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Abstract 

There are growing indications today that complex dynamics of far-from-equilibrium systems 

lies at the root of primordial cosmology and the ultraviolet (UV) sector of particle physics. 

We recently pointed out that dimensional fluctuations of the UV sector can reproduce the 

morphology of the cosmic web. Expanding on the same line of inquiry, this provisional 

report explores the link between the long-range temporal correlations of critical phenomena 

and primordial cosmology. Excluding systematic measurement errors, our report sheds 

new light on the tension in the age of the Universe sparked off by the latest observations 

of the James Webb Space Telescope (JWST).   
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1. Introduction 

Many contemporary theoretical and experimental studies point out that the 

ultraviolet (UV) sector of particle physics and the dynamics of the primordial 

Universe unfold as complex evolution outside thermodynamic equilibrium [see 

e.g., 1- 4, 12 - 16].  For example, it was recently argued that a viable 

description of the primordial Universe must be built from concepts relevant 

to complex dynamics such as Self-Organized Criticality and Multifractal 

Geometry [1]. This approach is likely to bring fresh insights into the early 

genesis of Dark Ma[er and into some open challenges of standard 

cosmology.  

The primary driver of complex dynamics in high-energy particle physics and 

primordial cosmology is the scale-dependent continuous dimensional 

deviation, 

  (1) 2 24( ) ( ) [ ( ) ]UVd O me µ µ µ= - = L
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where  is the running observation scale,  space dimensionality,   the 

representative mass scale of the theory and  the UV cutoff. Building 

off these premises, the goal of this report is to briefly survey the link between 

the long-range temporal correlations of critical phenomena and primordial 

cosmology. 

The report is organized as follows: the first section contains a short 

pedagogical review of critical behavior; second section delves into the topic 

of temporal correlations and their relevance to primordial cosmology. The 

Appendix section touches upon the remarkable analogy between critical 

phenomena and classical chaos theory. 

2. Brief Synopsis of Critical Phenomena 

Phase transitions represent sudden changes in the behavior of collective 

phenomena and are divided into discontinuous (first order) and continuous 

(second order). Given a representative thermodynamic property of a system 

called control parameter , the distinction between the two types boils down 
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to whether the transition stems from a discontinuous or continuous variation 

of . Continuous phase transitions are typically associated with the onset of 

critical phenomena. Near the transition point , several observables of 

interest  diverge following the generic scaling law,  

 ;   (2) 

A key feature of continuous phase transitions is that the scale of correlations 

becomes unbounded at the critical point . Different thermodynamic 

phases are characterized by a locally defined order parameter  whose 

fluctuations are specified by their correlation function. Away from criticality, 

the correlation function of  decays as [5-10], 

 ;   (3) 

where the correlation length exhibits the asymptotic behavior 

 ;   (4) 
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As , the correlation length diverges, which means that critical 

fluctuations in the order parameter do not have any characteristic length 

scale. This property is largely known as scale invariance and is also a 

representative a[ribute of fractals and multifractals. In contrast to (3), critical 

correlation functions in  dimensions assume the form, 

  (5) 

in which  stands for the Fisher exponent. 

Critical behavior may be divided into three groups, namely, 

1. Static phenomena occur in thermodynamic equilibrium. They are 

described using an effective time-independent Hamiltonian , which is a 

functional of  at a given control parameter  . The canonical example is 

thermal critical behavior whereby  and the probability of finding the 

configuration  at  follows the Boldmann-Gibbs distribution, 

  (6) 
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2. Dynamic phenomena develop outside thermodynamic equilibrium. Their 

description requires a stochastic framework typically formulated in terms of 

nonlinear Langevin equations or equations with fractional derivatives and 

integrals [7-9, 19]. In this case, dimensional deviation (1) from the upper 

critical dimension  (wri[en as ) takes on a leading role. A lesser-

known embodiment of dynamic phenomena is critical behavior in continuous 

dimension, where (1) acts as control parameter (that is, ) and plays a key 

role in the emergence of fractal spacetime above the Fermi scale and in 

dimensional reduction conjectured to take place near the Planck scale. 

At criticality, the relaxation time of fluctuations in the order parameter 

diverges as 

  (7) 

where  is the dynamic critical exponent. In a nutshell, 

  and   (8) 
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Relation (8) describes the process of critical slowing down, where fluctuations 

near criticality relax infinitely slow to equilibrium. It can be also shown that 

an identical singular behavior occurs for the time correlation function whose 

scaling law is given by [9] 

  (9) 

as in 

  (11) 

3. Self-organized criticality (SOC) is a subset of dynamic phenomena based 

on self-sustained critical behavior of large-scale systems evolving outside 

equilibrium. The trademark signature of SOC is two-fold: 

a) it occurs in complex ensembles of interacting components, 

b) it is characterized by a power-law distribution of “avalanche” sizes. 

Nowadays, SOC is considered a generic paradigm for a large variety of scale-

invariant phenomena ranging from spin glasses, magnetic domains and 

turbulent flows to traffic jams, cardiac and neuronal activity, economic 
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processes, earthquakes, percolation clusters, forest fires, cellular growth, 

weather pa[erns, social behavior pa[erns and so on [1]. 

3. Temporal Correlations in Primordial Cosmology 

According to [2-3], primordial cosmology can be modeled as critical behavior 

in continuous dimension. This viewpoint leads to the expectation that critical 

slowing down and the onset of long-range temporal correlations necessarily 

develop according to (8) – (11). It is conceivable that long-range time 

correlations may account for the latest JWST data which report a surprising 

similarity between the properties of far-field and near-field cosmic structures 

(galaxies and Black Holes), in terms of size, shape, dynamics, distribution, 

and internal composition. 

We close by noting that the same findings may likely provide clues to the 

horizon problem of cosmology, which is still outstanding today (see e.g. [17-

18]). The horizon problem may be concisely stated as follows: distant regions 

of space in opposite directions of the sky are widely separated. Assuming 

standard Big Bang expansion, they can never have been in causal contact with 
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each other. This is because the light travel time between them exceeds the 

age of the universe. Yet the uniformity of the cosmic microwave background 

(CMB) temperature tells us that these regions must have been in contact with 

each other in the past.  

APPENDIX 

Kolmogorov Entropy and Relaxation Time in Nonlinear Dynamics  

A remarkable analogy may be drawn between critical phenomena, on the 

one hand, and the approach to chaos in nonlinear dynamics, on the other. To 

unveil this analogy, refer first to [4], which bridges the gap between 

Kolmogorov entropy ( ), topological entropy ( ) and dimensional 

deviation (1), 

  (A1) 
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Consider next and the link between the relaxation time to equilibrium in 

nonlinear dynamics and the rate of Kolmogorov entropy in phase-space 

given by [11], 

  (A2) 

in which  stands for the differential volume in phase-space. (A1) shows 

that, as dimensional deviation approaches its upper bound, ( ) near 

the Planck scale and spacetime dimension collapses to zero, Kolmogorov 

entropy  assumes a constant value. By (A2), the entropy rate in phase-

space drops to zero and the relaxation time to equilibrium diverges to 

infinity, in a manner entirely consistent with (8) – (11).   
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