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Abstract

In this paper, I present the results of the application of an entropy function (H(C)), which I suggested in 1972, for

matrices of pairwise co-occurrence of species in plant communities, to two sets of very simple “toy” matrices

representing different situations of co-occurrence that species or “traits” may have in ecological communities. The first

set consists of 7 binary matrices X(M, N) from which 7 pairwise co-occurrence matrices (C(M, M)) are generated by

self-matrix multiplication. The second set consists of 6 co-occurrence matrices generated by 6 “toy” graphs that have

the minimum number of connections (M-1) and that represent different situations as far as the centrality of nodes is

concerned. The entropy (H(C)) is given by the difference between the entropy H(D) of the diagonal D of the co-

occurrence matrix C(M, M) and the entropy H(T) of its upper or lower triangular part T, with M(M-1)/2 cells. H(C) is

relativized in two ways to give origin to (K(C)) and (R(C)), which I call respectively “index of weighted connectance” and

“redundancy”; these have been compared for both the sets of co-occurrence matrices with: a) the ratio (H(D)+H(T))/ ln

((M(M+1)/2), that is, the relative entropy or the evenness of the upper or lower triangular part of C(M, M) including the

diagonal D (M, M) (i.e., D+T); b) the formula of Ricotta and Szeidel (2006), which in this case incorporates in the

entropy H(D) the entropy of the matrix of co-occurrence itself with values relativized between 0 and 1; c) the evenness

of the eigenvalues of C(M, M); d) the chi-square of C(M, M); e) the average nested free; and f) the nested-based

similarity between the N vectors of the X(M, N) matrices; and g) the number of centres of the graphs corresponding to

the co-occurrence matrices. I used the Pearson correlation coefficient to estimate the correlation between all the

parameters used to calculate H(C) and the parameters for the comparisons from a) to g) of the two “toy” data sets.

Finally, I used the two correlation matrices for ranking the parameters by the method suggested by Orlóci (1978), based

on the sum of squares, in order to evaluate the capacity of each parameter in explaining the variation of the others. The

results show that the correlation between the parameters is very high and that H(C) can be considered a good tool to

describe the pattern of the graphs of the corresponding co-occurrence matrices.
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Introduction

As a consequence of the fact that in 1970-71 I was speaking “everywhere almost fanatically” about information theory, I

was invited by some of my botanist friends to write a “popular” article in Italian for the journal Informatore Botanico Italiano

on its possible applications to phytosociology (Feoli 1972). Rather than taking care of mathematical formulas (in that

paper, the minus sign in front of formula {7} was missing and I did not explain in detail the proposed formula {5} to be

applied to pairwise co-occurrence matrices), I focused on transmitting the idea that vegetation should be interpreted as a

system as a potential source of redundant messages. That is, redundant codes that we receive and organize in matrices

X(M, N) in which M is the number of components of the system, species or other traits (Barkman 1979, Box 1981, Feoli

1984, Orlóci and Orlóci 1985, Pillar and Orlóci 1993, Natham et al. 2015, and references therein) and N is the number of

sampled vegetation stands representing different vegetation states (see Orlóci 2020 for an innovative view on the

vegetation stand).

In my mind, formula (5) of that paper (here numbered (2)) should be useful to measure the entropy of the co-occurrence

matrices C(M, M) obtained by the self-multiplication of the matrices X(M, N):

C(M, M) = X(M, N) XT(M, N) (1)

or calculated by similarity functions between the M components (recall that the scalar product is also a measure of

similarity in some sense).

The formula of entropy I proposed for co-occurrence matrices (Feoli 1972) is the following (in the original paper, it was

number (5)):

H(C) = − (Σ(ii)piilnpii– Σ(ih)pihlnpih) (2)

with (ii)=1,…, M, and (ih) = 1,…, M(M-1)/2. The pii values are the ratio between the cross products and the total of the

upper or lower part of the co-occurrence matrix that includes the diagonal values.

If we consider -Σ(ii) piilnpii = H(D), i.e., the entropy of the diagonal of C(M, M), and – Σ(ih) pihlnpih = H(T), the entropy of the

upper or lower triangular part of C(M, M), we can write the formula (2) as H(D)-H(T). In terms of graph theory (Diestel

2017), H(D) is the entropy of the diagonal matrix of the nodes (D), and H(T) is the entropy of the upper (or lower)

triangular part (T) of the adjacency matrix.

The outcome of formula (2) should be useful if correlated with the environmental factors in order to explore their effects on

the uncertainty (or heterogeneity) of vegetation systems.
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However, as influenced by Orlóci (1968, 1978), I rather applied the formula of mutual information to C(M, M) to describe

the spatial pattern in the grasslands of the Karst area (Feoli et al. 1980) and to measure the similarity between vegetation

types corresponding to dynamical states of the coastal vegetation described by Pignatti (1960) (Feoli & Scoppola 1980).

In the present paper, I reconsider formula (2) and use some ad hoc “toy matrices” X(M, N) and matrices obtained from

simple “toy graphs” to demonstrate its capacity in quantifying the pattern of graphs with respect to other formulas, e.g.:

a. the ratio (H(D)+H(T))/ ln ((M(M+1)/2), that is, the relative entropy or evenness of the upper or lower triangular part of

C(M, M) with diagonal D included (i.e., D+T);

b. the formula of Ricotta and Szeidl (2006), which incorporates in H(D) the entropy of the matrix of co-occurrences itself

with values relativized between 0 and 1;

c. the evenness of the eigenvalues of C(M, M) that gives a measure of the independence of the M components (Feoli

and Ganis 2021 and references therein); can components be independent??

d. the chi square of C(M, M), that according to Kulback (1959), approximates twice the mutual information (see Orloci

1978, Feoli et al. 1984 for ecological applications), and thus also expresses the independence of the M components;

e. the average nested free and

f. the nested based similarity (cf. Urlich et al. 2009; Feoli et al. 2019 and references therein) between the N vectors of

X(M, N) that are indirect measures of the connections between the M components. It is clear that the similarity

between the N sampled states of the system depends on the pattern of co-occurrence between the components (it is

trivial to say that the higher the average similarity, the higher is the average co-occurrence); and

g. the number of centres of the graphs corresponding to the co-occurrence matrices; the maximum number of centres is

M, i.e., when all the M components are connected with more than one component.

Data

To show the performance of formula (2), I used two sets of data; the first is presented in Table 1. It consists of 7 small

“toy” matrices (X (M, N)), each with 4 rows (a, b, c, d) that are the components of the systems and with 5 columns

representing the states of the systems. These matrices, X1,…, X7, give different tipologies of pairwise co-occurrence

matrices, abbreviated by C(X1), …, C(X7) in Table 1. In this case, the nodes and edges of the corresponding graphs are

weighted by the values obtained by the multiplication of each matrix by itself (formula 1)). For each matrix, the column

total that is entering in formula 2) to obtain the pii and pih for calculating the entropies H(D) and H(T) is indicated.

If we consider pairwise co-occurrence as an expression of the connection between the nodes representing the

components in a graph, we can say that matrix C(X1) represents a complete graph with the nodes and edges of the same

weight; C(X2), corresponding to a matrix X(M, N) with a ”gradual” nested situation, represents a graph where the

connection is still complete, but the nodes and edges have different weights; C(X3) represents a graph not completely

connected, where the nodes of the graph have the same weight as those of C(X2), but the edges have different weights;

C(X4) represents an extreme case of nestedness in which one component is linked to all others, those only with degree
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one; in this case, the connection between nodes is complete but weaker than those of the previous matrices; C(X5)

represents a situation in which there is the minimal connection (M-1) between the nodes and where only node a is linked

to all the others (strong centrality in the graph); C(X6) represents a situation in which there is the minimal connection

between the nodes as in C(X5), but the nodes are connected only with 2 nodes at most. In this case, the graph is

assuming the shape of a chain (these two last matrices represent two situations of the minimal connected graph as those

of the graphs of Fig. 1 but with different centrality); C(X7) represents a completely disconnected situation, i.e., a “graph

with only nodes.” In terms of beta diversity of Whittaker (1972), i.e., the ratio between M and m, where m is the average

number of components in the matrices X(M, N), it is the following: X1=1, X2=1,43, X3=1,54, X4=2,5, X5=2,5, X6=2,5 and

X7=4. Three matrices have the same beta diversity (B=2.5), but they present quite different patterns.

The second data set is derived from the blackboard in Fig. 1, whose graphs were drawn by Will Hunting (a young

mathematical genius interpreted by Matt Damon) in the movie “Good Will Hunting.” These graphs were chosen because I

realized that they all have the same number of connections (M-1) (the edges of the graph), which represents the minimal

connection, but they are all different as far as the degree of the nodes is concerned. They give rise easily (for this reason,

I do not show them) to X(10,9) and C(10,10) matrices; those last ones are with the same trace (Dt=18) and the same total

of the upper or lower triangular part of the co-occurrence matrix (Tt =9). Beside the co-occurrence matrices of these

graphs (G), I considered also the co-occurrence matrix (the number 6 in Table 2) obtained by the graph corresponding to

the one in which each node has at most only two edges, i.e., it is connected with only two nodes (G6); topologically, it

corresponds to the graph of matrix X6 in Table 1. Whittaker’s beta diversity of the X(10,9) matrices is equal to 5 for all of

them, the average number of components all being equal to 2.
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Table 1. Seven “toy” matrices X(M, N): X1,.., X7, giving rise to seven different co-

occurrence matrices C (M, M): C(X1),…, C(X7) of the components a, b, c, d (see text).
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Figure 1. This figure shows the 5 graphs (G) drawn by Will Hunting (a young mathematical genius

interpreted by Matt Damon) in the movie “Good Will Hunting”, from which I obtained 5 co-occurrence

matrices. They are expressed as 10 by 9 data matrices and as 10 by 10 co-occurrence matrices that

can be easily written. All of them have 10 nodes and 9 edges. To these graphs, I have added the one

(G 6 in Table 2) with 8 centres, i.e., the one with less centrality. G1, with 3 centres, is on the top right,

although partially visible. In the middle row are G2 with 2 centres on the left and G 3 with only one

centre on the right. On the bottom, G4 has 3 centres and G5 has 2 centres.

Methods

All the toy matrices of co-occurrence obtained from the X matrices in Table 1 and from the graphs of Fig. 1 represent

different patterns of connection between the nodes of the corresponding graphs (as said before, only the patterns of the

graph of matrix X6 and that of G6 of Table 2 are topologically similar, with each node in connection with at maximum 2

nodes). What we could expect from a good formula of connectance is that it would give different values for each different

“graph.” Formula 2) quantifies in a weighted way the connections within a system: the lower the entropy, the higher the

negentropy, the higher the connectance should be. This can be obtained by dividing the observed negentropy by the

value of negentropy corresponding to the situation in which there is the highest number of connections. This corresponds

to the graph with all connected nodes and with the same weight (or equivalence) of nodes and edges (Table 1, matrix X1).

It is easy to show that the maximum value of negentropy is given by the following formula:

H(C) ref max = − ((2/(M + 1)) ln(2/M(M + 1)) − ((M − 1)/(M + 1)) ln(2/(M(M + 1))) (3)
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The ratio between 2) and 3) could be considered a relative weighted measure of connectance (based on co-occurrence):

K(C) = H(C)/H(C) ref max (4)

K(C) can be positive or negative; it is negative when H(C) is positive, i.e., when the entropy of the diagonal of the co-

occurrence matrix is higher than the entropy of the upper or lower triangular part of the matrix (i.e., H(D)>H(T)).

In the paper of 1972, I proposed to calculate the maximum entropy of a community data matrix X(M, N) by the formula

Hmax = - m ln m/M (5)

where m is the average number of components for the N communities in X(M, N). I suggested this because it is unrealistic

to think that a community would have only one component. In other words, each vegetation system or/and subsystem

would have an entropy that depends on its average number of components in the stands by which it is described. The

closer the average number of components is to the total number, the more homogeneous the vegetation system

described by X(M, N), and the lower the entropy, or uncertainty, relative to the system's definition. The uncertainty of a

system of completely connected components would be zero. This formula is in fact equal to 0 when m=M, and it is ln M

when m=1. If it is used to calculate the redundancy of a matrix (R(X(M, N)) as I suggested in 1972:

R(X(M, N) = 1- H(C)/(Hmax) (6)

The values of redundancy R(X(M, N)) would become higher than 1 for H(C) negative (this happens when H(T) is higher

than H(D)), and it will approach 2 as the absolute value of H(C) approaches Hmax. If Hmax is 0, i.e., when m=M, then

H(C) is equal to H(C) ref max (Formula 3), and R(X(M, N)) has an indeterminate value. In this case, the redundancy is

maximum. This can be viewed as a drawback of the formula; however, I think it useful to be compared with values

obtained by K(C). It should be clear that when we are dealing with the triangular part of matrices of co-occurrence given

by D+T, their maximum entropy values are equal to:

H max (D+T) = ln M(M+1)/2 (7)

So I compared K(C) also with the ratio:

H(D+T) rel = H(D+T)/Hmax(D+T) (8)

H(C) was compared also with the formula of Ricotta and Szeidl (2006) that introduces in Shannon’s formula the matrix of

co-occurrence ρ between the components where the values of co-occurrence are transformed to the range [0,1]:

D(O) = −Σipi ln(Σ j ≠ i ρijpj) (9)

In this equation, pi is one element of the vector P (1, M) that shows the proportions between the weights of the nodes, ρij

is the ij-th element in the co-occurrence matrix C(M, M), which is obtained by the Jaccard coefficient (Podani 2022)

applied between the M components of the matrix X(M, N), pj is the component j-th of the vector of the proportions of the

weight of the M nodes P (1, M)T transposed, i.e., P(M,1).

In summary, I have considered for each of the co-occurrence matrices, those obtained by the matrices X (Table 1) and

those obtained by graphs (Fig. 1), the following parameters as listed in Table 2 of the results:
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1. the H(C) obtained by formula 2). It indicates in absolute terms how much the entropy of the edges H(T) is higher with

respect to the entropy H(D) of the nodes: the higher the negative values in absolute terms, the higher the connection

of the M components;

2. the H(C) ref max given by formula 3);

3. the K(C) obtained as the ratio between H (C) and H(C) ref max according to formula 4). It indicates a relative measure

of connection (connectance weighted by nodes and edges) between the M components; the higher its value, the

higher the connectance;

4. the redundancy (R) according to formula 6);

5. the H(D), i.e., the entropy of the diagonal D of the co-occurrence matrices;

6. the H(T), i.e., entropy of the upper or lower triangular part T of the co-occurrence matrices of Table 1 and those

obtained by graphs of Fig. 1;

7. the H(D+T), i.e., the entropy of the triangular matrix obtained by H(D)+H(T);

8. H(D+T) max, i.e., the maximal entropy of the triangular matrices obtained by (D + T), obtained by formula 7);

9. the ratio H(D+T)/(H(D+T) max) (formula 8)), i.e., the relative entropy of matrix (D+T);

10. the entropy of Ricotta and Szeidel’s (RISZ) by formula 9);

11. the evenness of the eigenvalues (Eλ) of the co-occurrence matrices (Feoli & Ganis 2021), it indicates how much the

values of the matrix are concentrated on the diagonal. It is maximum when there are no connections (no edges) and

the nodes have the same weight. In this case, the diagonal values are directly the eigenvalues of the matrices, and the

neg-entropy of the eigenvalues is obviously equal to the entropy of the nodes based on their weight. The evenness

becomes lower as the nodes are connected;

12. the chi-square of the co-occurrence matrices which, as shown by Kullback (1959), approximates twice the mutual

information (cf. Orlóci 1978, Feoli et al. 1984 for applications in phytosociology). As in the case of Eλ, it is maximum

when there are only values in the diagonal of the matrix and they are all equal; the chi-square is zero when the co-

occurrence matrix has all equal values;

13. the number of components (M);

14. the average number of components (m);

15. Whittaker’s Beta Diversity (Whittaker 1972), i.e., the ratio between M and m;

16. the nested free average similarity (NFS); and

17. the nested based similarity (NBS) according to Feoli et al. (2019). In both cases 16) and 17), the similarity has been

calculated by considering the Jaccard similarity function (Podani 2022). It is to stress that for vectors given by only two

components, such as those obtained by the graphs in Fig. 1, the two values (NBS and NFS) are identical;

18. and finally, the number of centres of each graph obtained by all the co-occurrence matrices.

Between these parameters, I have calculated the Pearson correlation coefficient, and to the correlation matrix, I have

applied the ranking procedure suggested by Orloci (1978) for weighting variables. I did this procedure following the

thought that a good parameter, among those chosen to describe the connection pattern of graphs, should be the one that

would explain most of the variability in the other parameters. Finally, I calculated the similarity between the graphs of the
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toy matrices and between the toy graphs of Fig. 1, both on the basis of all the parameters, excluding those that are

constant, and considering only the single parameter which explains the maximum cumulative variance with respect to all

the others, by the index of Gower (see Podani 2000), and I classified separately the graphs of the 7 matrices and those of

Fig. 1. All the computations were done by the program MATEDIT (Burba et al., 2008).

Results

Table 2 shows the values of the 18 parameters calculated for each of the 7 matrices (X) in Table 1 and for the co-

occurrence matrices obtained for the graphs (G). Table 3 and Table 4 show the Pearson correlation coefficients between

the considered parameters (the constants are excluded). Table 5 shows the results of the ranking procedure applied to

the matrices in Tables 3 and 4. It is clear from these tables that the correlation between H(C) and K(C) with all the other

parameters is significant at a very high level of probability, i.e., 0.01 (pink colour for positive correlation, yellow colour for

negative ones). In proportion, the significative correlations are more frequent for the co-occurrence matrices obtained by

graphs; this can be explained by the fact that graphs give a more homogeneous set concerning the connections, which

are in all cases 9.

Table 2. This table shows the values of the 18 parameters for each of the matrices Xi in Table 1 (matrices) and for the matrices obtained from the

graphs of Fig. 1 (graphs G). Symbols or abbreviations: 1) H (C)= entropy of the co-occurrence matrices given by formula 2); 2) H(C) ref max given

by formula 3); 3) K(C)= ratio between H (C) and H(C) ref max according to formula 5); 4) R= redundancy according to formula 7); 5) H(D) = entropy

of the diagonal D of the co-occurrence matrices; 6) H(T) = entropy of the upper or lower triangular part T of the co-occurrence matrices; 7) H(D+T)=

entropy of the triangular matrix obtained by D+T; 8) H(D+T) max= the maximal entropy of the triangular matrices obtained by (D + T); 9)

H(D+T)/(H(D+T) max)= relative entropy of matrix (D+T); 10) RISZ= Ricotta and Szeidel’s entropy formula (2006); 11) Ev.C(X)=evenness of the

eigenvalues of the co-occurrence matrices (Feoli and Ganis 2021); 12) Chi-sq.= Chi-square of the co-occurrence matrices; 13) Nc.M= number of

components M; 14) Nc. m= average number of components; 15) Whit.Beta Div = Whittaker’s Beta Diversity =.; 16) NFS= nested free average

similarity; 17) NBS= nested based similarity; 18) N. cen.= number of centres.
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Table 3. Correlations between the parameters of the matrices (X1,…X7) in Table 2 (p=0.01, r= 0.875; p=0.05, r=0.775). The 3 constants, H(C) ref,

H(D+T) max, and Nc.M, are excluded from the table. Negative and positive correlations for probability lower or equal to 0.01 are respectively in

yellow and pink; correlations for p lower or equal 0.05 and greater than 0.01 are in light blue.

Table 4. Correlations between the parameters of the graphs in Table 2 (p=0.01, r=0.917; p=0.05, r=0.811). The constants, H(C) ref, H(T), H(D+T)

max, Nc.M, Nc.m, Whit. Beta Div., are excluded from the table. Negative and positive correlations for probability lower or equal to 0.01 are in yellow

and pink, respectively; correlations for probability lower or equal 0.05 and greater than 0.01 are in light blue.

By comparing the two matrices, we can see that the graphs of Fig. 1 show that the correlations between the parameters

are all significant, at least at the level of probability of 0.05, while the correlations between the parameters calculated for

Table 1 are not all significant. In both cases, 5 parameters are enough to explain 100% of the total variance.
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Table 5. Results of the ranking procedure suggested by Orlóci (1978), applied respectively to the matrix of Table 3 (Rank Matrices) and to the

matrix of Table 4 (Rank Graphs). Sum of sq. = Sum of squares; %spec. = sum of squares specific to the single parameter with respect to the others;

% cum. = cumulative sum of squares.

From Table 5, it is clear that for the matrices of Table 1, H(C) is the most redundant parameter, i.e., the one that explains

better than others the pattern of the graphs, while for the graphs of Fig. 1 and Table 2, the most redundant parameter is

the redundancy R (X(M, N)) of formula 6), which explains better the variability of the others in terms of sum of squares.

The classification of the 7 matrices X1, ..., X7 on the basis of all the parameters and on the basis of H(C), that is, the

parameter with the highest specific sum of squares, is presented by the dendrograms of Fig. 2 a) and b). These are

obtained by complete linkage clustering and show almost equal topology both for a) and b); only the position of matrices

X3 and X4 is changed within the same main cluster (X2, X3, X4). This proves that H(C) is a good parameter that can

explain all the variability of the other parameters. The classification of the graphs of Fig. 1 based on all the parameters

and only on the redundancy (R) of formula 6) shows dendrograms c) and d) that are topologically identical. In any case,

thanks to the very high correlation between R(X(M, N)) and H(C) (see Tables 3 and 4), the dendrogram e), obtained by

using H(C), is topologically identical to dendrograms c) and d).

Figure 2. Classification of the seven graphs originated by the matrices X of Table 1 by using all the parameters in Table 2 (a) and by using only

H(C) (b), and classification of the graphs of Fig. 1 and Table 2 by using all the parameters (c) and by using only the redundancy of formula 6) (d).

The dendrogram (e) shows the classification of the six graphs (G) using only H(C).

Discussion and Conclusion
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Co-occurrence matrices, graphs, connections, connectivity, connectance, and negentropy as a conceptual tool to

define community patterns

I think that, today, and among ecologists, it is trivial to mention that: “What makes a system a system, and not simply a

collection of elements, is the connections and interactions between its components, as well as the effect that these

linkages have on its behaviour,” but I consider it useful to recall the concept anyway

(https://www.britannica.com/science/complexity-scientific-theory/Connectivity).

In general terms, every “entity” can be considered a system when it is seen as a set of connected components by one or

all of the following relationships: contact, exchange of materials and energy, and exchange of information. See Allen and

Starr (1982) for a discussion of connectedness, connectivity, and connectance in the context of complex systems. I want

to stress here that systems may be open or closed, static or dynamic, and the connections between their components

may be direct or indirect, i.e., via interposed components.

When we analyse ecological communities, we have to take into consideration that the concept of coexistence is strictly

related to the spatial and temporal scales. It is obvious that if I considered sampling units of a few cm2, the co-occurrence

would be realized only for the microbes or small species that are found in these sampling units; if I considered sampling

units of 1 km2, I would find in them several species of microbes, plants, and animals of different sizes. It is instructive to

visit the web with the keywords: scale, species-area curves, biodiversity, to have a lot of information on the area–species

richness relationship. The time interval is also very important, especially in the study of animal communities. If I stay in a

site just for a few hours, I can see very few animals, but if I observe the area for days, then I can record several animals

that are visiting the area for grazing or hunting. Even for plants, time could be important; annual species are “visible” in

some periods of the year and not in others.

Having said this, I want to stress also that when we complete a list of species or “traits” of a given area (a sampling unit,

stands, traps, etc.), we have originated a vector of co-occurrence. This is the basic unit in the study of variation of

ecological communities with respect to environmental heterogeneity and/or gradients. It may be considered alone or

together with other N-1 vectors that we could call diversity vectors of a matrix X(M, N). This matrix, with vectors j from 1 to

N, can be considered the primary co-occurrence matrix that can be used to obtain a pairwise co-occurrence matrix by

formula 1). The co-occurrence matrices C(M, M) may be considered as one of the quantitative expressions of the pattern

of coexistence of the components of a system. It is obvious that just the co-occurrence of given M components of any

type of system, as obtained from formula 1), would not explain the interactions between them; experiments and/or careful

observations are necessary to understand the nature of co-occurrence (e.g., Bever 2003, Adler et al. 2018, and

references therein). It is clear that a matrix of co-occurrence may have different meanings, but from a mathematical point

of view, it is always a symmetric matrix that can be used to construct a graph according to graph theory (Diestel 2017). In

this paper, I consider the pairwise co-occurrence matrix just as a mathematical expression, and I do not want to revise the

vast literature on coexistence of species or other community components where the concept of co-occurrence is implicit.

This literature spans from the biogeography of birds to different ecological aspects of food webs, soil microbiology, and
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landscape ecology (e.g., Diamond 1975, Pimm 1984; Jordan 2001, 2009; Jordan et al. 2007, Scotti and Jordan 2010;

Heleno et al. 2012, Veech 2013, Poisot and Gravel 2014, van Altena et al. 2016, Turnbull et al. 2018, Liccari et al. 2022,

and references therein). I do not want to review all the formulas and models related to co-occurrence, but I want just to

say that the study of the connection between the system components led to the concept of connectivity (see Turnbull et

al. 2018 for a deep discussion about its meanings in different disciplines), and to that of connectance (cf. Allen and Starr

1982). The first is an absolute measure of the “consistency” of a graph, the second is a relative measure of connections

with respect to what I call the maximum “diversity of connections”. With diversity of connections, I mean the combination

between the richness of the nodes and the edges and the proportion of their importance. The “maximum diversity of

connections” is realized when all the nodes of a graph are connected with all the others and nodes and edges have the

same weight. The diagonal component (D) and the triangular upper or lower part of a C(M, M) matrix (T) are representing

the triangular matrix of the “diversity of connections” with M(M+1)/2 maximum number of cells to be occupied by non-zero

values. When we use a co-occurrence matrix to obtain a graph of the “connections” between the M components of a

system, the nodes and edges are always weighted as a consequence of C(M, M) being the self-product of the matrix X(M,

N). It is obvious that if X(M, N) is a binary matrix (Avena et al. 1981, Wilson 2012), C(M, M) is a symmetric matrix in which

the diagonal is showing the frequency of each of the M components and the elements outside the diagonal are the

frequency with which each component occurs with each other component (pairwise co-occurrence); in this context, I do

not find the room to discuss about “null models” on which there is a plethora of papers (e.g., Gotelli 2000, 2001).

The novelty of my proposal in 1972, with respect to the applications of information theory in ecology, by the seminal works

of Margalef (1958, 1968), Orlóci (1968), and Lausi (1970), is the fact that I suggested the formula of neg-entropy

specifically for the upper or lower triangular part—diagonal included—of the pairwise co-occurrence matrices C(M, M),

rather than for the usual single vectors X(M,1), as is done by the application of several indices of diversity. In this way, the

formula 2) can be interpreted as a diversity measure based on Shannon’s index that includes a quantification of the

connection between the components of the communities and, if we consider the co-occurrence a way to express

connections, the formula 4), which is a relativization of formula 2), is a measure of weighted “connectance.” It is true that

Margalef and Gutierrez (1983) suggested a method to incorporate “connectance” in the diversity measures; however, they

do not consider X(M, N) matrices, but they applied a formula similar to that proposed by Rao (1982) to the matrix of the

cross product of the M elements of a single diversity vector. In this way, the graph is supposed to be completely

connected, and different weights are given to the nodes as a consequence of the scalar product between the values of

the vector X(M,1). However, I do not think that we should accept the idea of complete connections between all the

species of a community on the basis of a single diversity vector, being the ecological communities subjected to great

variability along ecoclines and ecotones (Whittaker 1975, Odum and Barrett 2005).

The formula (2) is an expression of “negentropy” because it depends on H(T), which is a measure of the links or

connections between the M components in an X(M, N) matrix, a direct measure of their interdependence and/or cohesion:

the higher H(T) is, the higher the homogeneity of the system represented by X(M, N), and the lower its entropy, i.e., its

uncertainty. It is important to stress that the interpretation of the entropy of a co-occurrence matrix is different from the

interpretation of the entropy of a diversity vector X(M,1). The formula has positive values only when H(D)>H(T), it is equal
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to zero if H(D)=H(T), and it has a negative value when H(T)> H(D). It is clear that if we consider the negative values of

entropy, they are expressing a neg-entropy, i.e., the contrary of entropy and thus the contrary of uncertainty. The smaller

H(D) is and the higher H(T) is, the higher the neg-entropy of H(C)) and the smaller the entropy. In summary, if we consider

the co-occurrence values between the M components of a system as measures of their connection, the entropy gives a

value of such a connection in positive or negative terms: the lower the entropy, the higher the neg-entropy of the system,

i.e., its “cohesion” and predictability. In this paper, I considered two other relevant parameters to measure the uncertainty

of a co-occurrence matrix, such as H(D)+H(T)/ H(D+T) max and the Ricotta and Szeidl (2006) entropy (formula 9)), and

two parameters of the “primary” matrices of co-occurrence X(M, N) that are the average nested similarity and the average

free nested similarity. The Pearson correlation between them has shown that all these 4 parameters are highly correlated

(positively or negatively), so the following question arises automatically: “Why choose the H(C)-based ones, e.g., K(C) or

R?”. The answer is simple: they put in evidence directly the difference between the entropy of the nodes and the entropy

of the edges of the graphs corresponding to the co-occurrence matrices, and because they are showing the highest

capacity for explaining the variability of the other parameters.

I think and I suggest that the co-occurrence between the living components of ecosystems could be calculated at different

hierarchical levels and could be interpreted always as an expression of connections between the components. In

community ecology (the study of ecological communities), the idea to characterize an ecological system by parametrizing

the “links” between the species (or other characters: “traits”) within the combinations that could characterize community

types at different hierarchical levels is not yet very well explored; for this reason, I would like to send the interested reader

to the views of Aleksandrova (1973) and Dale (2001) and references therein, since they explicitly address the idea of

hierarchical combinations. With this, I want to conclude that a matrix of co-occurrence can be obtained from community

tables irrespective of the hierarchical level of the N vectors of the matrices X(M, N) and that formula 2) can help in

quantifying the pattern of the coexistence of species or “traits” at different hierarchical levels of ecological communities. In

this respect, I would like to remember the paper of Wilson (2011), in which he summarizes twelve theories of “co-

existence” for plant communities. I think that it would be interesting to challenge these theories in other types of ecological

communities where the hierarchical pattern is not yet explored in a syntaxonomical sense, such as in phytosociology

(Pignatti 1980, 1990), notwithstanding the stimulating book of Allen and Starr (1982) on hierarchy as a context for

mathematical modelling.
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