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Abstract

This article presents a new approach to proving the existence and uniqueness of a common fixed
point for fuzzy mappings that satisfy Ciric type F-contraction and Hardy-Roger type F-contraction
in a complete dislocated metric space. These results are applied to multivalued mappings in
dislocated metric spaces, and we have provided illustrative examples to demonstrate the power of
our approach.
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1 Introduction

The study and application of fixed point theory is critical to the advancement of Functional
analysis, Mathematics, and the Sciences in general. In 1922, Banach [13] introduced a key result
in metric fixed point theory which has become known as the Banach contraction principle. This
principle is a widely used tool for establishing the existence and uniqueness of solutions to a wide
range of problems in Mathematics and Physical Sciences. Over the past few decades, the Banach
contraction principle has been extended and generalized in many ways, with applications in a
variety of areas, some of which can be found in [1, 7, 10, 24-27].

Wardowski [5] introduced the concept of an F-contractive mapping on a metric space and proved
a fixed point theorem for such a map on a complete metric space. Tomar and Sharma [19]
employed the idea of F-contraction introduced by Wardowski to establish coincidence and
common fixed point theorems for a pair of discontinuous, noncompatible self-maps in a
noncomplete metric space.

Zadeh [2] first proposed the idea of fuzzy sets. Later, Weiss [4] introduced the concept of fuzzy
mappings and proved various fixed point results. Building on this work, Heilpern [9] introduced
the idea of fuzzy contraction mappings and proved a fixed point theorem for fuzzy contraction
mappings that is a fuzzy analogue of Nadler’s [15] fixed point theorem for multivalued mappings.
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Shahzad et al. [21] introduced the notion of an F-contraction to establish some fixed point results
for fuzzy mappings satisfying a new Ciric type rational F-contraction in complete dislocated metric
spaces.

In light of the discussion above, we establish the existence and uniqueness of a common fixed
point of fuzzy mappings satisfying Ciric type F-contraction and Hardy-Roger type F-contraction
in a complete dislocated metric space. We also apply our main results to obtain a common fixed
point result for multivalued mappings in dislocated metric spaces, and we provide some illustrative
examples to demonstrate the applicability of our results.

Throughout this article, we will denote the set of real numbers by R, the set of positive real
numbers by R*, and the set of natural numbers by N.

2 Preliminaries

In this section, we begin by introducing the notion of an F-contraction and providing some relevant
definitions and examples.

Definition 2.1 [17,23] Let X be a nonempty set. A function d: X X X —» R*. A pair (X, d) is
called a distance space. If d satisfies the following conditions:

D) d(x,y) =0ifx =y;

(i) d(x,¥) = d(y,x);

(i) d(x,y) < d(x,z) +d(z,y) forall x,y,z € X.

Then, a function d: X X X —» R™ is called a dislocated metric on X. If d is a dislocated metric on
X, then the pair (X, d) is said to be a dislocated metric space.

Definition 2.2 [2,11] Let (X, d) be a metric space. A map f : X — X is an F-contraction if there
exists T > 0 such that

T+F(d(fx,fy)) < F(d(x,y)) (2.1)
for all x,y € X with fx # fy, where F: R* — R is a function satisfying:
(i) F is strictly increasing, i.e., for all a, § € Rsuch thata < 8, F(a) < F(B);

(ii) For each sequence {a,} ey of positive numbers lim a,, = 0 if and only if lim F(a,) = —oo;
n—->oo

n—-oo

(iii) There exists k € (0,1) such that lir(r)l+ akF(a) = 0.
n-

We denote F, the family of all functions F: R* — R satisfying the conditions (i)-(iii). Every F-
contraction is a contractive map i.e.,

d(fx,fy) <d(x,y)
forall x,y € X, fx # fy and hence is necessarily continuous.

Definition 2.3 [16] Let (X, d) be a metric space and f,g : X - X. A pair of self maps f and g
have a coincidence point at x € X if fx = gx. Further, a point x € X is a common fixed point of
fand gif fx = gx = x.



Definition 2.4 [14] A fuzzy set in X is a function whose domain is X and whose range is the
interval [0,1]. The set of all fuzzy sets in X is denoted by F(X). Given a fuzzy set A and a point x
in X, the value A(x) is called the degree of membership of x in A. The a-level set of a fuzzy set A
is denoted by [4],, and is defined as follows:

[A], = {x: A(x) = a} where a € (0,1], [4], = {x: A(x) > 0}.
Definition 2.5 [8,22] Let X be a nonempty set and Y be a metric space. A mapping T is called a
fuzzy mapping if it is a mapping from X into F(Y), the set of all fuzzy sets on Y. The membership
function of a fuzzy mapping T, denoted T'(x)(y), is the degree to which y is a member of T (x).
That is, T(x)(y) is the degree of membership of y in the fuzzy set T'(x). For simplicity, we use
the notation [Tx], to refer to the a-level set of T (x), instead of [T (x)],.
Definition 2.6 [11] A point x € X is called a fuzzy fixed point of a fuzzy mapping T: X — F(X)
if there exists @ € (0,1] such that x € [Tx],.
Definition 2.7 [17] Let (X, d;) be a dislocated metric space.
(i) A sequence {x,} in (X, d,) is called Cauchy sequence if, given € > 0, there corresponds n, €
N such that, for all n,m > n,, we have d;(x,,, x,,) < € or nlrzlrz}oo d;(xXm, x,) = 0.

(ii) A sequence {x,} dislocated converges (for short d;-converges) to x if lim d;(x,,x) = 0. In
n—-oco

this case x is called a d;-limit of {x,, }.
Definition 2.8 [17] Let K be a nonempty subset of dislocated metric space X, and let x € X.
An element y, € K is called a best approximation in K if

d,(x,K) = d;(x,y,), where d;(x,K) = J}rellgy €EKd;(x,y).

If each x € X has at least one best approximation in K, then K is called a proximal set.
Denote by P(X) the set of all proximal subsets of X.
Definition 2.9 [17] The function Hy,: P(X) X P(X) - R*, defined by

Hy, (A, B) = max {sup d,(a,B),sup d;(4, b)},
a€eA beEB
is called dislocated Hausdorff metric on P (X).

Lemma 2.10 [23] Let A and B be nonempty proximal subsets of a dislocated metric space
(X,d;).If a € A, then
d,(a,B) < Hy, (A, B).

Lemma 2.11 [18] Let (X, d;) be a dislocated metric space. Let (P (X), Hd,) be a dislocated
Hausdorff metric space. Then, for all A, B € P(X) and for each a € A, there exists b, € B
satisfying

dl(aJ B) = dl(a' ba)a
then

Hy,(A,B) = di(a, by).

3 Main Results

In this section, we begin with the following Theorem.

Theorem 3.1 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be two
fuzzy mappings on X and (4, B) a pair of Ciric type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {BA(x,,)} and a(x) € (0,1]satisfying the following
conditions:



7+ F (Ha, (1A% oy, [BY ) ) < F(Mi(x, 7)), (3.1)

where
( dy(x,y), di(x, [Ax] o)), di (¥, [BY]aiy)), )
dl(x; [Ax]a(x))dl(yf [By]a(y))
M, (x,y) = max 1 dy(x,y) + dy (%, [Bylay)) + di(y, [Axac)) X
di(x, [Ax]a(x))dl(xf [By]a(y)) +d,(y, [Ax]a(x))dl(y' [By]a(y))
L di(x,[BYlagyy) + di(v, [Ax] 0 x)) J
(3.2)

Then, {BA(x,)} = x* € X. Moreover, if condition (3.1) holds for x*, then A and B have a
common fixed point x* € X and d;(x*, x*) = 0.

Proof Let x, € X be any arbitrary point in X. Let x; € [Axo]4(y,) be an element such that
d; (o, [Axo]a(xO)) =d;(xp,x1). Again let x, € [Bx;]yr,) be an element such that
d; (1, [Bx1]ax 1)) = d,; (x4, x,). Continuing this process, we construct a sequence x,, of points in

X such that x;,11 € [AXznla(x,,) aNd Xon42 € [BXons1la(xy,,,)» for all n € NU{0}. Also,

dl(xZn; [Ax2n]a(x2n)) = d;(X2n, X2n41) and dl(x2n+1' [Bx2n+1]a(x2n+1)) = d;(X2n+1, X2n+2)-
Hence, we define the iteration by {BA(x,,)}. If M;(x, y) = 0, obviously, x = y is a common fixed
point of A and B. Then the proof is complete. Let M;(x,y) > 0 for all x,y € {BA(x,)} with x #
y and by using (3.1) and Lemma 2.11, we obtain

F(dl(x2i+1'x2i+2)) <F (Hdl([AxZi]a(xzi)' [Bx2i+1]a(x2i+1)))

< F(Ml(le" x2i+1)) -7

forall i € N U {0}.

My (x5, X3i41)
( d;(x2i, X2i41), dl(xzi' [szl']a(xzi)), dl(x2i+1: [Bx2i+1]a(x2i+1))r
dy (%21, [A%21) ey ) At (K2i410 [BX2141) i)
= max { d; (x4, X2i41) + dl(le', [Bx2i+1]a(x2i+1)) + dl(x2i+1r [szi]a(xzi)) ,

dl(xzp [AxZi]a(xzi))dl(xZi' [Bx2i+1]a(x2i+1)) + dl(x2i+1' [szl']a(xzi))dz(le'+1' [By]a(x2i+1))

\ dl(xzi' [Bx2i+1]a(x2i+1)) + dl(x2i+1J [szi]a(xzi))

dy (x5, X2141), A (X2 X2i41), di (X2i41, X2142),
dy (21 X214 d1 (X141, X2i42)
= max di (20 X2141) + di (X2 X2142) + di (o415 X2041)
dy (x4, X2i41)d1 (X5, BB15) + dy (X141, X2i41)di (X2i41, X2i42)
dy (x5, Xp142) + di (X541, X2i41)

< max{d;(x3;, X2i41), A1 (X241, X2i42)} (3.3)

)



If there exists i € N U {0} such that max{d;(x;;, X2i+1), di(X2i41, X2i42)} = di (X141, X2i42),
then (3.3) becomes

F(dl(x2i+1J x2i+2)) < F(dl(x2i+1: x2i+2)) -1, (3.4)

which is a contradiction. Therefore, max{d;(x5;, X2i+1), d; (X211, X2i4+2)} = d; (X2, X2;41) for all
i € N U {0}. Hence, from (3.3), we get

F(d; (%9141, X2142)) < F(d; (55, X2141)) — 7, foralli e NU{0}.  (3.5)
Similarly, we get
F(dl(le-,le-ﬂ)) < F(dl(xzi_l,le-)) — 1, foralli € N. (3.6)
Letting (3.6) in (3.5), we get
F(dy (%2141, %2i42)) < F(dy(xgi-1,%21)) — 27

By continuing the same way, we have

F(dl(x2i+1,x2i+2)) < F(dl(xo,xl)) - Qi+ D, (3.7)
Similarly, we obtain
F(dl(le-,xziﬂ)) < F(dl(xo,xl)) — 2it (3.8)
By (3.7) and (3.8), we have
F(dl(xn, xn+1)) < F(dl(xo, xl)) - nt (3.9)
On taking limit as n = oo in (3.9), we get
lim F(d,(xp, Xn41)) = =0 (3.10)

Consider (3.10) and (F,), we have
lim d;(x,, x,+1) = 0. (3.11)
n—-oo

From (3.10), there exists k € (0,1) such that
Tim ((dyCon001))" (Gt %12)) ) = 0. (3.12)
From (3.10), for all n € N U {0}, we have
(dl(xn,xn+1))kF (dl(xn,an) - F(dl(xo,xl))) < —(di(xyp, xn+1))knr <0. (3.13)
Using (3.11), (3.12) and taking the limit as n — oo in (3.13), we get
lim (n(dl(xn,xn+1))k) = 0. (3.14)

Then, there exists n; € N such that n(dl(xn,xn+1))k < 1 forall n = nq, that is,



d;(Xp, Xps1) < for alln = n,. (3.15)

For all m > n > ny, by using (3.15) and the triangle inequality, we get
dl(xn'x ) <d (xnixn+1) +d (xn+1'xn+2) +--+d (xm—l'xm)

Z dy(x;, xi41) <Z dy(xi, Xi41) < Z T

(3.16)

Since the series ;2 —~ / is convergent, taking the limit as n — oo, we get
lim d;(x,,x,) =0. (3.17)
m,n—oo

This proves that {BA(x,,)} is Cauchy sequence in (X, d;).
Since (X,d;) is a complete dislocated metric space, there exists x* € X such that
lim {BA(x,)} = x*. That is,
n—oo
lim d;(x,,x*) = 0. (3.18)
n—-oco

By Lemma 2.11, we have

7+ F (di(xansn [Bx laiery) ) < 7+ F (Ha,([A%an)agepmy [BX lage) ), (3.19)

Contractive condition (3.1) also holds for x*, then we have

7+ F (di(xanes, [Bx laery) ) < F(MyCeon x9), (3.20)
where
Ml (xZTLl x*)
( dl(xZn' X*)' dl(xZn' [AxZn]a(xZn))' dl(x*J [Bx*]a(x*))r \
dl(xan [AxZn]a(xZn))dl(x*J [Bx*]a(x*))
= max { dl(xZn'x*) + dl(xan [Bx*]a(x*)) + dl(x*l [AxZn]a(xZn)) ' ¢
dl(xZn' [AxZn]a(xZn))dl(xZn' [Bx*]a(x*)) + dl(x*J [Ax2n]a(x2n))dl(x*' [Bx*]a(x*))
\ dl(xZn' [Bx*]a(x*)) + dl(x*J [AxZn]a(xZn)) J

( dl(x2n' x*): dl(xZn; x2n+1)' dl(x*' [BX*]a(x*))r

dl(x2n,x2n+1)dl(X*r[BX*]a(x*))
= max{ d (%o, x*)+di(X2n,[Bx*] g () +di (X" Xone1) (3-21)

dl(x2nvx2n+1)dl(x2n'[3x*]a(x*))+dl(X*:x2n+1)dl(x*;[BX*]a(x*))

\ di(x2n[Bx*] gx)) +di(x* X2n41)

Using (3.18) and taking the limit as n — oo in (3.21), we get



7111—I>rolo Ml(xZnﬂ x*) = dl(X*; [Bx*]a(x*))- (322)

Since F is strictly increasing, then (3.20) implies

di(X2n+1, [Bx Jae)) < Mi(an, x°). (3.23)
Again, using (3.22) and taking the limit as n — oo in (3.23), we get
dl(x*ﬁ [BX*]a(x*)) < dl(x*ﬁ [Bx*]a(x*)) (324)

a contradiction. So d;(x", [Bx*]a(x*)) =0 or x* € [Bx"]g(x+). Similarly, by using (3.18) and
Lemma 2.11 and

T+F (dl(x2n+2' [Ax*]a(x*))) <T+F (Hdl([Bx2n+1]a(x2n+1)' [Ax*]a(x*)))a (325)

we can also show from (3.25) that d;(x", [Ax*]a(x*)) =0 or x* € [Ax"]4(x+). Hence, A and B
have a common fixed point x* in X. Now,

dl(x*:x*) < dl(x*r [Bx*]a(x*)) + dl([Bx*]a(x*); X*) <0
Also,

dl(X*; X*) < dl(x*' [Ax*]a(x*)) + dl([Ax*]a(x*); X*) <0.
Thus, d;(x*,x*) = 0.

Theorem 3.2 Let (X, d;) be a complete dislocated metric space with A: X —» W (X) be fuzzy
mappings on X satisfying Ciric type fuzzy F-contraction. Suppose there exist F € A and 7 > 0
such that for all x,y € {A(x,,)} and a(x) € (0,1]satisfying the following conditions:

7+ F (Ha,([Ax] oy [4Y)ar)) ) < F(Mi(x,9)), (3.26)
where
( dl(x' y); dl(x' [Ax]a(x))' dl(yr [Ay]a(y))r \
dl(xr [Ax]a(x))dl(y' [Ay]a(y))
Ml(x)y) = max< dl(x)y) +dl(x' [Ay]a(y)) +dl(y' [Ax]a(x)), ¢
dy(x, [Ax] o) di(x, [AY]agy) + di(y, [AX] ) )di(y, [AY]ay))

\ dl(x' [Ay]a(y)) + dl(yr [Ax]a(x)) J

(3.27)

Then, {A(x,)} —» x* € X. Moreover, if condition (3.26) holds for x*, then A has a fixed point
x* € Xand d;(x*,x*) = 0.

Proof Let x, € X be any arbitrary point in X. Let x; € [Ax(]4(y,) be an element such that
dl(xo, [Axo]a(xO)) =d;(xp,x1). Again let x; € [Ax1]y,) be an element such that
d; (x4, [A%) o x 1)) = d; (x4, x,). Continuing this process, we construct a sequence x,, of points in
X such that x;p,.1 € [AXon]a(x,,) aNd Xoni2 € [AXoni1la(r,,,,)» for all n € NU{0}. Also,



dl(xZn; [Ax2n]a(x2n)) = d;(X2n, X2n41) and dl(x2n+1' [Ax2n+1]a(x2n+1)) = d;(X2n+1, X2n+2)-
Hence, we define the iteration by {A(x,,)}. If M;(x, y) = 0, obviously, x = y is a fixed point of A.
Then the proof is complete. Let M;(x,y) > 0 for all x,y € {A(x,)} with x # y and by using
(3.26) and Lemma 2.11, then the results follow from Theorem 3.1.

Example 3.3 Let X = {0,1,2} and d;(x,y) = x + y be a complete dislocated metric space
defined by a pair of fuzzy mappings 4, B: X —» W (X) as follows:
X

A(0) (@) =

oOR|INIR]IR

and

IA
(e 3
N

Ky

IA
(e 3
IA
Bl ROV R

B(x)(t) =

B ROV RO R
AN
(e 3
VAN
=

Sl
==

ifx<t< o
Define the function F : R* - R by
F(x) =1In(x) forall x € R*and F € Ap.
Consider,

[Ax]“/z [ ]and [By] - [8 4]
for x € X, we define the sequence {BA(x,)} = { ,é, i } generated by x, = 1 in X. We have

Hg, ([Ax]a/z, [By]/;/4) = max ;253 d, (a, By] /;/4) :éngc d, ([Ax]a/ , ),}
= max{sup dy( [.3]). sup a ([£.5]. )
= max{sup ¢, (5.). sup i ;. 2)]

—max{ +yx+z}
6 86 4

where



X
6
M(x,y) = max s d,(x,y) + d,(

ga)ra(5al)
(o [53]) i (2 [g3]) + & (0[5 2]) 4 (»[53])
x (o [g5]) + 4 (»[5.2]) J

d;(x,y),d, (x %) d, y%) )

4 (x5) (»5)

=maxy d,(x,y) +d, (x%)+dl (y% C

i (v5)di(x5) + 41 (5)h (75)

L dxg)ralry)

=x+Yy.
Case 1. Suppose max {=+ 2,2+ 2} =242 and 7 = In %), we get

16x + 12y < 36x + 36y
8/x y
<
3(6 8) Xty
n(2) 41 N <1
<3)+ n(6 8) n(x + y).

That is,
7+ F (Ho,([Ax]agey, [BY ) ) < F(My(x, )

Case 2. Again suppose max{ + g : + Z} + ,and T = In ( ) we get

16x + 24y < 36x + 36y
8/x y
3(6 4) Xty
n(2) 41 N <1
<3)+ n(6 4) n(x + y).

That is,

7+ F (Hy,([Ax]agey, [BY ) ) < F(My(x, )



Then, we can see that all the hypothesis in Theorem 3.1 are satisfied. Hence, A and B have a
common fixed point

We have the following corollaries for Ciric type fuzzy F-contraction:

Corollary 3.4 Let (X, d;) be a complete dislocated metric space with A, B: X = W (X) be two
fuzzy mappings on X and (4, B) a pair of Ciric type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {BA(x,,)} and a(x) € (0,1]satisfying the following
conditions:

7+ F (Ho,([Ax]agoy, [BYa)) ) < F(M,(x, ),
where
dl(xJ [Ax]a(x))dl(yJ [By]a(y))
dl(y' [By]a(y))' dl(x' y) + dl(xJ [By]a(y)) + dl(y' [Ax]a(x)) '

dl(xr [Ax]a(x))dl(x' [By]a(y)) + dl(}’) [Ax]a(x))dl(y' [By]a(y))
dl(xf [By]a(y)) + dl(yJ [Ax]a(x))

M (x,y) = max

(3.28)

Then, {BA(x,,)} » x* € X. Moreover, if condition (3.28) holds for x*, then A and B have a
common fixed point x* € X and d;(x*, x*) = 0.

Corollary 3.5 Let (X, d;) be a complete dislocated metric space with A, B: X = W (X) be two
fuzzy mappings on X and (4, B) a pair of Ciric type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {BA(x,,)} and a(x) € (0,1]satisfying the following
conditions:

7+ F (Ho,([Ax]agoy, [BYa)) ) < F(My(x, ),
where

dl(x' y)r dl(xr [Ax]a(x))' dl(y' [By]a(y));
Ml(x' y) = max dl(x' [Ax]a(x))dl(yr [By]a(y))
dl(xr y) + dl(xr [By]a'(y)) + dl(y' [Ax]a(x))

(3.29)

Then, {BA(x,,)} - x* € X. Moreover, if condition (3.29) holds for x*, then A and B have a
common fixed point x* € X and d;(x*, x*) = 0.

Corollary 3.6 Let (X, d;) be a complete dislocated metric space with A4, B: X = W (X) be two
fuzzy mappings on X and (4, B) a pair of Ciric type fuzzy F-contraction. suppose there exist F €
Ap and T > 0 such that for all x,y € {BA(x,)} and a(x) € (0,1]satisfying the following
conditions:

7+ F (Ho,([Ax]agoy, [BYla)) ) < F(My(x,)),

where



dl(x' y)r dl(xr [Ax]a(x))' dl(y' [By]a(y));
Ml(xr y) = max dl(x' [Ax]a(x))dl(x' [By]a(y)) + dl(y' [Ax]a(x))dl(yr [By]a(y))
dl(x' [By]a(y)) + dl(y' [Ax]a(x))

(3.30)

Then, {BA(x,,)} » x* € X. Moreover, if condition (3.30) holds for x*, then A and B have a
common fixed point x* € X and d;(x*, x*) = 0.

Corollary 3.7 Let (X, d;) be a complete dislocated metric space with A, B: X = W (X) be two
fuzzy mappings on X and (4, B) a pair of fuzzy F-contraction. Suppose there exist F € Ay and
T > 0 such that for all x,y € {BA(x,)} and a(x) € (0,1]satisfying the following conditions:

7+ F (H,([Ax] oy, [BYlacr)) ) < F(di (), (3.31)

Then, {BA(x,,)} » x* € X. Moreover, if condition (3.31) holds for x*, then A and B have a
common fixed point x* € X and d;(x*, x*) = 0.

Corollary 3.8 Let (X, d;) be a complete dislocated metric space with A: X —» W (X) be fuzzy
mappings on X satisfying fuzzy F-contraction. Suppose there exist F € A and T > 0 such that
for all x,y € {A(x,)} and a(x) € (0,1]satisfying the following conditions:

7+ F (Hg,([Ax) oy [AY]ay) ) < F(di G ), (3.32)

Then, {A(x,)} —» x* € X. Moreover, if condition (3.32) holds for x*, then A has a fixed point
x* € Xand d;(x*,x*) = 0.

Now, we consider Hardy-Rogers-type fuzzy F-contraction to a pair of mappings.

Theorem 3.8 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be a pair
of fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {AB(x,,)}, x # y and a(x) € (0,1]satisfying the
following conditions:

7+ F (Ha,([Ax]aey, [BYlagy))) <

a;d;(x,y) + azdl(x; [Ax]a(x)) +
dl(X, [Ax]a(x))dl(yr [By]a'(y))
d,(x,y) + di(x, [Bylay)) + di(y, [Ax]acx))
dl(x' [Ax]a(x))dl(xr [By]a(y)) + dl()’» [Ax]a(x))dl(y' [B)’]a(y))
dl(xr [By]a(y)) + dl()’; [Ax]a(x))

a3dl(y' [By]a(y)) + ay

5

(3.32)

and a4, a,, as,a,s, as > 0 witha; + a, + a; + a, + as = 1 and a; # 1. Then, {BA(x,)} - x* €
X. Moreover, if condition (3.32) holds for x*, then A and B have a common fixed point x* € X
and d;(x*,x*) = 0.



Proof From the proof of Theorem 3.1, we see that x; € [Axp]y(x,) and x; € [Bx;]y(x,), With
(3.32) and Lemma 2.11, we obtain

7+ F(d (0, 2)) < 7+ F (d4(x0, [BxiJageyy))
<T+F (Hdl([AxO]a(xo)’ [Bx1]a(x1)))

a,d;(xg, x1) + azdl(xo; [Axo]a(x(,)) +
dl(xo; [Axo]a(xo))dl(xp [Bx1]a(x1))
d;(xg,x1) + dl(xo' [Bx1]a(x1)) + dl(xl' [Axo]a(xo))
dz(xo» [Axo]a(xo))dl(xO' [Bx1]a(x1)) + dl(xp [Axo]a(xo))dl(xl' [Bx1]a(x1))
dl(xo' [Bx1]a(x1)) + dl(xp [Axo]a(xo))

a,d;(xg, x1) + ad;(xp, x1) +

dy(xg,x1)d1(x1,%2)

asd;(x,x,) +a

=F 3 l( v 2) 4 d1(xg,x1) +dy(x0,x2)+d1(x1,261)

dy(xo,x1)di(x0,%2)+d(x1,01)d;(x1,%2)
d(xo,x2)+dy(x1,%1)

anl(xb [Bxl]a(xl)) +ay

5

+as

< F((a1 +a, +a, +as)d;(xy,x,) + a3dl(x1,x2))
Since F is strictly increasing, we have
di(xy,x7) < (ay + az + a4 + as)d;(xo, x1) + azd;(xy, x3)
implies

a, +a,+a,+ ag

dy(xy,x3) < ( ) d; (%o, x1)

1—613

From a;+a,+a3+a,+as=1 and a;#1, we deduce 1—a3;>0 and so
d;(x1,%2) < dy(xg, %1)

Therefore,
F(d;(x1,x2)) < F(dy(x0,%1)) — 7.

Again, from the proof of Theorem 3.1, we see that Xp;.1 € [AXpila(x,) and X4, €
[BX2i+1)a(xy;,,)» With (3.32) and Lemma 2.11, we obtain

T+ F(dl(x2i+1J x2i+2)) <t+F (dl(x2i+1' [Bx2i+1]a(x2i+1)))

STHF (Hdl([AxZi]“(xzi)' [Bx2i+1]0-’(x2i+1)))



ard; (X3, X2141) + azdl(le" [szi]a(xzi)) +
d B dl(xzi' [AxZi]a(xzi))dl(xZHL [Bx2i+1]a(x2i+1))
< as l(x2i+1'[ x2i+1]a(x2i+1)) +a, 4 4 B 4 "
<F 1(X24, X2i41) + l(le"[ x2i+1]a(x2i+1)) + l(x2i+1'[ xZi]a(xzi))
dz(le', [szi]a(xzi))dl(xZi) [Bx2i+1]a(x2i+1)) + dl(x2i+1' [szi]a(xzi))dl(szlr [Bx2i+1]a'(x2i+1))
dl(xzi' [Bx2i+1]a(x2i+1)) + dl(x2i+1J [szl']a(xzi))

ardi (X2 X2i41) + a2d; (X2, X2i41) +
dy (x5, X2141) A1 (X241, X2i42)
Xai41) + di (X4, X2542) + di (X441, X2i41)
dy(x21, X2i41)d1 (X245, X2142) + A1 (X541, X2i41) 1 (X141, X2142)
dy (x5, Xp142) + di (X541, X2i41)

as

—F asd;(Xzi41, X2142) + Q4 4,005

as

< F((al +ay + ay + as)d; (x4, X3541) + asdl(x2i+1:x2i+2))
Since F is strictly increasing, we have
dy (X211, X2i42) < (aq + ay + ay + as)d; (x4, X2i41) + azdi (X541, X2i42)
implies

a, +a,+a,+ag

d; (X141, X2142) < < )dl(xzi'x2i+1)

1_a3

From a;+a,+a3+a,+as=1 and a;#1, we deduce 1—a3;>0 and so
di (X541, X2i42) < di(X2 X2141)

Hence,
F(dl(x2i+1' x2i+2)) < F(dl(xZi»x2i+1)) —T.
Following the same arguments in Theorem 3.1, we have {BA(x,)} = x*, that is,
Tlll_{rolo d;(x,,x*) =0. (3.33)
By Lemma 2.11, we have
T+F (dl(x2n+1' [Bx*]a(x*))) <tT+F (Hdl([AxZn]a(xZn)r [Bx*]a(x*)));

using (3.32), we have

T+ F (dl(x2n+1, [Bx*]a(x*))) <



aldl(xZn' x*) + azdl(xZn; [Ax2n]a(x2n)) +

d1(x2n A% 2n) ) A1 (x7 [BX ] 4 )

,x*)+dl(x2n,[Bx*]a(x*))+dl(x*,[Ax2n]a(x2n))

dz(x2n.[szn]a(xZn))dl(XZn,[BX*]a(x*))+dz(X*.[Ax2n]a(xZn))dl(X*,[BX*]a(x*))
di (%20, [BX*] g a9y )+ A1 (X" [A%2n]) ()

F a3dl(x*r [Bx*]a’(X*)) +a, di(xzn

as

ayd;(Xon, x*) + azd; (Xon, Xan41) +
dl(xzn:x2n+1)dl(X*.[BX*]a(x*))

,x*)+dl(x2n,[Bx*]a(x*))+dl(x*,x2n+1)

S F a3dl(x*; [Bx*]a(x*)) + a4 dl(XZn

dl(xZn,x2n+1)dl(xm,[Bx*]a(x*))+dl(x*,x2n+1)dl(x*,[Bx*]a(x*))

dl(x2n'[Bx*]a(x*))+dl(x*rx2n+1)

+as

Since F is strictly increasing, we have

dl(x2n+1' [Bx*]a(x*))
< aydy(Xan, x*) + apd; (X2, Xan41) + a3dl(x*' [Bx*]a(x*))

dl(xZn' x2n+1)dl(x*' [Bx*]a(x*))
dl(xZn'x*) + dl(xan [Bx*]a(x*)) + dl(x*'x2n+1)

dl(xZnJ x2n+1)dl(x2n' [Bx*]a(x*)) + dl(x*Jx2n+1)dl(x*' [Bx*]a(x*))
dl(xZnJ [Bx*]a(x*)) + dl(x*' x2n+1)

+a,

as

Taking the limit as n — oo in (3.33), we get
dl(x*, [Bx*]a(x*)) < agdl(x*, [Bx*]a(x*))

a contradiction. So d;(x*, [Bx*]a(x*)) = 0 or x* € [Bx"]4(x+. Similarly, by using (3.32), (3.33)
and Lemma 2.11 and

T+F (dl(x2n+2' [Ax*]a(x*))) <T+F (Hdl([Bx2n+1]a(x2n+1)' [Ax*]a(x*)))a (334’)

also, we can show from (3.34) that dl(x*, [Ax*]a(x*)) = 0 or x* € [Ax"]4(x+). Hence, A and B
have a common fixed point x* in (X, d;). Now,

di(x*,x*) < dy(x7, [Bx*]a(x*)) + dl([Bx*]a(x*),x*) <0
Also,

di(x*,x*) < dy(x7, [Ax*]a(x*)) + dl([Ax*]a(x*),x*) <0.
Thus, d;(x*,x*) = 0.
If we take A = B in Theorem 3.8, we have the following Theorem.

Theorem 3.9 Let (X, d;) be a complete dislocated metric space with A: X —» W (X) be fuzzy
mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € Ap



and T > 0 such that for all x,y € {AA(x,,)}, x # y and a(x) € (0,1]satisfying the following
conditions:

7+ F (Hay([Ax]aey, [AY]ar) ) <

a;d;(x,y) + azdl(x; [Ax]a(x)) +
dl(X, [Ax]a(x))dl(yr [Ay]a(y))
d,(x,y) + di(x, [Aylacy) + di(y, [Ax]a@x))
di(x, [Ax) gy ) di (2, [Ay]a(y)) +dy(y, [Ax] o) )di (3, [Ay]a(y))
dl(x' [Ay]a(y)) + dl()" [Ax]a(x))

anl(yr [Ay]a(y)) T ay

as

(3.33)

and a4, a,, as,a,s, as > 0 witha, + a, + a; + a, + as = 1 and a; # 1. Then, {AA(x,)} - x* €
X. Moreover, if condition (3.33) holds for x*, then A has a fixed point x* € X and d;(x*,x*) = 0.

If we take a; = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be a pair
of fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {AB(x,)}, x # y and a(x) € (0,1]satisfying the
following conditions:

7+ F (Ha,([Ax]aey, [BYlagy))) <

aldl(x' [Ax]a(x)) + azdl(% [By]a(y))
+ dl(x: [Ax]a(x))dl(y' [By]a(y))
as
F dl(xr y) + dl(x' [By]a(y)) + dl(y' [Ax]a(x))
dy(x, [Ax]ao)di(x, [Bylay) + di(y, [Ax]a( )di (v, [BYlacy))
dl(xr [By]a(y)) + dl(}’) [Ax]a(x))

4

(3.32)

and a,,a,,as,a, >0 with a; +a, +a; +a, =1 and a, # 1. Then, {BA(x,)} - x* € X.
Moreover, if condition (3.32) holds for x*, then A and B have a common fixed point x* € X and
d,(x*,x*) =0.

If we take a; = a, = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be a pair
of fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist

F € Ap and T > 0 such that for all x,y € {AB(x,,)}, x # y and a(x) € (0,1]satisfying the
following conditions:

7+ F (Ha,([Ax]aey, [BYlagy))) <



dl(xi [Ax]a(x))dl(y' [By]a(y))

a0 o) + 02 g e Byay) + a0, [AxTace)

dl(xr [Ax]a(x))dl(xr [By]a(y)) + dl(yr [Ax]a(x))dl(y' [By]a(y))
dl(xr [By]a(y)) + dl(}’) [Ax]a(x))

F

3

(3.32)

and a,,a,,a; > 0 with a; + a, + a; = 1 and a; # 1. Then, {BA(x,)} - x* € X. Moreover, if
condition (3.32) holds for x*, then A and B have a common fixed point x* € X and d;(x*, x*) =
0.

If we take a; = a, = a3z = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be a pair
of fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {AB(x,,)}, x # y and a(x) € (0,1]satisfying the
following conditions:

7+ F (Ha,([Ax]aey, [BYlagy))) <

. di (x, [Ax]q))di (v, [BY]acyy)
" dy(x,y) + di(x, [BYlagy) + di(, [Ax]acx))
dy(x, [AxX) o)) di (%, [BYacyy) + di(, [Ax] o) di (7, [BYlar))
dl(x: [By]a(y)) + dl()’: [Ax]a(x))

2

(3.32)

and a,,a, > 0 with a; + a, = 1. Then, {BA(x,)} = x* € X. Moreover, if condition (3.32) holds
for x*, then A and B have a common fixed point x* € X and d;(x*, x*) = 0.

If we take a, = a; = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8 Let (X, d;) be a complete dislocated metric space with 4, B: X - W (X) be a pair
of fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {AB(x,,)}, x # y and a(x) € (0,1]satisfying the
following conditions:

7+ F (Ha,([Ax]aey, [BYlagy))) <

di(x, [Ax]q ) di (v, [BY]a ()
dy(x,y) + di(x, [Bylaiy)) + di(y, [Ax] ax))
di(x, [Ax)q ) di (%, [BY]a(yy) + di(v, [Ax] 0 ))di (v, [BY]ayy)
dl(x» [By]a(y)) + dl()’; [Ax]a(x))

a, d;(x,y) + a,

3

(3.32)

and a,,a,,a; >0 with a; + a, + a3 = 1. Then, {BA(x,)} — x* € X. Moreover, if condition
(3.32) holds for x*, then A and B have a common fixed point x* € X and d;(x*, x*) = 0.



4 Application

As an application of our work, we will now show how Theorem 3.1 and Theorem 3.8 can be used
to prove the existence of common fixed points for multivalued mappings in a dislocated metric
space. The following theorem follows directly from our previous results.

Theorem 4.1 Let (X, d;) be a complete dislocated metric space with R, S: X — W (X) be two
multivalued fuzzy mappings on X and (R, S) a pair of Ciric type fuzzy F-contraction. Suppose
there exist F € A and T > 0 such that for all x,y € {SR(x,,)} and a(x) € (0,1]satisfying the
following conditions:

7+ F (Hg,(Rx,5y)) < F(M,(x, ), (4.1)
where

d,(x,y),d;(x,Rx),d,(y,Sy),
d,(x,Rx)d,(y,Sy)
M, (x,y) = max di(x,y) + di(x,Sy) + di(y, Rx)’
d;(x,Rx)d;(x,Sy) + d,(y, Rx)d;,(y, Sy)
d,(x,Sy) + d,(y, Rx)

(4.2)

Then, {SR(x,)} = x* € X. Moreover, if condition (4.1) holds for x*, then R and S have a common
fixed point x* € X and d;(x*, x*) = 0.

Proof Let a: X — (0,1] be an arbitrary mapping. Consider a fuzzy mapping 4,B : X - W(X)
defined by

_(a(x), t € Rx,
(Ax)(t) = { 0, t¢&Rx,
_(a(x), t € Sx,
(Bx)(t) = { 0, t¢Sx
We have that
[Ax] gy = {t: Ax(t) = a(x)} = Rx,
and

[Bx]q(xy = {t: Bx(t) = a(x)} = Sx.

Thus, condition (4.1) becomes condition (3.1) in Theorem 3.1. It implies that there exists x* €
[Ax] q(x) N [Bx] ) = Rx N Sx.

Now, we consider Hardy-Rogers-type fuzzy F-contraction to a pair of mappings.

Theorem 4.2 Let (X, d;) be a complete dislocated metric space with R, S: X — P(X) be a pair of
multivalued fuzzy mappings on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose



there exist F € A and T > 0 such that for all x,y € {SR(x,,)}, x # y and a(x) € (0,1]satisfying
the following conditions:

7+ F (Hg,(Rx,Sy)) <

a,d;(x,y) + a,d;(x, Rx) +
d;(x,Rx)d,(y,Sy)
Sy) +a,
d;(x,y) +d;(x,Sy) + d;(y, Rx)
a dl(x' Rx)dl(x' S)’) + dl(}’: Rx)dl(yJ S)’)
; dl(x;SZV) +dl(y1Rx)

F a3dl()’;

(4.3)

and a,,a,, as, a,, as > 0 witha, + a, + a; + a, + as = 1 and a; # 1. Then, {SR(x,)} - x* €
X. Moreover, if condition (4.3) holds for x*, then R and S have a common fixed point x* € X and
d;(x*,x*) =0.

Proof Let a: X — (0,1] be an arbitrary mapping. Consider a fuzzy mapping 4,B : X - W(X)
defined by

_(a(x), t € Rx,
(Ax)(t) = { 0, t¢&Rx,
_(a(x), t € Sx,
(Bx)(t) = { 0, t¢Sx
We have that
[Ax] gy = {t: Ax(t) = a(x)} = Rx,
and

[Bx]q(xy = {t: Bx(t) = a(x)} = Sx.

Hence, condition (4.3) becomes condition (3.32) in Theorem 3.8. It implies that there exists
x* € [Ax] g N [Bx]gx) = Rx N Sx.

Theorem 4.3 Let (X, d;) be a complete dislocated metric space with R: X — P(X) be a
multivalued fuzzy mapping on X satisfying Ciric type fuzzy F-contraction. Suppose there exist
F € Ap and T > 0 such that for all x,y € {R(x,)} and a(x) € (0,1]satisfying the following
conditions:

7+ F (Hg,(Rx, Ry)) < F(M,(x,)), (4.4)
where

d,(x,y),d;(x,Rx),d,(y,Ry),
d,(x,Rx)d,(y,Ry)
M,(x,y) = max di(x,y) + d,(x,Ry) + d;(y,Rx)’
d;(x,Rx)d;(x,Ry) + d;(y, Rx)d,(y, Ry)
d,(x,Ry) + d,(y, Rx)




(4.5)

Then, {R(x,)} = x* € X. Moreover, if condition (4.1) holds for x*, then there exists x* € X such
that x* € Rx™.

Proof Let a: X — (0,1] be an arbitrary mapping. Consider a fuzzy mapping A : X — F(X) defined
by

ORI

We have that
[Ax] gy = {t: Ax(t) = a(x)} = Rx.

Hence, condition (4.5) becomes condition (3.27) in Theorem 3.2. It implies that there exists x* €
X such that x* € [Ax"] 4 = RX".

Corollary 4.3 Let (X, d;) be a complete dislocated metric space with R: X = P(X) be a
multivalued fuzzy mapping on X satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose
there exist F € A and T > 0 such that for all x,y € {R(x,)},x # y and a(x) € (0,1]satisfying
the following conditions:

a,d;(x,y) + a,d;(x, Rx) +

dy(x,Rx)di(y,Ry)
T+ F (Hdl(Rx, Ry)) <F asd,(y, Ry) + a, di(x,y)+d;(x,Ry)+d;(y.Rx) |, (4.6)
dy(x,Rx)d;(y,Ry)
5 di(xy)+di(x,Ry) +di(¥,Rx)

and a,,a,,as,a, >0 with a; +a,+as+a, =1 and a; # 1. Then, {R(x,)} - x* € X.
Moreover, if condition (4.6) holds for x*, then there exists x* € X such that x* € Rx*.

5. Conclusion

In this paper, we have established the existence and uniqueness of common fixed points for fuzzy
mappings that satisfy Ciric type F-contraction and Hardy-Roger type F-contraction in complete
dislocated metric spaces. In addition, we have applied our main results to prove common fixed
point theorems for multivalued mappings in dislocated metric spaces. To demonstrate the
usefulness of our approach, we have provided several examples.

Acknowledgment

The authors would like to express their deepest gratitude to all those who have contributed in some
way to the completion of this work.

Declaration

Author’s contribution



All authors have contributed equally to the writing of this paper.
Compliance with ethical standards
Conflicting interests: The authors have no conflicts of interest to declare.

Research involving human participants and/or animals: This article does not contain any
studies with human participants or animals that were conducted by the authors.

Funding Not applicable
Data Availability Not applicable

References

1. Batra R., Vashistha S., 2014 Fixed points of an F-contraction on metric spaces with a graph,
Int. J. Comput. Math. (2014), doi: 10.1080/00207160.2014.887700.

2. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338-353 (1965)

3. Raji M, Ibrahim MA. 2023 Coincidence and common fixed points for F-Contractive

mappings. Ann Math Phys 6(2): 196-212. DOI: https://dx.doi.org/10.17352/amp.000102
4. Weiss, M.D.: Fixed points and induced fuzzy topologies for fuzzy sets. J. Math. Anal.
Appl. 50, 142—-150 (1975)

5. Wardowski D., 2012 Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl. 2012, Article ID 94.

6. Wardowski D., Dung N. V., 2014 Fixed Points Of F-Weak Contractions On Complete Metric
Spaces. Demonstr. Math. 47, 146-155

7. Minak G., Helvaci A. and Altun 1. 2014 Ciri’c type generalized F-contractions on complete
metric spaces and fixed point results. Filomat, 28,6, 1143—-1151.

8. Phiangsungnoena, S, Kumam, P: Fuzzy fixed point theorems for multivalued fuzzy contractions
in b-metric spaces. J. Nonlinear Sci. Appl. 8, 55-63 (2015)

9. Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83(2), 566—
569 (1981)

10. Arshad, M, Shoaib, A, Vetro, P: Common fixed points of a pair of Hardy Rogers type
mappings on a closed ball in ordered dislocated metric spaces. J. Funct. Spaces 2013, Article
ID 638181 (2013)

11. Raji M., Ibrahim M.A. 2024 Fixed point theorems for modified F-weak contractions via a-
admissible mapping with application to periodic points, Annals of Mathematics and
Computer Science, 20, 82-97.

12. Tomar A., Giniswamy, C. Jeyanthi and P. G. Maheshwari. 2016 On coincidence and common
fixed point of six maps satisfying F-contractions. TWMS J. App. Eng. Math., 6,2, 224-231.

13. Banach, S.: Sur les op’erations dans les ensembles abstraits et leur application aux
equations itegrales. Fund. Math. 3, 133-181 (1922)

14. Azam, A 2011: Fuzzy fixed points of fuzzy mappings via a rational inequality. Hacet. J. Math.
Stat. 40(3), 421-431.

15. Nadler, BS 1969: Multivalued contraction mappings. Pac. J. Math. 30, 475-488.

16. Raji M., 2023 Generalized a- Contractive Type Mappings and Related Coincidence Fixed



17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

Point Theorems with Applications, The Journal of Analysis, 31(2), 1241-1256.

Hitzler, P., Seda, A.K.: Dislocated topologies. J. Electr. Eng. 51(12/s), 3—7 (2000)

Shoaib A., Kumam P., Shahzad A., Phiangsungnoen S., 2018 Fixed point results fuzzy
mappings in a b-metric space, Fixed Point Theory Appl. 2, 12 pages

Tomar A. and Sharma R. 2018 Some coincidence and common fixed point theorems
concerning F-contraction and applications, Journal of the International Mathematical Virtual
Institute, 8, 181-198.

Cosentino M. and Vetro P. 2014 Fixed point results for F-contractive mappings of Hardy-
Rogers type. Filomat, 28,4, 715-722.

Shahzad A., Shoaib A., Khammahwong K., Kumam P. 2019 New Ciric type rational fuzzy F-
contraction for common fixed points, ECONVN, 809, 215-229

Butnariu, D.: Fixed point for fuzzy mapping. Fuzzy Sets Syst. 7, 191-207 (1982)

Raji M., and Ibrahim M.A., 2024. Fixed point theorems for fuzzy contractions mappings in a
dislocated b-metric spaces with applications. Annals of Mathematics and Computer

Science, 21, 1-13.

Vetro C., 2020. A Fixed-Point Problem with Mixed-Type Contractive Condition, Constr.
Math. Anal.,3, 1, 45-52.

Acar O., Durmaz G., Minak G., 2023. Generalized multivalued F-contractions on complete
metric spaces, Bulletin of the Iranian Mathematical Society 40 (6), 1469-1478.

Acar O., 2023. Some recent and new fixed point results on orthogonal metric-like space,
Constr. Math. Anal., 6 3, 184-197.

Kadelburg Z., Radenovi’c S., 2018. Notes on Some Recent Papers Concerning F-
Contractions in b-Metric Spaces, Constr. Math. Anal., 1, 2, 108-112



