ) )]
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xi = 0.5 1 − μ − 2μ + √ (1 − μ − 2μ)2 + 4μ (9b)

Equation 9a reduces to 9b in the absence of selection.

The quasispecies model then predicts that when the mutation rate is low, the fastest-replicating variant takes over the

population. However, when the mutation rate is high, a cloud of variants, a quasispecies, dominates. As the mutation rate,

μ, increases, the concentration of xi decreases, while xj increases. Positive values of μ mean that allele j will constantly be

generated even as selection acts to remove it. The action of mutation and selection leads to an equilibrium concentration

of the information variants in the population.

For our purposes, equations 8(a, b) and 9(a, b) will be used to model the initial emergence and rise of a cloud of variant

forms of information; then the eventual dominance of one variant that is propagated by re-posting, re-Tweeting or

otherwise digitally-duplicating a variant. Here, the very low bit error rate can be ignored, as the rate is far lower than the

reciprocal of the population size in question (> 10-9 versus a population of ca. 104 - 106).

2.7. Lexical variation and entropy

We discussed the Shannon entropy of language in an earlier work [26], but as the concept relates closely to the outcomes

of the current work, we provide an overview here. The entropy of each sentence is related to the number of viable

replacements (word or clause) that leave the sentence grammatically correct. The number of viable replacements will vary

from culture to culture (or sub-culture to sub-culture) as words are created, modified or lost from each cultural unit. The

entropy of a sentence is then related to the frequency of word variants in a cultural group that can function in the sentence

to maintain its identity and/or its meaning [26][65][66][67][68][69][70]. Ideally, the number of viable replacements is that which

recreates a grammatically-correct sentence – and those replacements should be in context (i.e., constrained by the

context of the sentence, paragraph, or remainder) of the work in which it resides, formally linking the entropy of the

sentence to the thermodynamic entropy [71]. However, various alternative descriptors, which remain valid, are described in

Stevenson [26].

In relation to the presented work, the entropy of the sentence is related to the Hamming Distance as follows. If we set the

Hamming Distance to one, then the number of viable one-word (or one clause) replacements (alleles) determines the

entropy of that sentence, so that the Shannon Entropy related to the observed frequency of the variant allele in cultural

use as [72][73]:

H = − ∑pilnpi (10)

Where p is the probability of a variant in a population of sentences and ln is the natural log.

We now consider how the diversity of language used in a group of people will alter through the effects of population

growth and mutation. Here, mutation refers to the formation of novel language variants (alleles), such as new words, or

changes in meaning and context of information that is transferred between groups. We consider two diversity indices,

[ ( )]
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derived from the measure of Shannon entropy and heterozygosity, with the following derivations adapted from Chao et al.

(2015). These are applied using the Infinite Allele Model (IAM).

We describe the variable θ as equivalent to 4Nμ, where N is the population size and μ is the mutation rate. Where θ is

greater than 2 (e.g., where the mutation rate is 10-6 for overall activity and 10-2 - 10-4 for read-write errors), the expected

Shannon entropy is approximately a linear function of the logarithm of 4Nμ (θ). Here, the “population” is the number of

variants of a particular piece of information. Shannon entropy (1H) is described in equation 10, therefore, p is the

probability of encountering an allele in the population of those terms.

The heterozygosity (2H) of the information in a population is given by:

2H =

θ
θ + 1 (11)

Taking equations 10 and 11 as our initial functions, we can derive the following pair of diversity indices.

Shannon’s Diversity Index (SDI; 1H) is given by [74]:

1D = − exp∑pilnpi (12)

Which may be reduced to the following forms, linking the mutation rate and population size to the diversity and

heterozygosity – broadly the number of information alleles in the population:

1D ≈ e0.5772(θ + 0.5) = e0.5772(4Nμ + 0.5) = 1.781 2D − 0.5 (13)

Here, 2D is the heterozygosity index, where:

2D =

1
1 − 2H = θ + 1 = 4Nμ + 1 (14)

Alternative models are presented in Chao et al (2015), which include the effects of migration and multiple sub-

populations. However, these models are also incomplete with regard to the movement of information, which is a lot faster

than the migration of people (or other organisms) that their models consider. Moreover, the IAM model that is adapted,

above, produces outputs that are close to the observations that the authors show in their work (Chao et al., 2015).

Therefore, we consider the IAM model as applicable, if imperfect.

We encourage interested parties to read Chao’s work to consider how our model may be adapted to more realistic

scenarios, where migration of information is coupled to migration of people, as well as the “mutational” loss or gain of

information alleles that we consider, here. That is currently, beyond the scope of the work presented.

2.8. Model Outline

To model the effect of the mode and rate of transmission of information we use a news headline, posted digitally, from the

BBC: “A Chinese couple plotted to set up a mini-state on the Marshall Islands in the Pacific, bribing MPs and officials

( )
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along the way, US prosecutors say.” (Frances Mao, BBC News; 08/09/22). The headline is 123 characters long; 148

characters, including spaces. The headline consists of one sentence with three clauses, ignoring the location qualifier, “in

the Pacific”.

Unit Headline Count

Length, L / Characters 123

Length, L / Words 26*

Length, L / Clauses 3**

Mutation rate (read rate) / μ 0.03% {m/10-4/}

Mutation rate (write rate) / μ 1% {m/10-2/}

Mutation rate (re-posting) / μ 10-9

Hamming Distance, H (arbitrary) 1

Replication rate, A (non-viral) 103

Replication Rate, A (viral) 106

Table 3.

* “mini-state” is counted as one word; ** The length in clauses, ignores the qualifier, “in the Pacific”. The Hamming

Distance of 1 is an appropriate value for a sentence of this length, given the mutation rate. A maximum value would be 2

for a mutation rate of 0.31% (~0.003).

 

For quasispecies models, we use a continuous range of mutation rates covering three orders of magnitude and with

different population sizes (equations 5-9). We then model changes in information content using equations 11-14, with a

viral population of 106. Here, the information from the headline is shared verbally amongst a social group, with the

associated read error rate {m/10-4/} and a population size of 100. Different error rates are then compared with regard to

the change in information diversity.

The change in Shannon entropy is determined for each of these population models, where the Shannon diversity index is

given by 1.781(4Nμ + 0.5) (equation 13); and the heterozygosity index by 4Nμ + 1 (equation 14).

3. Results

In the following sections we quantify the data from the above methodological components.

3.1. Mutation rate and lexicon size

In biological systems, RNA viruses have the highest mutation rates on the order of 10-4 - 10-5 with genomes that are

typically 103-104 nucleotides long [75][76][77][78][79]. Observed error rates in verbal and written communication (reading and

copying) are higher, on the order of 10-2-10-4 per task (Table 1, 28). Smith (2011) estimated that, at least in engineering -
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the context of his work - that an error rates of 10-6 per task would be considered reasonable. Likewise,

Tesdell [32] reported similar rates of error in ESL (English as a Second Language) users, leading us to conclude that error

rates for the use of written and spoken English are within one order of magnitude of 10-2-10-4.

The error rate in Tweets is reported at 0.56% (> 10-3), based on incorrect spelling or deviant word use [27][28]; while

Facebook users have a near-equivalent error rate of 0.31% (> 10-3; 31). Texting errors are similarly high (0.4%; 0.004),

although the overall rate is lower in smartphone messages compared to pre-existing alphanumeric keypad messages [31].

These error rates agree with those of Smith (2011). A lower error rate in smartphones, as compared to older,

alphanumeric keypads, illustrates an effect of error-repair. The older keypads required up to four presses per letter to

select that required. Smartphones have individual letter keys, removing insufficient depressing or over-pressing of the key

as an error-source. Smartphones also employ error repair in the form of predictive text.

Tweets have pre-set character limits and the observed error rate is proportional to Tweet length (102 characters for a ca.

0.5% (0.005) error rate). Moreover, when the character limit was increased, the observed error rate was lower [28].

The observed relationship between error rate and Tweet length accords with the broader relationship between error rate

and genome length ([19][34]; equation 1). If we extrapolate the overall error rate of 10-6 (Smith, 2011), we would expect the

English lexicon to be approximately 105-106 words, as observed (58,85,86. 87, 88). Moreover, a person’s lexicon is on the

order of 104-105 lemmas [80][81][82][83]. Given differences in the manner and accuracy in which language is stored in

memory, compared with printed or digitally-stored text, the size of the lexicons agrees with the predictions of equation 1.

Of note, but unfortunately, quantified in a different manner, the aviation industry has documented errors of varying

linguistic classes [84][85] that match expectations of meme-models for social evolution [86][87][88][89]. Unfortunately, the

frequency of these errors was not recorded (Drury, pers comm). Likewise, Rabøl et al. [90] and Topcu et al., [91] also

illustrate similar types of error in hospitals as seen in the aviation industry; but again, the data does not include rate.

Table 4. Examples of classes of read and hearing error

adapted from Drury and Ma [84][85].
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Language Category ASRS IATA

Language/Accent 47 5

Partial or Improper Readback 24 8

Dual Language Switching 23 2

Unfamiliar Terminology 17 4

Speech Acts 9 0

False Assumptions or Inference 7 23

Homophony 5 1

Unclear Hand-off 4 3

Repetition across Languages 3 2

Uncertain Addressee 1 13

Lexical Inference 0  

Lexical Confusion (speed/heading/runway/altitude) 4  

Mistakes (unexplained) 3  

Total 152 68

Lexical inferencing involves making informed guesses based on neighbouring lexical cues Haastrup [92]; while lexical

confusion refers to the meaning of a word in one dialect or language being confused with a different meaning in another,

such as “pants” meaning an item of underwear in the UK and trousers in the US. These errors are analogous to those

seen in the medical profession: e.g., Rabøl et al [90]. ASRS Aviation Safety Reporting System; IATA International Air

Transport Association.

 

These data clearly illustrate an error frequency that is considerably greater than seen in biological systems. The high error

rate necessitates that information in the above modes of communication must exist as a cloud of variants, where

reproduction rates are high.

At the opposite end of the mutational spectrum, the digital (bit) error rate per bit is on the order of 10-9-10-13 [93][94]. This

error rate is vastly lower than the human error rate and is, therefore, not worthy of consideration in terms of cultural

evolution, at present. However, one would expect that the lexicon that digital systems could have would be larger than any

human language – should (in the future) digital systems be able to reproduce. Such evolution of digital language could be

expected with a large number of digital devices working in parallel or very large information systems with data storage and

use exceeding ca.1013 bytes. Here, μN > 1 [95].

3.2. Abbreviations and Tweets are analogous to Defective Interfering Variants

In biological systems, deletion mutants often emerge that are fitter than the original, longer sequence [13][75][96][97][98]. By

“fitter” we mean replicate at a higher rate. In viral systems, these, shortened RNA molecules are called defective-

interfering or DI variants. These abbreviated variants are transmitted along with the intact virus, but faster replication

means that they can come to dominate the population [13][75][96][97][98][99]. These shortened molecules compete for
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replication in subsequent rounds of infection and contribute to inefficient transmission of viruses [13][75][76][96].

Likewise, Texts [30][100][101], Tweets [102][103] and, recently emerged Emoji-based languages [104] represent natural

evolutionary processes that permit more rapid replication, by the loss of information that is non-critical for the integrity of

the selected sequence [27][28][104]. By “integrity” we mean that the message remains functional in terms of conveying

information, however, the context or subordinate meanings may not be present.

As with co-replication of viruses and DI particle genomes, transmission of these DI languages would also be expected to

reduce transmission of the parent lexicon, through competition for available free energy [54][55]. Tapia et al [105] show that

upwards of 104-105 times the number of DI copies per full-length viral genome per ml of fluid in tissue culture, with a

concomitant decrease in transmission of the full viral genome compared to DI variants. If our analogy is correct, then we

would expect an enhanced transmission of Tweets compared with the equivalent, full-length news items. Indeed,

enhanced transmission of information in Tweets is observed in a number of different scenarios, where rapid replication of

the information is favored over transmission of the full and more nuanced message [36][98][99][102].

Aside from shortened messages in the form of Tweets, text abbreviations, in general, constitute lexical analogies of DI

variants. Take the phrase, “U R L8”: practically, every English-speaking person will recognize the meaning of that phrase

despite missing six characters, not including spaces [30][94]. This deletion-message is clearly functional and is a lot easier

to type than the full sentence. The truncated version permits faster replication and transmission, with a lower use of free

energy than the full-length message. Therefore, in terms of the functional content of the media, there may be no

reduction, as long as the simplified text conveys the same meaning [23][25].

3.3. Quasispecies modeling of sentence variation

Table 3 listed the initial parameters that were used when modeling quasispecies, using equations 11 and 12. We

employed a range of mutation rates, ranging from 10-1 to 10-4. These fully encompass the range expected for human

discourse. Otherwise, the following summarize the parameters used:

Sentence length, L: 123 characters; 26 words; 3 clauses

Mutation rate, μ: variable, as above

Hamming Distance, h: 1 or 2 (one or two words or clauses)

Replication rate, Aij: 102 and 106

No selection is applied in these models, so that s = 1 in equations 11 and 12. Table 5 illustrates the expected range of

variants for a particular set of mutation rates.

Table 5. summary of the parameters for the three models we consider.
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Model
Mutation Rate /
μ

Replication Rate / h-

1
Variants / h-

1

1 - re-posting 10-9 106 10-3

2 - verbal share 10-4 102 10-2

3 - re-write share 10-2 106 104

 

Figure 1 illustrates the effect of changing the mutation rate on the fitness, w, of variant i with two different replication rates,

r = 102 versus r = 106 and a Hamming distance of 1. The effect of altering mutation rates is non-linear, with fitness

increasing at low mutation rates, but then declining steeply at rates above 10-2, which are typical of social media and

common discourse (above). As might be expected, high rates of mutation (here, changes in the content of the transmitted

message) will be associated with the loss of the meaning of the original message.

Figure 1.

The effect of altering the unit of length (character versus word count or clause count) has only a marginal effect on fitness

(figure 2).
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Figure 2. Changes to information length (character, word or clause) has little influence on the fitness of the sequence. The

replication number (as would be expected) is the dominant influencer on fitness.

Doubling the Hamming distance decreases the probability of the change being observed in the population of alleles

(sentence variants) by 1,000-fold (not shown); a result that is irrespective of the chosen mutation rate, length of

information or the replication rate.

We also measure the abundance of variants (xi and xj) in our hypothetical population for differing values of length,

Hamming distance, replication rate and mutation rate. In order to simplify the output, we determine the Shannon Diversity

Index, 2D (equation 4; [74]) for the modelled populations. Our simplified model has only two alleles – two variants of the

sentence so that xi + xj = 1. In reality, we would assume a more complex population, but the presented model is for

illustrative purposes only.
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Figure 3. illustrates the effect of increasing mutation rate on the diversity of sequences in the quasispecies.

Doubling the Hamming Distance; altering the replication rate or length of unit does not alter the Diversity index, 2D (not

shown). Finally, in figure 4 we use the Diversity Index, 2D, to illustrate the change in abundance of the original variant, xi,

with decreasing mutation rates.
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Figure 4. Variation in sentence diversity and xi fraction, assuming only two alleles (sentence variants) exist in the population. There is

no effect of changing Hamming distance, length or replication rate on the diversity index.

3.4. Conditional growth in Shannon entropy

Using equations 5 and 6, we compute the Shannon Diversity and Heterozygozity of our model populations of sentence

variants. The quasispecies models (above) assume only two variants, while the models presented in figure 5 shows a

more realistic picture of the number of variants that will arise in a population of differing sizes. Here, the term “population”

refers to the variety of information present, rather than people who transmit it. We do not include the effects of selection in

this analysis. Tables 6a and 6b list values for Shannon Diversity and Heterozygosity reflecting different modes of

communication, while figure 5 illustrates the variation in Shannon Diversity with population size.

Table 6a. Variation in the Shannon Diversity Index for a variety of errors rates taken from the literature.
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Population
Size

Read Mutation Rate/
Checklist

Write mutation
rate

Tweet Write
Error

Text Error
Rate

1D Read
Errors

1D Write
Errors

1D Tweet
Errors

1D Text
Errors

10,000,000 0.0001 0.01 0.0056 0.004 4000 400000 224000 160000

1,000,000 0.0001 0.01 0.0056 0.004 400 40000 22400 16000

100,000 0.0001 0.01 0.0056 0.004 40.5 4000 2240 1600

10,000 0.0001 0.01 0.0056 0.004 4.5 400.5 224.5 160.5

1,000 0.0001 0.01 0.0056 0.004 0.9 40.5 22.9 16.5

100 0.0001 0.01 0.0056 0.004 0.54 4.5 2.74 2.1

10 0.0001 0.01 0.0056 0.004 0.504 0.9 0.724 0.66

Given the high error rates in communication, the diversity within the population of information is expected to be high,

except where simple re-Tweeting or sharing/copying of unmodified information is dominant. Note, values in excess of 103

are rounded, removing the “+0.5” from the determined values (equation 5).

Population
Size

Read Mutation Rate/
Checklist

Write mutation
rate

Tweet Write
Error

Text Error
Rate

1H /
Read

1H /
Write

1H /
Tweet

1H /
Text

10,000,000 0.0001 0.01 0.0056 0.004 400 40000 22400 16000

1,000,000 0.0001 0.01 0.0056 0.004 40 4000 2240 1600

100,000 0.0001 0.01 0.0056 0.004 41 4001 2241 1601

10,000 0.0001 0.01 0.0056 0.004 5 401 225 161

1,000 0.0001 0.01 0.0056 0.004 1.4 41 23.4 17

100 0.0001 0.01 0.0056 0.004 1.04 5 3.24 2.6

10 0.0001 0.01 0.0056 0.004 1.004 1.4 1.224 1.16

Table 6b. Variation in heterozygosity, 1H, for the same variety of references error rates used in table 6a.

Given the high error rates in communication, heterozygosity is expected to be high, except where simple re-Tweeting or

sharing/copying of unmodified information is dominant. Note: values in excess of 103 are rounded, removing the “+1.0”

from the determined values (equation 6).
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Figure 5. Graphical representation of the data from table 6a.

4. Discussion

In this paper we illustrate how cultural evolution should be considered within the framework of the evolution of information,

which includes biological evolution. We present a series of models that illustrate the kinds of processes that lead to

diversification of information in certain social contexts. We show that variation in populations of cultural information can be

modelled in the same manner as biological information, in the form of genetic material.

In this work, we show that there are rates of variation in cultural information that match and, in some cases, grossly

exceed that seen in biological systems [19][33][31]. The implication of these high rates of variation will be an abundance of

variation in populations of information that circulates in the human population. As such, the abundance of these variants is

analogous to quasispecies in RNA viral populations [96][97][98][99]. Moreover, the clausal structure of sentences, facilitates

their transmission as modular units [11][37][38][39]; with modularity permitting recombination and further evolution. Human

behavior is particularly prone to driving error-prone replication, either because we mis-hear and mis-read information,

before passing it on [33][84][85][90][91]; or we merely do not remember it, accurately. We also fit information to pre-existing

schemas, thereby facilitating its change and recombination with other information in our memory [58]. Fitting of data to

expectation may also promote lexical inferencing [92].
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Moreover, the formation of “textisms” [31] or Emoji languages [104] can be thought of as analogous to defective interfering

viral particles, where the compressed form of social communication replicates more efficiently (and, therefore, has a

higher fitness) than the original language [27].

We compute differing measures of Shannon Diversity and Heterozygosity, either based on simplified quasispecies models

with two alleles (information variants), or more broadly with a range of observed error rates in different modes of

communication. The two allele (quasispecies) model shows declining diversity with declining mutation rate (as might be

expected); but no effect of altering the Hamming Distance, Length of message (as the type of unit assessed) or the

replication. Diversity is solely dependent on the mutation rate in these models.

In the second series of models, diversity is judged by the Shannon methodology and by another biological method:

heterozygosity. Both of these measures allow free-reign on diversification in the model populations and each illustrates

how the mutation rate is the primary determinant of diversification. Each also illustrate how different modes of

communication affect the rise in diversity.

We do not show the effects of selection on information spread, nor the long-term persistence of information, once it has

been disseminated. A more accurate measure of fitness (w) is to include survivability with reproduction rate, then

determine relative fitness of one variant to another [46][105][106]. For the purposes of brevity, in what is already a far-

reaching article, we propose that this measure of fitness (w) is used in future analysis, with suitable time-frames used to

judge the effect. However, the key idea is that information is simply information, irrespective of how it is stored. Cultural

information in text, music, computerized data, or artifacts such as Art or architecture, is still information. The mode of

transmission of information then determines how it evolves [107][108]. Art and architectural artifacts primarily change

through the effects of light and weather, while written text evolves in our perceptions of it and the largely imperceptible

effects of bit error, where that information is stored digitally.

Generally, it is in the faster-paced world of social media and conversation, that one should expect rapid evolution of

information. The imperfect acquisition, storage and transmission of information by people is the bedrock through which

cultural information will evolve. While the principle of equivalence in genetic (and epigenetic) and cultural information is

not new, it remains contentious [2]. However, in this work we illustrate directly how processes central to biological evolution

are measurable in cultural evolution. Moreover, we show that conversation and social media may be modelled as

quasispecies – rapidly evolving populations of information that rapidly sample the cultural landscape in a manner

equivalent to the biological sampling of the underlying fitness landscape [45][109].

While we have not looked more broadly at cultural context, within the BBC news quote that we analyzed, there was a

potential source of cultural error: “…bribes ranging from $7,000 to $22,000 (£6,100 to £19,000)”. Here, a simple

conversion of “$7,000 to $22,000” to “£7,000 to £22,000”, would increase the value of the bribe, significantly. Indeed, on

the week beginning March 20th 2023 there were reports of a new gold find in China. One report had the estimated value

as $3 billion2, while another article had the same find valued at $3 trillion3. Upon checking the estimated yield of the

deposit and the current market price, the lower value turned out to be correct. Therefore, we note that the social context
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of information is a source of further error and is seen in incidents involving airplanes (Table 4: 88) and hospital [89][90].

5. Conclusions and perspectives

We discuss a few implications of the model that allow it to be tested, but also illustrate the impact of the quasispecies

model on communication and cultural evolution.

5.1. Relationship between the Pragmatic Theory of Information and this work

The Pragmatic Theory of Communication is an attempt to reformulate the information content of a communication in terms

is the actions it has on the recipients [23][24][25]. As such, the theory converges with that presented, as it posits that the

useful information content of a message is determined by the extent of selection by its recipients, as follows:

Two messages are equivalent when they lead to the same actions;

Equivalent messages, of different sizes, can have the same information content;

The same message has different information content when used in different decision contexts

The first bullet is, in effect, a statement of convergent evolution, where selection drives the same outcome, irrespective of

the source. The second statement is analogous to neutral mutations, where addition, deletion or alteration of genic

information may have no effect on phenotype – but where we assume that larger messages carry a greater energy burden

to transmit/replicate. The third statement is the more interesting of the three and may be considered as a function of the

“clausal structure” of genes (exons; domains) and sentences (clauses).

Error-prone replication can alter verbs and nouns, but clauses provide a context, which depending on recipients, may

have different impacts. When information is interpreted, the nature of the clauses that are used to add structure will affect

how it is interpreted. Adding additional clauses with emotional or less direct meaning, will increases the number of

interpretations and hence the rate of divergence in its interpretations. Reducing the number of clauses reduces the

number of targets for differential selection. Therefore, where there is a need to keep a message’s intent fixed, limiting the

number of clauses in a sentence is important.

To summarize, if two different messages lead to the same action, the selection acting on each is identical (convergent

evolution). Secondly, where additional content is added to speech or text, such additional text need not provide a useful

target for selection. In essence, “waffle” may be ignored. Thirdly, where there is a sufficiently-rich piece of information,

different components of that information form targets for selection. Therefore, the context in which that information is

perceived can lead to distinct units within it being selected by different individuals or groups. In summary, if you wish there

to be one outcome from a communication, keep your message simple.

5.2. Practical implications of the growth in Shannon entropy of cultural information

Shannon entropy may be used as a measure of information complexity. It follows from The Pragmatic Theory, given error-

Qeios, CC-BY 4.0   ·   Article, April 4, 2023

Qeios ID: S8VD03   ·   https://doi.org/10.32388/S8VD03 21/30



prone human communication – whether by interpretation, memory deficiencies or intent – the Shannon entropy of societal

information will grow over time, in a manner dependent on the availability of free energy (manuscript in preparation). Each

time information is heard, memorized and disseminated, the opportunity for mis-replication and the generation of variants,

increases. As cultural information is modular - and sentence structure is modular – the units on which error-prone

replication and subsequent selection act are those modules. Therefore, in keeping with Weisenberg [25] and the principles,

above, shorter and less modular sentences are less prone to drift in interpretation or memorization.

5.3. A shrinking population means less cultural information, but no change in evolutionary pace

As we begin to depart from a world where population growth changes from a seemingly exponential path to a logistic

one [110], it is worth asking what will and must happen to information and culture in the future.

The growth of the internet has matched population growth with a 10:1 ratio of information growth to people [111][112].

Moreover, while technology continues to grab more and more information about our universe and allow us to generate our

own interpretations of it, there has already come a time when the flow of information exceeds our capacity to use

it [110][111]. How does a culture and its Shannon entropy change when the influx of information grossly exceeds the

population that can use it?

In such a world, we might expect the following:

The fraction of information that is held and actively expressed must decline

A decreasing fraction of total cultural information will be held in the human population

Divergence in cultural information and decreasing human population should encourage cultural fragmentation, in the

absence of selection

Machine and AI come to dominate the utilization of information, with humans increasingly serving as spectators

With regard to Shannon entropy, a couple of observations can be made. Firstly, the information held in any one person will

increase over their lifetime to whatever capacity they are able to hold. Such growth in information means that in any one

person, the Shannon entropy of the information will increase, in step with the volume of the information they hold and its

decay with an aging memory.

Culturally, the amount of information that can be expressed by humans, assuming that a growing AI does not express it,

must decline as the number of people who are present declines (figure 5). Within the declining population, each person

continues to grow their pocket of information entropy, but overall, the loss of human population means that a smaller

proportion will be expressed and evolve over time. Therefore, rather obviously, the richness of information expressed in

humanity will be proportional to its size and will decline once the human population declines.

An obvious outcome, will be the wholesale loss of expressed languages with a shrinking global population. As an aside,

an interesting gedankenexperiment considered the evolution of language on long interstellar flights [113]. In essence

McKenzie and Punske [113] applied the concept of island biogeography to an isolated population of humans, replete with
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language “founder effects”.

We should also consider music as a language [114][115][116], one which has a very high rate of evolution, despite the

constraints imposed by its “grammatical system”. One only has to look at the evolution of music in the punk and post-punk

eras [117]. Here, you see how one idea begat another and led to a rapid proliferation of styles; an expansion which was

further facilitated by the availability of novel technologies [118]. Music, is thus the ideal arena in which to further probe

language evolution through the lens of information evolution.

If we are intent on preserving and growing the richness of our culture, evolving and expanding AI systems will need to

take over the role. Moreover, if that interest extends to developing cultures within these AI systems, we will have to build

in error-prone systems to generate the kinds of evolutionary diversification biological systems experience. While the

inclusion of such processes could lead to the extinction of some human culture, it will bring evolutionary change to AI

culture, thereby linking it to the evolution of information in the biosphere.
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Footnotes

1 Latané’s original equation is I = sNt, therefore, we have changed “s” to “c” to avoid confusion with the selection

coefficient, s, in genetics; while t has been changed to w, to reflect the fitness of the response.

2 https://news.cgtn.com/news/2023-03-19/China-discovers-huge-gold-deposit-worth-3-trillion-1ij0YJRKiXK/index.html

noting that the URL has the incorrect $3 trillion value, while the article is correct.

3 https://www.msn.com/en-xl/news/other/china-discovers-huge-gold-deposit-worth-3-trillion/ar-AA18QoyB
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