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Abstract
The alignment of large language models (LLMs) is crucial
for generating helpful and harmless content. Existing ap-
proaches leverage preference-based human feedback data to
learn the reward function and align the LLM with the feed-
back data. However, these approaches focus on modeling the
reward difference between the chosen and rejected demon-
strations, rather than directly modeling the true reward from
each demonstration. Moreover, these approaches assume that
the reward is only obtained at the end of the sentence, which
overlooks the modeling of intermediate rewards. These is-
sues lead to insufficient use of training signals in the feed-
back data, limiting the representation and generalization abil-
ity of the reward and potentially resulting in reward hacking.
In this paper, we formulate LLM alignment as a Bayesian In-
verse Reinforcement Learning (BIRL) problem and propose
a novel training objective, Approximated Variational Align-
ment (AVA), to perform LLM alignment through Approxi-
mated Variational Reward Imitation Learning (AVRIL). The
BIRL formulation facilitates intermediate reward modeling
and direct reward modeling on each single demonstration,
which enhances the utilization of training signals in the feed-
back data. Experiments show that AVA outperforms exist-
ing LLM alignment approaches in reward modeling, RL fine-
tuning, and direct optimization.

Introduction
Large language models (LLMs) trained on massive corpus
encode a large amount of knowledge and demonstrate pow-
erful linguistic and reasoning capabilities in various domains
(OpenAI 2022; Achiam et al. 2023). However, due to the
inevitable harmful and useless information in the training
data, LLMs can potentially generate content inconsistent
with human values or requirements (Holtzman et al. 2019;
Zhang et al. 2019; Weidinger et al. 2021). LLM alignment
is a prevalent and effective approach for LLMs to gener-
ate harmless and helpful content. The alignment task typ-
ically relies on human feedback data in the form of pref-
erences, where each preference data consists of a chosen
sentence and a rejected sentence, labeled by human anno-
tators (Zopf 2018; Tay et al. 2020). Reinforcement Learn-
ing from Human Feedback (RLHF) and Direct Preference
Optimization (DPO) are two common approaches to align
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LLMs with human feedback data (Shen et al. 2023). RLHF
first performs reward modeling to learn a reward function
from the feedback data and then fine-tunes the LLM policy
to maximize the expected reward achieved by its generated
content using Reinforcement Learning (RL) (Ouyang et al.
2022; Bai et al. 2022; Touvron et al. 2023; Yang et al. 2023).
DPO formulates the reward modeling objective as a rank-
ing objective based on the LLM policy, which facilitates the
joint performance of reward modeling and LLM policy fine-
tuning through a unified training objective (Yuan et al. 2023;
Rafailov et al. 2024; Song et al. 2024).

The Inverse Reinforcement Learning (IRL) problem gen-
erally involves learning a reward model from observed
demonstration data produced by a Markov Decision Process
(MDP) (Ng, Russell et al. 2000). Conversely, the Natural
Language Generation (NLG) process can be viewed as an
MDP where the generated sentences are considered demon-
stration data (Ranzato et al. 2016). Therefore, the alignment
task performed by RLHF and DPO can be seen as address-
ing an IRL problem that infers the implicit reward func-
tion hidden in the preference-based human feedback data
and learns the LLM policy either separately or jointly. How-
ever, existing RLHF and DPO alignment approaches only
model the reward difference between the chosen and re-
jected demonstrations without explicitly modeling the true
reward of every single sentence. This limitation means that
the demonstration data is not fully utilized, which restricts
the representation ability of the reward model and can lead
to reward hacking (Skalse et al. 2022; Gao, Schulman, and
Hilton 2023; Coste et al. 2023; Zhang et al. 2024). Ad-
ditionally, current approaches generally model the end-to-
end sentence-level reward without considering the reward
of intermediate states. Model generalization may be lim-
ited when confronted with data that have similar interme-
diate state distributions but different complete sentence dis-
tributions. It is more intuitive to model intermediate rewards
since humans can not only provide overall feedback on the
entire text but also explain which parts of the text influenced
their feedback.

In this paper, we propose a novel LLM alignment training
objective, Approximated Variational Alignment (AVA),
based on Bayesian Inverse Reinforcement Learning (BIRL)
(Ramachandran and Amir 2007). Specifically, we formu-
late the reward distribution as a posterior distribution condi-
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tioned on the demonstration data and perform Approximated
Variational Reward Imitation Learning (AVRIL) (Chan and
van der Schaar 2021) to jointly approximate the reward dis-
tribution (i.e., the reward model) and the demonstration like-
lihood (i.e., the policy). Unlike most previous LLM align-
ment approaches, which only model the reward difference
between chosen and rejected demonstrations, AVA directly
models the reward of every single demonstration through the
AVRIL training objective, thereby making better use of the
training signals from feedback data. Additionally, we do not
adhere to the assumption that the reward is only obtained
at the end of the sentence. Instead, we leverage the AVRIL
training objective to model the intermediate reward condi-
tioned on the intermediate demonstration data. To demon-
strate the flexibility of our approach, we use the AVA train-
ing objective on data in different formats through different
pipelines.

Our work makes the following main contributions:
• We present a novel insight into LLM alignment by for-

mulating the alignment task as a BIRL problem, which
enhances the utilization of training signals and improves
the representation and generalization ability of the LLM.

• We demonstrate the flexibility of AVA by employing it
for both reward modeling and direct optimization on ei-
ther preference data or demonstration data.

• We empirically show that AVA surpasses Bradley-Terry
and Preference Transformer in reward modeling and
downstream RL fine-tuning, and outperforms DPO and
AfD in direct optimization, which indicates a reduction
in the reward hacking issue and an improvement in rep-
resentation and generalization ability.

Related Work
LLM Alignment The Bradley-Terry model (Bradley and
Terry 1952) formulates preference likelihood using the re-
ward model and is widely adopted by RLHF alignment
approaches for reward modeling. After reward modeling,
the LLM is fine-tuned to maximize the expected reward
achieved by LLM-generated content through downstream
RL training (Ouyang et al. 2022; Bai et al. 2022; Touvron
et al. 2023; Yang et al. 2023). A more concise approach
for preference alignment is Direct Preference Optimization
(DPO) (Rafailov et al. 2024), which denotes preference
as the relative log-likelihood difference between the cho-
sen sentence and the rejected sentence. DPO unifies reward
modeling and LLM fine-tuning into a single process, facil-
itating LLM alignment with a simple classification loss. In
addition to aligning LLMs with pairwise human preference
data, some recent works also align LLMs with non-pairwise
demonstration data. Sun and van der Schaar (2024) pro-
pose Alignment from Demonstrations (AfD), which lever-
ages high-quality demonstration data to overcome chal-
lenges such as noisy labels and privacy concerns in prefer-
ence datasets.

Intermediate Reward Modeling The above alignment
approaches only model the end-to-end reward of a com-
plete sentence, without considering the reward of intermedi-
ate states. This lack of intermediate reward modeling stems

from the assumption that the reward is only achieved when
the sentence is fully generated, regarding the Natural Lan-
guage Generation (NLG) process as an MDP (Ranzato et al.
2016). To address this issue, we refer to related work on pref-
erence modeling in classic RL problems without the afore-
mentioned assumption. Notably, the Preference Transformer
(Kim et al. 2023) uses the attention weights computed by the
Transformer architecture (Vaswani et al. 2017) to estimate
the weighted non-Markovian reward of each intermediate
state of the trajectory. The reward of a complete trajectory
is then the weighted sum of all intermediate rewards. The
preference between the chosen and rejected trajectories is
formulated by their rewards and optimized through a con-
trastive training objective, similar to Bradley-Terry.

Preliminaries
MDP Formulation of NLG
At time step t, the state is the previously generated tokens
denoted as y1:t = (y1, y2, · · · , yt), the action is the cur-
rently generated token yt+1. Note that in auto-regressive de-
coding, the output tokens are time-shifted. The action space
is the vocabulary V containing all possible tokens. In the
text generation setting, the state transition is deterministic,
so we do not consider the transition probability function.
The reward of taking action yt+1 under state y1:t is denoted
as R(y1:t, yt+1) = R(y1:t+1), i.e., the reward can be the
function of either the current state and the current action or
merely the function of the next state due to the determinis-
tic state transition. It is worth noting that for simplicity of
denotation, we do not separately denote the prompt text and
the response text but denote them as a whole sentence y.
The separation of prompt and response is trivial during im-
plementation. The policy can be denoted as πw(yt+1|y1:t),
which is also the distribution of the language model parame-
terized byw. For simplicity, we sometimes denote the policy
as πw(y) =

∏|y|−1
t=1 πw(yt+1|y1:t), where |y| is the length

of sequence |y|. Note that the accumulated product starts
from πw(y2|y1:1) instead of πw(y1) since we assume that
all sequences start with a special token denoting the start of
the sequence.

Bayesian Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) is the problem of ex-
tracting a reward function of a Markov Decision Process
(MDP) given observed optimal behavior (Ng, Russell et al.
2000). Bayesian Inverse Reinforcement Learning (BIRL) re-
gards the reward function R as the hidden variable affect-
ing and motivating the behavioral data T . The objective of
BIRL is to learn the posterior distribution p(R|T ). Approxi-
mate Variational Reward Imitation Learning (AVRIL) (Chan
and van der Schaar 2021) adopts variational inference to
approximate the posterior distribution. Specifically, AVRIL
employs a parameterized distribution qϕ and minimizes the
Kullback-Leibler (KL) divergence between qϕ and the pos-
terior distribution p(R|T ), as shown in Eq. 1. This KL diver-
gence is hard to compute since the posterior distribution is
intractable. A common solution is to maximize the Evidence
Lower Bound (ELBO), as shown in Eq. 2, where the second



term is to minimize the KL divergence between qϕ and the
tractable prior distribution.

min
ϕ
DKL[qϕ(R)||p(R|T )] (1)

max
ϕ

ER∼qϕ(·)[log p(T |R)]−DKL[qϕ(R)||p(R)] (2)

The first term of Eq. 2 is to maximize the log-likelihood
of the observed optimal behaviors given any reward sam-
pled from qϕ. AVRIL denotes the action distribution as a
Boltzmann policy, as shown in Eq. 3, where QπT

R is the
state-action value function following policy πT under re-
ward function R. Intuitively, we can approximate the state-
action value using a Deep Q Network (DQN) (Mnih et al.
2013) Qθ parameterized by θ. An important problem is that
in the RL setting, the reward function is fixed when op-
timizing Qθ. However, in the AVRIL setting, the reward
function is also being optimized during the optimization of
Qθ. The reward function and the state-action value function
should satisfy R(s, a) = Es′∼P (·|s,a),a′∼π(·|s′)[Q

π
R(s, a) −

γQπR(s
′, a′)], ∀ s ∈ S, a ∈ A, i.e., the reward should equal

the expectation of the TD error. By adding a penalty term
forcing the TD error to follow the reward distribution, the
final objective to be maximized is shown in Eq. 4, where
qϕ(R|s, a) denotes the distribution of reward values given
the state s and the action a. In this way, the behavior is
indirectly conditioned on the reward, which is consistent
with the likelihood p(T |R) in the ELBO (Eq. 2). Here,
B(a|s;Qθ) is the Boltzmann policy upon the state-action
value function Qθ parameterized by θ. The third term in the
square brackets is to restrict the TD error to satisfy the con-
straint R(s, a) = Es′,a′ [QπR(s, a) − γQπR(s

′, a′)], ∀ s ∈
S, a ∈ A. qϕ(R|s, a) denotes the distribution of reward val-
ues given the state s and the action a. We refer to the training
objective in Eq. 4 as the approximated variational training
objective of the ELBO.

B(a|s;QπT
R ) =

exp(βQπT
R (s, a))∑

a′∈A exp(βQπT
R (s, a′))

(3)

max
ϕ,θ

∑
(s,a,s′,a′)∈T

[
logB(a|s;Qθ)−DKL [qϕ(·|s, a)||p(·)]
+λ log qϕ

(
Qθ(s, a)− γQθ(s′, a′)|s, a

)]
(4)

Approximated Variational Alignment
In this section, we formulate the LLM alignment tasks as the
BIRL problems and perform alignment with the Approxi-
mated Variational Alignment (AVA) training objectives. The
AVA training objectives involve AVA from Demonstration
(AVA-d) and AVA from Preference (AVA-p), both of which
are BIRL training objectives based on the Approximated
Variational Reward Imitation Learning (AVRIL) training
objective (Chan and van der Schaar 2021). AVA-d is the
implementation of the AVRIL training objective under the
NLG setting, which learns on non-pairwise demonstration
datasets. AVA-p is a contrastive variant of AVA-d, which
learns on pairwise preference datasets.

Alignment from Demonstration
We first consider the problem of aligning an LLM policy
with the demonstration data D, where each sentence y ∈ D
is the ground-truth sentence. The alignment objective is to
encourage the LLM policy to generate sentences like the
demonstration data. Instead of building a direct training ob-
jective (e.g., supervised fine-tuning) to optimize the LLM
policy, we focus on performing BIRL to learn a reward func-
tion from the demonstration data D, i.e., to learn the poste-
rior p(R|D) with a parameterized distribution qϕ(R).

As illustrated in the preliminaries, the optimization of
qϕ can be achieved by maximizing the AVRIL training ob-
jective (Eq. 4), where each element (s, a, s′, a′) ∈ T is
a state-action quadruplet consisting of the current state s,
the current action a, the next state s′ and the next ac-
tion a′. As for the Natural Language Generation (NLG)
setting, at each time step t, the current state is the cur-
rent sub-sentence y1:t, the current action is the token-to-be-
generated yt+1, the next state is y1:t+1, the concatenation of
y1:t and yt+1, and the next action is yt+2. By substituting
the state-action quadruplet in Eq. 4 with the new quadru-
plet (y1:t, yt+1,y1:t+1, yt+2) and rewrite the summation in
timestep-wise form, we can obtain the AVRIL training ob-
jective applicable to the NLG setting, as shown in Eq. 5. We
refer to this training objective as Approximated Variational
Alignment from Demonstration (AVA-d), which is a variant
of the AVRIL training objective in the natural language gen-
eration setting.

Fd(D) =
∑
y∈D

|y|−2∑
t=1

[
logB(yt+1|y1:t;Qθ)− dt(ϕ)

+λ log qϕ
(
δt(θ)|y1:t+1

)] (5)

dt(ϕ) = DKL [qϕ(·|y1:t+1)||p(·)] (6)

δt(θ) = Qθ(y1:t, yt+1)− γQθ(y1:t+1, yt+2) (7)

Here, qϕ(R|y1:t+1) is the reward distribution of the sub-
sequence y1:t+1. The Boltzmann policy B(yt+1|y1:t;Qθ)
built upon the Q-value model Qθ acts as the LLM policy
for text generation. By maximizing Fd, the Q-value model
(i.e., the LLM policy) Qθ as well as the reward distribution
qϕ will be jointly optimized to be aligned with the demon-
stration dataset D.

Similar to the original AVRIL objective, the AVA-d ob-
jective consists of three sub-objectives: the log-likelihood
maximization, the KL divergence minimization, and the TD-
error constraint. The first objective trains the LLM policy to
maximize the likelihood of the demonstration data, which
is identical to supervised fine-tuning. The second objec-
tive is to ensure the reward distribution satisfies the prior
distribution assumption. The third objective, TD-error con-
straint, distinguishes AVA-d from conventional supervised
fine-tuning. With the constraint, the update of the Q-value
model will not only increase the Q-value of the ground-truth
token in demonstration data but also make the TD error of
the Q-values 7 close to the reward obtained after generating
the current token, which ensures the consistency between the
reward and the policy.
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Figure 1: Overview of the TQR architecture.

TQR Architecture

The original AVRIL adopts the architecture with a reward
encoder and a Q-value decoder. To compute the AVA-d train-
ing objective and leverage the pre-trained weights of the
backbone transformer model, we add a reward head and a Q-
value head at the top of the Transformer decoder, as shown
in Fig. 1. We refer to this architecture as Transformer with
Q-value and Reward Heads (TQR). The Q-value head takes
the hidden states of the last decoder layer as input and out-
puts the Q-value of each action (i.e., token), as shown in Eq.
8. The reward is assumed to follow Gaussian distribution,
and the reward head takes in the same hidden states and out-
puts the mean and standard deviation of the reward of each
state, as shown In Eq. 9. Here, ht is the hidden state vector
of time step t, Qθ(y1:t, ·) ∈ R|V| is a vector whose i-th ele-
ment equalsQθ(y1:t, v

(i)), where v(i) is the i-th token in the
vocabulary, and µt, σt ∈ R are mean and standard deviation
of rewardR(y1:t+1) at time step t. Now we can compute the
training objective in Eq. 5 based on the above outputs of the
Q-value head and the reward head.

Qθ(y1:t, ·) = QHead(ht; θ),∀ t ∈ {1, · · · , |y|} (8)
[µt;σt] = RHead(ht;ϕ),∀ t ∈ {1, · · · , |y|} (9)

R(y1:t+1) ∼ qϕ(R|y1:t+1) = N (R;µt, σt) (10)

Inspired by preference transformer (Kim et al. 2023), we
further compute a reward weight for each time step of re-
ward based on attention weights, as shown in Eq. 11, where
qi is the i-th row of the query matrix of the attention mech-
anism, kt′ is the t′-th row of the key matrix. We then apply
reward weights to the outputs of the Q-value head (Eq. 8)
and reward head (Eq. 9). Specifically, we simply multiply
the output of the t-th position of the heads by the reward
weight wt, as shown by the red arrows in Fig. 1.

wt =
1

|y|

|y|∑
i=1

|y|∑
t=1

softmax
(
{qi · kt′}|y|t′=1

)
t

(11)

Besides using a randomly initialized Q-value head, we
can also construct a pre-trained Q-value model from the
pre-trained LLM policy. The Boltzmann policy formulates
the action probability as the softmax function of Q-values.
Inversely, we can also formulate the Q-value as the log-
softmax function of action probabilities, as shown in Eq. 12,
where α is the temperature hyperparameter, πw is the LLM
policy parameterized by w. Note that the log-softmax opera-
tion is a non-strict inversion of the softmax operation, which
means we can tune α to find the best way to map token-level
probabilities to token-level Q-values.

Qw(y1:t, yt+1) = log
exp(απw(yt+1|y1:t))∑
y′∈V exp(απw(y′|y1:t))

(12)

By substituting with the above Q-value model, the AVA-
d training objective can be denoted as Eq. 13, and the TD
error can be denoted as Eq. 14. This denotation facilitates
us to initialize the Q-value model from a pre-trained LLM
policy and adopt the AVA-d objective to fine-tune the LLM
policy.

Fd(D) =
∑
y∈D

|y|−2∑
t=1

[
β log softmax(απw(yt+1|y1:t))

−dt(ϕ) + λ log qϕ(δt(w)|y1:t+1)

]
(13)

δt(w) = log
softmax(απw(yt+1|y1:t))

softmax(απw(yt+2|y1:t+1))γ
(14)

Alignment from Preference
We then consider the problem of aligning an LLM policy πw
with preference data P , where each data item (y+,y−) ∈ P
consists of the chosen sentence y+ and the rejected sen-
tence y−. We denote the set of all chosen sentences as
P+ = {y+|(y+,y−) ∈ P} and the set of all rejected
sentences as P− = {y−|(y+,y−) ∈ P}. The alignment
objective is to encourage the LLM policy to generate sen-
tences like the chosen demonstrations P+ while discourag-
ing the LLM policy from generating sentences like the re-
jected demonstrations P−.

Similar to the derivation of the AVA-d training objective,
we first focus on performing BIRL to learn a reward func-
tion from the preference data P . We need to consider not
only the chosen sentences as positive demonstrations but
also the rejected sentences as negative demonstrations. We
consider two posterior distributions, which are the reward
conditioned on the chosen demonstrations p(R|P+) and the
reward conditioned on demonstrations that differ from re-
jected demonstrations p(R|P−). Here, P− denotes demon-
strations that differ from P−. Therefore, we define the train-
ing objective as Eq. 15, where the first term drives the reward
distribution qϕ close to rewards that motivate the positive be-
haviorsP+, while the second term drives qϕ close to rewards



that motivate behaviors that differ from the negative demon-
strations. We refer to the training objective as Contrastive
Bayesian Inverse Reinforcement Learning (CBIRL).

min
ϕ
DKL[qϕ(R)||p(R|P+)]+DKL[qϕ(R)||p(R|P−)] (15)

Unsurprisingly, the minimization of these two KL diver-
gences is infeasible. We derive the equivalent ELBO objec-
tive, as shown in Eq. 16. The derivation is shown in the Tech-
nical Appendix.

max
ϕ

[
ER∼qϕ(·)

[
log p(P+|R) + log[1− p(P−|R)]

]
−DKL[qϕ(R)||p(R)]

]
(16)

Towards implementation, we need to further derive the
ELBO objective as an approximated variational objective.
Note that the main difference between the ELBO of CBIRL
and the ELBO of conventional BIRL is the second opti-
mization term in Eq. 16, which minimizes the log-likelihood
of the negative demonstrations P−. Therefore, the approxi-
mated variational objective also contains the minimization
of the negative demonstrations, as shown in Eq. 17. We
refer to this training objective as the Approximated Varia-
tional Alignment from Preference (AVA-p). By maximizing
Fp(P), on the one hand, the LLM policy πw will be en-
couraged to generate sentences like P+ and discouraged to
generated sentences like P−; on the other hand, the policy
and the reward will stay consistent under the TD-error con-
straint.

Fp(P) =
∑

y+/−∈P

∑
t

 β log softmax(απw(y+t+1|y
+
1:t))

−β log softmax(απw(y−t+1|y
−
1:t))

−dt(ϕ) + λ log qϕ
(
δt(θ)|y1:t+1

)


(17)
To ensure the reward difference between the chosen and

rejected demonstrations, we adopt a more intuitive auxiliary
training objective, the Contrastive Expected Return (CER)
training objective, as shown in Eq. 18, which encourages the
reward of the positive demonstrations to be higher than the
reward of the negative demonstrations. Note that we only
consider the reward of the last timestep in the CER objec-
tive. Although we model the intermediate rewards, we still
assume that the reward of the last timestep is decisive for
the overall expected return, since empirical practice and re-
search (Geva et al. 2023; Hanna, Liu, and Variengien 2024)
show that the last position of the Transformer gathers most
of the knowledge.

Fc(P) =
∑

y+/−∈P

σ
[
Eqϕ(R|y+)[R]− Eqϕ(R|y−)[R]

]
(18)

AVA Pipelines
The AVA training objectives facilitate the joint optimization
of the reward function and the policy. Therefore, AVA can

be leveraged for both reward modeling and direct optimiza-
tion, which are two common pipelines in LLM alignment.
Both pipelines have their advantages and disadvantages. The
reward modeling pipeline can produce a lightweight and
reusable reward function for downstream RL fine-tuning
while it suffers from the high RL training cost. The direct
optimization pipeline is more efficient than reward modeling
with RL during training but cannot produce a lightweight re-
ward function for other uses and may suffer from overfitting.

Algorithm 1: AVA for reward modeling.
Data: Dataset D, initial implicit policy πψ(1) , initial

reward distribution qϕ(1) , training epochs T
Result: The trained reward distribution qϕ(T )

1 for i ∈ {1, · · · , T} do
2 if D is demonstration dataset then
3 ϕ(i+1) ← ϕ(i) +∇ϕ(i)Fd(D);
4 ψ(i+1) ← ψ(i) +∇ψ(i)Fd(D);
5 else
6 ϕ(i+1) ← ϕ(i) +∇ϕ(i)Fp(D) +∇ϕ(i)Fc(D);
7 ψ(i+1) ← ψ(i)+∇ψ(i)Fp(D)+∇ψ(i)Fc(D);
8 end
9 end

10 return qϕ(T )

AVA for Reward Modeling The pipeline of AVA for re-
ward modeling is shown in Alg. 1. In the TQR architec-
ture, the reward function shares the same backbone model
with the policy. Our purpose of reward modeling is to ob-
tain an accurate and lightweight reward model. Therefore,
we initialize the TQR architecture with a lightweight back-
bone model. In other words, we initialize the policy with a
lightweight pre-trained language model πψ(1) instead of a
large language model. Meanwhile, the reward distribution is
also initialized and denoted by qϕ(1) After the initialization,
we leverage either AVA-d or AVA-p training objectives to
optimize the reward distribution according to the type of the
dataset D. Note that the AVA training objectives require us
to jointly train the reward function with the policy, although
finally we only need the reward function. After reward mod-
eling, we can leverage RL algorithms to fine-tune the LLM
policy πw to maximize the expected reward produced by the
trained reward distribution qϕ, as shown in Eq. 19.

J(w) = Ey∼πw(·)

|y|−1∑
t=1

ER∼qϕ(·|y1:t+1)[R]

 (19)

AVA for Direct Optimization The pipeline of AVA for di-
rect optimization is shown in Alg. 2. Here, we directly ini-
tialize the policy with the pre-trained LLM πw(1) and lever-
age the AVA training objectives to jointly optimize the pol-
icy and the reward distribution qϕ(1) . After training, the LLM
policy and the reward distribution are both aligned with the
demonstration or preference dataset D.



Algorithm 2: AVA for Direct Optimization.
Data: Dataset D, initial LLM policy πw(1) , initial

reward distribution qϕ(1) , training epochs T
Result: The finally trained LLM policy πw(T )

1 for i ∈ {1, · · · , T} do
2 if D is demonstration dataset then
3 ϕ(i+1) ← ϕ(i) +∇ϕ(i)Fd(D);
4 w(i+1) ← w(i) +∇w(i)Fd(D);
5 else
6 ϕ(i+1) ← ϕ(i) +∇ϕ(i)Fp(D) +∇ϕ(i)Fc(D);
7 w(i+1) ← w(i)+∇w(i)Fp(D)+∇w(i)Fc(D);
8 end
9 end

10 return πw(T ) ;

Experiment
Experiment Setup
Datasets For preference datasets, we consider Anthropic-
Harmless, Anthropic-Helpful, and OpenAI-Summary and
perform reward modeling, RL fine-tuning, and direct opti-
mization on these datasets. For demonstration datasets, we
consider Alpaca-GPT-4 and Math-GPT-4o and only perform
direct optimization on these datasets.

Metrics For reward modeling, we evaluate the accuracy at
which the reward of the chosen sentence is greater than that
of the rejected sentence, as well as the win rates of the Best-
of-N sampling (Stiennon et al. 2020; Nakano et al. 2021)
results. For RL fine-tuning, we evaluate the win rates of the
LLMs fine-tuned with different reward models (i.e., AVA-
p/d and baselines). For direct optimization, we evaluate the
win rates of LLMs fine-tuned with AVA-p/d against LLMs
fine-tuned with baseline approaches.

Pre-trained Models For reward modeling, we initialize
the implicit policy with GPT-2 (117M) and BART-base
(140M) to see the reward modeling performance with differ-
ent initializations. For RL fine-tuning and direct optimiza-
tion, we initialize the LLM policy with Llama-2-7b-chat-hf.
The reward models adopted in RL fine-tuning only involve
those initialized with GPT-2.

Baselines For reward modeling, we adopt Bradley-Terry
(Bradley and Terry 1952) and Preference Transformer (Pref-
Trans) (Kim et al. 2023) as baselines. For direct optimiza-
tion from preference, we adopt DPO (Rafailov et al. 2024)
as the baseline. For direct optimization from demonstration,
we adopt AfD (Sun and van der Schaar 2024) as the base-
line. Since AfD constructs preference data from demonstra-
tion data and relies on preference-based training objectives,
we combine AfD with different preference-based training
objectives. Specifically, for reward modeling, we construct
AfD w/ Bradley-Terry, Afd w/ Pref-Trans, and AfD w/ AVA-
p. For direct optimization, we construct AfD w/ DPO. For
win rate evaluations of aligned LLMs, we also adopt super-
vised fine-tuning (SFT) as the baseline.

Harmless Helpful Summary
gpt2 bart gpt2 bart gpt2 bart

Baselines
Bradley-Terry 70.02 68.96 69.39 67.56 59.27 59.27
Pref-Trans 70.26 71.32 71.37 72.37 59.31 56.91

Ours
AVA-p 70.27 72.30 72.37 74.84 61.79 64.31
AVA-p w/o rwt 70.06 70.73 69.81 69.32 60.55 58.89
AVA-p w/o neg 70.54 70.36 69.75 69.15 62.06 58.65
AVA-p w/o irl 69.48 67.46 68.87 65.38 58.96 58.46
AVA-p w/o cer 70.06 70.73 69.81 69.32 60.55 58.58
AVA-p w/o ptq 68.67 68.69 68.51 67.60 61.25 57.76
AVA-d 70.54 70.36 69.75 69.15 62.06 59.00

Table 1: Reward accuracy of AVA and baseline training ob-
jectives.

Ablation Variants We construct the following variants of
the AVA-p and AVA-d training objectives for ablation stud-
ies:
• AVA-p/d w/o rwt: AVA-p/d without reward weighting,

which removes the computation of reward weights and
the weighted rewards from the TQR architecture.

• AVA-p w/o neg: AVA-p without the negative demonstra-
tion, which removes the minimization of the likelihood
of the negative demonstrations. Note that the objective
does not completely degenerate into the AVA-d training
objective since we still keep the CER auxiliary objective.

• AVA-p w/o irl: AVA-p without inverse reinforcement
learning, which removes the TD-error constraint and the
reward prior assumption and only keeps the likelihood
optimization, which can be regarded as contrastive su-
pervised fine-tuning.

• AVA-p w/o cer: AVA-p without CER auxiliary objective.
• AVA-p/d w/o ptq: AVA-p/d without pre-trained Q-value

head, which does not reuse the LM head of the pre-
trained policy as the Q-value head but initializes the Q-
value head from scratch.

For detailed experiment setup, please refer to our code and
the Experiment Details section of the Technical Appendix.

Reward Modeling
Table 1 reports the reward accuracy of baseline and AVA
training objectives. The results show that AVA-p surpasses
Bradley-Terry and Pref-Trans in reward accuracy on all re-
ported reward modeling tasks with different initial models
and datasets. The ablation results further reveal that AVA-p
achieves the highest reward accuracy on the greatest num-
ber of tasks compared to ablated training objectives, which
suggests that removing any module from AVA-p diminishes
the reward accuracy on most tasks. Furthermore, we con-
sider the chosen half of the preference data as demonstration
data and train the reward model on it using the AVA-d train-
ing objective. Surprisingly, AVA-d achieves the best perfor-
mance on 2 out of 6 tasks, despite learning solely from the
chosen demonstrations.



Task Opponent Win↑ Tie Lose↓

Harmless
Stochastic 43.0 17.4 39.6
BoN w/ Bradley-Terry 28.8 42.6 28.6
BoN w/ Pref-Trans 35.6 31.9 32.5

Helpful
Stochastic 26.1 50.4 23.5
BoN w/ Bradley-Terry 13.2 76.1 10.7
BoN w/ Pref-Trans 19.3 62.3 18.4

Summary
Stochastic 60.2 0.8 39.0
BoN w/ Bradley-Terry 34.6 34.5 30.9
BoN w/ Pref-Trans 43.6 25.8 30.6

Table 2: Win rates of BoN with AVA-p reward model.

Task Opponent Win↑ Tie Lose↓

Harmless
SFT 42.5 23.4 34.1
PPO w/ Bradley-Terry 9.2 81.7 9.1
PPO w/ Pref-Trans 9.0 83.2 7.8

Helpful
SFT 23.3 58.8 18.0
PPO w/ Bradley-Terry 1.8 97.2 1.0
PPO w/ Pref-Trans 2.6 95.8 1.6

Summary
SFT 73.8 1.4 24.7
PPO w/ Bradley-Terry 18.5 66.3 15.2
PPO w/ Pref-Trans 33.9 34.6 31.5

Table 3: Win rates of PPO with AVA-p reward model.

To further evaluate reward modeling performance, we em-
ploy Best-of-N (BoN) sampling. We evaluate the win rates
of BoN w/ AVA-p against BoN w/ Bradley-Terry and BoN
w/ Pref-Trans, where “BoN w/ xxx” means that the reward
model used for BoN is trained with the “xxx” training ob-
jective. Additionally, we evaluate the win rate of BoN w/
AVA-p against the stochastic sampling results without BoN.
Table 2 reports the win rates of the reward model trained
with AVA-p against reward models trained with baseline ob-
jectives in BoN sampling. The results further demonstrate
that AVA-p surpasses Bradley-Terry and Pref-Trans in re-
ward modeling.

RL Fine-tuning

We adopt the PPO algorithm (Schulman et al. 2017) to fine-
tune LLMs to maximize the reward produced by different
reward models. We evaluate the win rates of PPO w/ AVA-
p against PPO w/ Bradley-Terry and PPO w/ Pref-Trans,
where “PPO w/ xxx” means that the reward model used for
PPO fine-tuning is trained with the “xxx” training objective.
We also evaluate the win rate of PPO w/ AVA-p against su-
pervised fine-tuning (SFT), where the LLM is fine-tuned on
the chosen half of the preference data with supervised learn-
ing. The results in Table 3 show that AVA-p outperforms the
baseline reward modeling objectives on all reported tasks in
downstream RL fine-tuning of the LLM.

Task Opponent Win↑ Tie Lose↓

Harmless SFT 37.1 28.9 34.0
DPO 13.7 73.8 12.5

Helpful SFT 22.5 59.6 17.9
DPO 14.4 72.4 13.2

Summary SFT 59.0 7.3 33.7
DPO 44.9 11.0 44.1

Table 4: Win rates of direct optimization with AVA-p.

Task Opponent Win↑ Tie Lose↓

Alpaca
SFT 58.1 7.2 34.7
DPO w/ AfD 57.2 6.9 35.9
AVA-p w/ AfD 56.5 7.1 36.4

Math
SFT 47.0 9.7 43.3
DPO w/ AfD 44.3 11.4 44.3
AVA-p w/ AfD 45.4 11.4 43.1

Table 5: Win rates of direct optimization with AVA-d.

Direct Optimization
From Preference We adopt AVA-p and DPO (Rafailov
et al. 2024) to directly optimize the LLM from preference
data and evaluate the win rates of AVA-p against DPO and
SFT. The results in Table 4 show that AVA-p outperforms
DPO in direct optimization from preference data.

From Demonstration We adopt AVA-d and AfD (Sun and
van der Schaar 2024) to directly optimize the LLM from
demonstration data. We evaluate the win rates of AVA-d
against SFT, DPO w/ AfD, and AVA-p w/ AfD, where “xxx
w/ AfD” means applying the “xxx” training objective on
AfD-format data. The results in Table 5 show that AVA-
d outperforms the AfD approaches in direct optimization
from demonstration data. Moreover, AVA-d is more training-
efficient since AfD requires supervised fine-tuning and sam-
pling from LLM policies.

Conclusion
We present AVA, a flexible novel LLM alignment objec-
tive with enhanced capabilities. The flexibility of AVA is
evident in two aspects. Firstly, AVA can utilize either pref-
erence data or demonstration data for alignment purposes.
Secondly, AVA can be integrated into the reward modeling
and RL fine-tuning pipeline or used to directly optimize the
LLM. The representation and generalization capabilities of
AVA are also evident in two aspects. Theoretically, AVA for-
mulates reward modeling as a BIRL problem, facilitating
both intermediate reward modeling and direct reward mod-
eling on demonstration. Experimentally, AVA achieves su-
perior reward accuracy in reward modeling tasks and higher
win rates in RL fine-tuning and direct optimization of LLMs,
which demonstrates the alleviation of the reward hacking is-
sue and improved alignment performance.
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